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Effects of Non-Fish Based Raw Materials on the Fish Muscle 
Quality of Salmonids 

Abstract 
Salmonids are considered as fatty fish and a healthy food. They are characterized by a 
high proportion of n-3 long chain polyunsaturated fatty acids (n-3 LCPUFA). There is 
great interest in producing high-quality salmonids with a reduced use of fish-based 
materials and a challenge to adjust feeds towards more sustainable. 

This thesis investigated the effects of sesamin, linseed oil (LO), rapeseed oil (RO), 
krill oil (KO), krill meal (KM), mussel meal (MM), and zygomycete meal (ZM) 
(Rhizopus oryzae) on fish performance, fatty acid profiles, carotenoids, cytochrome 
P450 (CYP450) and, colour properties and oxidation in the white muscle of Atlantic 
salmon (Salmo salar L), rainbow trout (Oncorhynchus mykiss) and Arctic charr 
(Salvelinus alpinus).  

No negative effects on fish performance were found when KM, KO, MM, ZM and 
sesamin were included in the fish feeds. The FA profile was modified significantly by 
these feed compounds. LO and RO increased the α-linolenic acid (ALA) level and 
decreased the n-3 LCPUFA portion. Sesamin significantly decreased the ALA level 
and slightly increased the DHA level in some groups of Atlantic salmon and rainbow 
trout. Stripped-LO showed different effects on the portion of EPA and ALA compared 
to the LO group. The sesamin content in fish liver was consistent with its level in feeds, 
while the content in white muscle was similar across all groups. KO, KM and MM 
contributed a high portion of n-3 LCPUFA and under 3.5 mg/kg astaxanthin to the 
white muscle of Arctic charr, enhancing a* value. Some groups with a high level of 
astaxanthin showed high level of oxidation products (thiobarbituric reactive 
substances). Sesamin and ZM significantly affected the level or activity of CYP 450.  

The results of this thesis reveal the different effects of the non-fish-based materials 
on the fatty acid profile and colour properties in salmonids, suggesting that these feed 
compounds can be used to improve fish quality with an optimised formula. Results also 
indicate that new feed raw materials need further evaluation before the full application 
in commercial fish feeds.  

Keywords: salmonid, sesamin, krill, mussel, zygomycete, fatty acids, carotenoids, 
TBARS, CYP450. 
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1 Introduction  

1.1 Fish as food 

Fish consumption is steadily increasing world-wide and fish is known to be 
healthy and beneficial for human health.  Fish contains protein with a balanced 
amino acid profile, lipids, especially n-3 long chain polyunsaturated fatty acids 
(LCPUFA), antioxidants such as carotenoids, tocopherol, vitamins D and B12, 
essential minerals and trace elements, e.g. selenium, iodine (Bell & Waagbø, 
2008). Over the past five decades, fish consumption has increased by an 
average rate of 3.2 % per year. In 2011, fish consumption per capita was 18.8 
kg, accounting for 16.7 % of the world population’s intake of animal protein 
(SOFIA, 2012). Therefore, fish is an important animal food source in human 
diets.  

Muscle is the main edible part of fish, accounting for about 60 % of the fish 
body mass. Fish have mainly two different types of muscle fibers: white 
muscle and red muscle. Most fish have more of the glycogenic white muscle, 
which is usually leaner than the oxidative, fattier red muscle. Fish muscle is 
composed of parallel muscle fiber bunches called myotomes, which are 
separated by layers of connective tissue called myosepta (Figure 1). Myosepta 
is the main reservoir for lipid deposition in fatty species (Zhol et al., 1995). 
Carotenoids in muscle bind to actomyosin  by hydrophobic bonds rather than 
associate with lipids (Sigurgisladottir et al., 1994). 

Lipid content and lipid class as well as fatty acid (FA) composition differ in 
various tissues. The abdominal wall has the highest portion of lipids, mainly 
triacylglycerols, with a large portion of monounsaturated fatty acids (MUFA). 
White muscle contains lipids characterized by a high level of phospholipids 
rich in n-3 LCPUFA. Henderson and Tocher (1987) concluded that MUFA are 
positively correlated to fattiness, while n-3 LCPUFA are negatively correlated 
to fattiness in fish. Lipid content and FA composition also depends on the fish 



12 

species. Some species have a lipid content below 2 % in muscle (wet weight), 
e.g. pikeperch (Stizostedion lucioperca), burbot (Lota Iota) and, cod (Gadus 
morhua), while species such as Atlantic salmon (Salmo salar) and, buffalo 
catfish (Ictiobus sp.) contain 10 % lipids or more (Henderson & Tocher, 1987). 
The FA profile of muscle from marine fish such as Atlantic salmon and herring 
(Clupea harengus) is characterized by a high portion of n-3 LCPUFA, but in 
freshwater fish e.g. carp (Cyprinus carpio), n-3 LCPUFA levels are often 
lower. It should be pointed out that fish nutrition greatly affects the quality of 
the fish. n-3 LCPUFA and carotenoids in fish muscle greatly depend on the 
corresponding nutrients in the feed. 

 
Figure 1. Schematic picture of general salmonid muscle. Adapted from (FAO, 1995) 

 
 
Figure 2. Some important n-6 and n-3 polyunsaturated fatty acids   
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1.2 Fish FAs and human health 

1.2.1 n-3 PUFA and n-6 PUFA  

Polyunsaturated fatty acids (PUFA) are FAs that contain more than one double 
bond. PUFA can be divided into n-3 series and n-6 series fatty acids (Figure 2), 
which have their first double bond at the third or sixth carbon, counting from 
the methyl end of the molecule, respectively.  
    n-3 LCPUFA, mainly eicosapentaenoic acid (EPA, 20:5n-3) and 
docosahexaenoic acid (DHA, 22:6n-3), are necessary constituents of the cell 
membrane and play an important role in the regulation of cell signaling 
(Calder, 2009). They show beneficial effects on the prevention or treatment of 
diabetes (Nettleton & Katz, 2005), cardiovascular disease (Von Schacky & 
Harris, 2007), inflammatory diseases (Connor, 2000), some cancers (Larsson et 
al., 2004), obesity (Garaulet et al., 2001) as well as abnormal cognitive 
functions (Kröger et al., 2009). Studies have shown that the n-6/n-3 ratio of 
FAs is important in human diets. n-6 and n-3 FAs are metabolically and 
functionally distinct and often have opposite roles. Metabolites from n-6 PUFA 
are important in immune response and inflammation, while metabolites of n-3 
PUFA are involved in anti-inflammatory functions (Nagao & Yanagita, 2008).  

1.2.2 Recommendations for the intake of FAs  

Recommendations on optimal lipid intake are often re-evaluated to minimize 
metabolic syndrome in humans as an effect of lifestyle and according to new 
research findings. General guidelines recommend total fat intake to be around 
30 % of the daily energy intake (Linseisen et al., 2009). Different agencies, 
such as the European Food Safety Authority (EFSA), American Heart 
Association (AHA), and World Health Organization (WHO) recommend the 
consumption of at least two portions (or 400 grams) of fatty fish per week to 
maintain good health. The recommendation for the daily intake of individual 
fatty acids is as follows: 2 g α-linolenic acid (ALA), 10 g linoleic acid (LA) (n-
3/n-6 ratio 1:5) and 200-500 mg EPA + DHA for normal population (EFSA, 
2009; EFSA Panel on Dietetic Products, 2010; WHO/FAO, 2003a). Pregnant 
women, infants, children and person in risk of cardiovascular disease should 
consume higher doses (Kris-Etherton et al., 2002) (Table 1). 
    During the last century, cereal grains rich in n-6 PUFA were and still are 
widely fed to animals to meet the increasing demand of animal-origin products 
such as meat, milk and eggs world-wide. This change in food production led to 
a remarkable increase in n-6 FAs in animal foods and caused a high n-6/n-3 
ratio in human diet. The current western diet includes < 150 mg n-3 FAs per 
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day and the n-6/n-3 ratio is 10:1-20:1, far above the recommended level 
(Simopoulos, 2000). 

Table 1.  International recommendations for n-3 long chain polyunsaturated fatty acids 

Organization  (year) Amount of EPA and DHA Object 

WHO/FAO (2003b) 450 – 1000 mg/day Adult 
ANHMRC (2006) > 610 mg/day; > 410 mg/day Men; women 

ISSFAL (2004) > 500 mg /day Pregnant adult 
AHA (2002) 1000 mg /day CHD patient 

Abbreviation: EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; WHO, World Health Organization; 
FAO, Food and Agriculture Organization; AHA, American Heart Association; ISSFAL, International Society 
for the Study of Fatty Acids and Lipids; ANHMRC, Australian National Health and Medical Research 
Council; CHD, Coronary heart diseases.  

Table 2. Fatty acids composition (% of total fatty acids) of animal food products from 
conventional feed with different main lipid source (defined in brackets) 

Animal (feed) ALA EPA DPA DHA Total n-6/n-3 

Beefa (grain) 0.5 0.2 0.5 0.05 1.25 8.7 
Beefb (pasture) 1.8 0.6 0.9 0.08 3.38 1.3 
Porkc (grain) 0.5 - 0.3 0.3 1.1 12.1 
Porkd (linseed) 3.3 1.8 2.2 0.8 8.1 3.5 
Chickene (rapeseed) 4.52 0.5 0.18 0.48 5.68 3.68 
Chickene (fish oil) 1.60 7.63 2.29 5.59 17.1 0.79 
Eggf (corn oil) 1.0 0.02 0.1 1.7 2.82 15.3 
Eggf (algae) 1.9 0.2 0.2 2.5 4.8 4.3 
Salmong (rapeseed) 4.1 1.1 0.4 3.2 8.8 1.5 
Salmong (fish oil) 0.6 4.1 1.8 7.7 14.2 0.3 
aWood and Enser (1997); bFredriksson and Pickova (2007); cNilzén et al. (2001); dMatthews et al. (2000); 

eLopez-Ferrer et al. (1999); fFredriksson et al. (2006); gTorstensen et al. (2004). 
Abbreviation: ALA, α-linolenic acid; LA, linoleic acid; EPA, eicosapentaenoic acid; DHA, docosahexaenoic 
acid; DPA, docosapentaenoic acid. 

1.2.3 n-3 LCPUFA in animal origin food products 

As a matter of priority, fish deposit n-3LCPUFA in tissues. At present, marine 
fish are the major contributors of n-3 LCPUFA in the human diet. Compared 
with other animal origin food, marine fish provide a much higher portion of n-
3 LCPUFA (Table 2). The majorities of n-3 LCPUFA is synthesized by 
microalgae and transferred into fish or other aquatic animals via the food chain 
in aquatic systems. In farmed fish, these FAs are traditionally provided via fish 
feed in a diet containing fish oil (FO). If FO is replaced by other lipid sources 
with smaller amounts of n-3 LCPUFA, their levels in edible tissues will 
decrease (Table 2). In studies by Pettersson (2009a; 2009b), Arctic charr 
(Salvelinus alpinus) and rainbow trout (Oncorhynchus mykiss) were fed feeds 
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with different amounts of DHA and EPA. A clear decrease of n-3 LCPUFA 
was recorded with decreased levels in the feed. Mráz et al. (2010) concluded 
the same trend in dietary studies in common carp (Cyprius caprio).  

1.2.4 Carotenoids and human health 

Figure 3. Chemical structure of canthaxanthin and astaxanthin. 

Carotenoids are a group of fat-soluble pigments. They are divided into two 
classes, containing either no oxygen as highly unsaturated carotene 
hydrocarbons or containing oxygenated group substitutes at particular sites on 
the terminal rings as xanthophylls (Shahidi & Brown, 1998). Carotenoids are 
functional compounds for human health due to their excellent antioxidative 
activity. Astaxanthin (3,3´-dihydroxy-β,β-carotene-4,4´-dione) is the most 
common carotenoids in salmonids and canthaxanthin (β,β-carotene-4,4´-dione) 
is also often found in salmonids (Choubert et al., 2009). Astaxanthin (AST) has 
terminal carbonyl groups conjugated to a polyene backbone that enhances the 
antioxidant features (Jackson et al., 2008) (Figure 3). Its antioxidant activity is 
considered to be higher than other carotenoids (lutein, β-carotene and 
canthaxanthin) (Beutner et al., 2001), 100 times more so than α-tocopherol 
(Miki, 1991). A large number of studies prove its potential effects on the 
prevention or treatment of cardiovascular disease (Hussein et al., 2005) , some 
cancers (Jyonouchi et al., 2000), diabetes (Naito et al., 2004), ocular and skin 
health (Chitchumroonchokchai et al., 2004; Lyons & O'Brien, 2002) and other 
inflammatory response and immunological system diseases (Lee et al., 2003). 

1.3 Aquaculture, fish oil and fish meal 

Aquaculture is the systematic farming of aquatic organisms such as fish, 
crustaceans and aquatic plants. Two key sources of feeds for aquaculture are 
fish meal (FM) and FO. FM represents the most suitable protein source with 
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good digestibility and contains all the essential amino acids in appropriate 
proportions for fish nutrition (Cho & Kim, 2011). FO is considered an 
excellent lipid source, especially in the context of n-3 LCPUFA (Rice, 2009). 
Its composition mirrors the food chain Fas. n-3 LCPUFA produced mostly by 
microalgae are magnified in the food chain and consumed by humans mainly 
in the form of fish. These compounds are highly valued with regard to human 
nutrition. In addition, the content of fat-soluble carotenoid pigments and 
vitamin E (tocopherol), A and D (Rice, 2009) are of importance in fish oil. 
These raw materials have their origin in traditional ocean capture fisheries (De 
Silva et al., 2011). In the 1980s, most of the feed resources needed for the 
cultivation of carnivorous and omnivorous fish and crustaceans originated from 
pelagic reduction fisheries (anchovy, capelin, horse mackerel, menhaden, sand 
eel, pilchard and herring and sprat) (Olsen, 2011). Some of them are actually 
threatened with extinction (Naylor et al., 1998; Naylor et al., 2000). Thanks to 
major investment in research, there has been a change in this threat over the 
past decade, with a tendency towards greater use of agricultural feed resources 
for fish (Gatlin et al., 2007; Naylor et al., 2009). Plant resources are more 
widely available and cost less than marine feed resources. There has been a 
strategy of increasing the fraction of plant products in formulated pelleted 
feeds in aquaculture (Olsen, 2011; Tacon et al., 2011).  

 

Figure 4. Capture, aquaculture production and human consumption of fish in the periods 2000-
2011; Data taken from SOFIA (2012).  
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    Aquaculture is the fastest-growing sector of animal production worldwide. 
In the last 10 years, aquaculture production has risen to 8.5 % annually while 
capture production has seen little change (Figure 4). Currently, fish and fish 
products for human consumption have risen up to 130.8 million tonnes and 
aquaculture covers roughly half of the supply (FAO, 2012). Thus, the 
requirement for FO and FM as traditional components of feedstuffs is steadily 
growing. Since aquaculture production continues to grow while the production 
of FM and FO is stagnating, the demand for them in aquaculture may outstrip 
supply within the next few years, and so has already done for fish oil (Tacon & 
Metian, 2008) (Figure 5). 

 
Figure 5. Total production and consumption of fish meal (FM) and fish oil (FO). Data taken from 
IFFO (2009).  

Figure 6. Usage of fish meal (a) and fish oil (b) in different species in aquaculture. Data taken 
from SOFIA (2012). 
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Most fish species farmed in European aquaculture are predatory fish species. 
Feeds for them traditionally contain FM and FO. Over half the entire 
production of FO is utilized in feeds for salmonids, mostly Atlantic salmon and 
rainbow trout, which represent only 4 % or so of entire fish production in 
global aquaculture (Figure 6).  

By developing new feeding strategies, more than 50 % of the lipid source in 
feed can be replaced by vegetable oils (VO) such as rapeseed oil (RO) for FO 
during the main on-growth period (Bell et al., 2003a) and today the 
commercial feeds contain up to 90 % VO. To ensure that n-3 LCPUFA content 
stays to the similar level compared to levels in wild fish, FO can be used in the 
finishing period (10-12 weeks) (Mráz et al., 2012; Robin et al., 2003).  

FO is obtained as a by-product in the production of FM. Generally, 100 kg 
of fish (or by-products from fish processing, wet weight), produce 20-23 kg of 
FM and 5 kg of FO (Pike & Jackson, 2010). In recent years, around 25 million 
tonnes of fish per year are directly aimed at and used in the production of FM 
and FO, which represents about 25 % of captured fish worldwide (FAO, 2012). 
This leads to discussions about whether this fish should be used for direct 
human consumption instead, especially in developing countries (Tacon & 
Metian, 2008).  

1.4 Non-fish feed ingredients  

Plants, such as soy and other leguminosae are alternative feed sources, but their 
use in fish feed is hampered by some disadvantages. The low protein content, 
high level of carbohydrate and some anti-nutritional factors may cause 
problems in the digestion and uptake in fish, such as inflammation, protease 
inhibition and reduced fish growth (Francis et al., 2001). Extrusion, 
fermentation and other processing techniques can be used to improve the 
nutritional value and quality of plant feed stuff. Plant protein from soybean and 
peas for example has been successfully tested in feeds for salmonid species 
(Brinker & Reiter, 2011; Carter & Hauler, 2000). 

Today VO is the most abundant lipid source for aquaculture. However 
PUFA in VO, such as linseed, rapeseed, soy and hemp oil, is mainly carbon 18 
PUFA such as ALA and LA. Although fish performances are not affected by 
replacing FO with a high level of VO, the n-3 LCPUFA portion in fish muscle 
decreases significantly, causing a decline to in the nutritional value of fish as 
human foods (Bell et al., 2003b; Pettersson et al., 2009a; Turchini et al., 2009). 
A suggested way of improving the use of VO is to increase the conversion 
efficiency of ALA into n-3 LCPUFA by the synthesis pathway of n-3 FAs (see 
section 1.5.2).  
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Transgenic plants are also proposed as a possible source of n-3 LCPUFA 
(Robert, 2006). However their application in aquaculture and food is still a 
subject of intense debate given ethical issues concerning the environment and 
human health in most parts of the world, and Europe in particular (Myhr & 
Dalmo, 2005).  

Another potential source for aquafeed is aquatic organisms further down the 
food chain, including aquatic invertebrates such as copepods, mussels, krill 
(Euphausia superba) and the byproducts of seafood. These sources contain a 
high portion of n-3 LCPUFA and protein and have an amino acid profile 
similar to FM. Some of them are also rich in carotenoids. Oil or meal produced 
from these sources can be used as FM or FO substitutes. Extracts from krill, 
salmonid viscera and calanoid copepod (Calanus finmarchicus) have been 
tested in different fish species (Olsen et al., 2004; Suontama et al., 2007; 
Turchini et al., 2003). It should be noted that there is a significant difference 
between the catch quota for krill (8 million tonnes) and the present catch (0.2 
million tonnes) (Nicol et al., 2012). There is great potential in exploring this 
further, but the consequences of this on the catch and ecology should be 
closely monitored to avoid damage to the ecological system in the Southern 
Ocean (Kawaguchi & Nicol, 2007). 

Micro-organisms might be the next source for aquafeed. Single-cell micro-
organisms such as thraustochytrids, diatoms and microalgae are able to 
produce a high portion of n-3 LCPUFA with optimized strains and growth 
conditions. Oil extracted from thraustochytridea (Schizochytrium sp.) and 
microalgae (Crypthecodinium cohnii; Phaeodactylum tricornutum) have been 
tested in Atlantic salmon parr and juvenile seabream (Sparus aurata) which 
have demonstrated a strong capability for retaining n-3 LCPUFA in muscle 
(Atalah et al., 2007; Ganuza et al., 2008; Miller et al., 2007) with this single 
cell origin. Micro-organisms are also a good protein source for fish feed. 
Protein accounts for a high proportion in the biomass of bacteria, yeast and 
microalgae. They could be used as substitutes for FM or as valuable additives 
in aquafeeds. Single-cell protein from some bacteria (Bacterium 
glutamaticum), zygomycete (Rhizopus oryzae) and wasted microalgae from 
nutraceutical production have been tested in salmonids (Ju et al., 2012; 
Mydland et al., 2007; Storebakken et al., 2004). Additionally, micro-organisms 
are also a potential carotenoid source. Some species like green freshwater 
microalgae (Haematococcus pluvialis) and red yeast (Phaffia rhodozyma) can 
synthesize AST efficiently (Schmidt et al., 2011; Wang et al., 2013). Single-
cell biomass is an interesting candidate for aquafeed as it provides n-3 
LCPUFA-accompanying protein and carotenoids due to lowered processing 
costs as suggested by some studies (Miller et al., 2008). 
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1.5 Fish FA metabolism 

1.5.1 FAs in fish  

FA is a carbon chain with a carboxyl group at one end and a methyl group at 
the other. Depending on the length of the carbon chain and the site and number 
of double bonds, it can be divided into saturated fatty acids (SFA) and 
unsaturated fatty acids. FAs with one double bond are called MUFA and those 
with two or more double bonds are called PUFA. Depending on whether the 
first double bond is at the third or sixth carbon counting from the methyl end, 
they are either n-3 PUFA or n-6 PUFA. PUFA with more than twenty carbons 
are considered LCPUFA.  
     

 
Figure 7. Elongation and desaturation pathway of n-6 and n-3 fatty acids and precursors of 
eicosanoids. Elovl, elongase of very long chain fatty acids. Adapted from Voss et al. (1991) and 
(Tocher, 2003).  

    FAs play important roles in the physiological activity of fish. They are an 
important energy source. FAs produce more than double the amount of energy 
as carbohydrate and protein with the same mass. Short-chain SFA and 
medium-chain MUFA such as 16:0, 18:1n-9, 20:1n-9 and 22:1n-9 are usually 
burned for energy production in salmonids through β-oxidation (Henderson & 
Sargent, 1984; Kiessling & Kiessling, 1993; Wanders et al., 2001). FAs are 
also structural components of cell membrane lipids, such as phospholipids and 
glycolipids. Phospholipids in cell membranes generally contain high levels of 
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16:0, 18:1n-9, EPA and especially DHA (Henderson & Tocher, 1987). In 
addition, LCPUFA, mainly arachidonic acid (AA) and EPA are precursors of 
eicosanoid products such as prostaglandin, thromboxane, prostacyclin, 
leukotriene (Figure 7). These are mediators in physiological processes related 
to inflammatory and immunological responses and are involved in the 
reproductive function, hormone release and stress coping in fish (Stanley-
Samuelson, 1994).  

1.5.2 Elongation and desaturation 

Fish are able to synthesize SFA (16:0 and 18:0) endogenously and go on to 
form MUFA (16:1n-9 and 18:1n-9) through Δ-9 desaturase (Sargent, 2002). 
However, like to other vertebrates, fish cannot add a second double bond and 
therefore cannot synthesize ALA and LA de novo. Thus, the two are essential 
fatty acids. In almost all fish, carbon 18 polyunsaturated fatty acids, ALA and 
LA can be elongated and desaturated into LCPUFA as EPA, DPA, DHA or 
AA, but to a limited degree (Voss et al., 1991) (Figure 7). This provides a 
background and an approach for increasing n-3 LCPUFA in fish body. The 
biosynthesis process is regulated by desaturases and elongases, and occurs in 
the microsomal fraction of the liver except for the last step shortening 24:6n-3 
to DHA through β-oxidation, which occurs in peroxisomes. Freshwater fish are 
considered to have a greater ability to convert shorter-chain PUFAs to 
LCPUFA than marine fish do (Sargent, 2002; Tocher, 2003). The effects in 
salmonids of VO rich in ALA have been tested and an enhanced conversion 
ability found in some cases (Bell et al., 2001; Mourente et al., 2005; Stubhaug 
et al., 2005). However, the reduction in dietary n-3 LCPUFA in VO-based 
diets cannot generally be compensated by in vivo synthesis from the ALA. 

 

 
Figure 8. Structure of sesamin (A) and episesamin (B) 
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1.5.3 Effect sesamin on FA metabolism 

Some bioactive compounds have been found to modulate fish FA metabolism 
to increase the conversion of ALA to n-3 LCPUFA. Sesamin is a lignan found 
in sesame seed and oil. It has significant effects on fatty acid metabolism, 
regulating FA oxidation and synthesis in humans and rats (Ide et al., 2001; 
Jeng & Hou, 2005; Kushiro et al., 2002). Trattner et al. (2008a) found that 
sesamin significantly enhanced the conversion of ALA to n-3 LCPUFA and the 
DHA level in rainbow trout was increased by 37 %. In another in vitro study 
with Atlantic salmon hepatocytes, sesamin/episesamin exposure led to 
increased elongation and desaturation of ALA to DHA (Trattner et al., 2008b). 
Some genes related to lipid metabolism including peroxisome proliferator-
activated receptor α (PPARα), Acyl-CoA oxidase (ACO) and carnitine 
palmitoyl transferase I (CPT1), scavenger receptor (SRB) type B, and delta-6 
fatty acid desaturase (Δ6 fad) were also regulated significantly. Alhazzaa et al. 
(2012) also found an increased level of n-3 LCPUFA in total lipids in the 
whole body by up to 25 % in juvenile teleost (Lates calcarifer) fed with 
sesamin addition to feed containing ALA. The effect of sesamin on lipid 
modulation is enabled through the activation of the PPAR system and the sterol 
regulatory element binding protein (SREBP) (Ashakumary et al., 1999; Ide et 
al., 2004). Sesamin is able to regulate the activity and mRNA level of enzymes 
involved in β-oxidation, lipogenesis and desaturation (Ide et al., 2003).  

1.6 Carotenoids in fish 

1.6.1 Carotenoids and colour properties  

Colour is a factor that influences the acceptability of food to consumers. For 
salmonids, the redness of white muscle is considered to be an important 
criterion of their quality (Baker & Günther, 2004; Choubert, 2010). This pink 
colour is given by the carotenoids deposited in white muscle (Bjerkeng, 2000).  
AST is the most important carotenoid in salmonids (Choubert et al., 2009). The 
system of the Commission Internationale de Éclairage, which includes the L*, 
a*, and b* values is often used to evaluate the colour properties. In this system, 
a* value represents redness, b* value reflects yellowness and L* value suggests 
lightness. A transformed system considered to be more accurate for colour 
properties measuring L*, C* and H values is also applied. Carotenoid content 
shows strong correlations with these parameters. Linear or logarithmic 
relationships between a*, b* and C* values and AST content as well as a 
negatively linear or logarithmic correlation between L* and H values and AST 
content have been found (Bjerkeng, 2000; Christiansen et al., 1995; Teimouri 
et al., 2013).  
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1.6.2 Carotenoid sources for fish 

AST plays an important role in sexual mutuality, egg survival, embryo 
development, alleviation of oxidative stress and the immune system in fish 
(Higuera-Ciapara et al., 2006). Fish cannot synthesize carotenoids de novo and 
have to obtain these via feed (Caballo et al., 2012). Synthesized AST 
(Carophyll Pink, F.Hoffmann-La Roche Ltd., Switzerland) is the most widely 
used carotenoid for farmed salmonids. The growing interest in natural food and 
the high cost of this compound have driven the aquaculture industry to seek 
alternatives. AST extracted from microorganism such as red yeast (Schmidt et 
al., 2011), green algae (Wang et al., 2013) and aquatic organism rich in these 
pigments such as crustaceans (López et al., 2004), shrimp shell (Franco-
Zavaleta et al., 2010) and krill (Arai et al., 1987) have been tested.  

1.6.3 Carotenoid metabolism and utilization in fish 

 
Figure 9. Astaxanthin uptake, transport and deposition. Astaxanthin (AST) is taken from the 
intestine, transported in the blood and deposited in muscle by the various lipoproteins (ALB, 
albumin; HDL, high-density lipoprotein; LDL, low-density lipoprotein; VLDL, very low-density 
lipoprotein); CM, chylomicron; CMR, chylomicron remnant. During sexual maturation/spawning 
migration (dotted lines), AST is redistributed from the muscle to the skin and gonads by HDL. 
Adapted from Rajasingh et al. (2006). 
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The processes of regulating carotenoid absorption and metabolism in fish are 
still not completely clear. For AST, it is generally taken from the intestine as 
micellar, incorporated into chylomicrons with triacylglycerol, transported in 
blood, and deposited in muscle by the various lipoproteins (Rajasingh et al., 
2006) (Figure 9). Liver also metabolizes AST, resulting in degradation and 
finally loss of AST (Page & Davies, 2003).  
    The efficiency of AST utilization in salmonids is low (the retention rate is 
usually below 15 %) (Rørvik et al., 2010). Its utilization depends on fish 
species, physiological status, dietary composition, pigment source and 
environmental conditions (Torrissen et al., 1989). There are differences in the 
efficiency of pigment retention among Atlantic salmon, rainbow trout and 
Arctic charr (Chimsung et al., 2012). Small fish are reported to have a lower 
ability for AST utilization, probably due to the plateau level in the pigment 
capacity (Skrede & Storebakken, 1986). Fish in low-temperature water may 
have higher AST absorption than fish living in high-temperature aquatic areas 
(Olsen & Mortensen, 1997). During sexual maturation, AST is redistributed to 
the skin and gonads and the AST level in muscles then decreases (Bjerkeng et 
al., 1992).  

AST source and dietary composition, especially lipid content and FA 
profile, affect AST absorption. A high lipid level and PUFA in feed contribute 
to better utilization of AST (Bjerkeng et al., 1999). For matrix like krill oil and 
algae oil, AST occurs in ester form. It needs to be hydrolyzed into free AST 
and incorporated into micelles and then absorbed into the intestine, before 
being transported to the liver and deposited in muscle (Rørvik et al., 2010). 
Intestinal hydrolysis or cleavage is a limiting step for the absorption of AST 
(White et al., 2003). A lower retention rate of AST is found when salmonids 
are fed AST ester compared with free AST (Albrektsen et al., 2006; Hynes et 
al., 2009). AST has several isomers and this also influences utilization. Trans 
one is considered to have higher apparent digestibility than cis isomer 
(Bjerkeng et al., 1997). For yeast and algae, their cell wall may inhibit the 
digestibility of AST, and cell disruption enhances absorption (Barbosa et al., 
1999; Bjerkeng, 2000). Work on increasing the bioavailability of AST from 
these substitutes in fish feeds need to be continued to increase AST retention.  

1.7 Oxidation of foods containing polyunsaturated fatty acids 

Due to the positive health effects of n-3 LCPUFA in humans, there is 
increasing interest in producing n-3 LCPUFA-enriched food. However, n-3 
LCPUFA is susceptible to oxidation, forming secondary oxidation products 
such as aldehydes, ketones, epoxidesand volatile organic acids. These 
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oxidation products reduce flavour (Kamal-Eldin & Pickova, 2008) and some 
are harmful to human health (Ames et al., 1993). They may also start reactions 
with some amino acids to form carbonyls and protein aggregates, resulting in a 
deterioration in texture (Uchida & Stadtman, 1993). The colour of muscle is 
also compromised during the oxidation period (Ruff et al., 2002; Scaife et al., 
2000). In summary, lipid oxidation in fish muscle may result in a reduction of 
sensory properties, a restriction of storage possibilities and nutritional losses. It 
is therefore necessary to maintain a balance between n-3 LCPUFA fortification 
in food for human nutrition and food product stability.  

Antioxidants such as tocopherol, ascorbic acid, glutathione, and plant 
extracts containing substances such as phenols and anthocyanins have been 
applied to improve lipid stability in animal food. They can be included in the 
animal órigin food products matrix post mortem during processing. Many of 
these antioxidant compounds are suitable to add to animal feeds. The latter 
approach is common in aquaculture. Tocopherol is the most used antioxidant. 
It demonstrates an excellent ability to inhibit lipid oxidation, protecting the 
sensory properties such as taste and colour of white muscle of Atlantic salmon 
(Harare et al., 1998; Sigurgisladottir et al., 1994), and rainbow trout (Frigg et 
al., 1990; Jittinandana et al., 2006). Thiobarbituric reactive substances 
(TBARS) value determines the secondary oxidation product, which is 
malondialdehyd formed from PUFA. It is widely used to reflect the oxidation 
status in the food matrix (Botsoglou et al., 1994).  

1.8 CYP 450 in fish   

Dietary components affect various physiological processes including 
detoxification ability of fish. Cytochrome P450 (CYP450) which plays an 
important role in the biotransformation of endogenous and exogenous 
compounds can be influenced by diet. Activities of some CYP450 isoforms can 
be changed by dietary manipulations (Trattner et al., 2008a; Wagner et al., 
2012). Thus it is helpful to include the analysis of CYP450 activities in tests of 
new dietary ingredients to obtain better understanding of their effects.  

CYP1A is inducible by aryl hydrocarbon receptor agonists and the activity 
measured as ethoxyresorufin O-deethylase (EROD) is used as a biomarker for 
exposure to xenobiotic compounds, such as dioxins, furanes, polychlorinated 
biphenyls and polyaromatic hydrocarbons in fish (Sarasquete & Segner, 2000). 
It has been reported that EROD was induced by sesamin in rainbow trout liver 
(Trattner et al., 2008a). CYP2E1 is involved in the metabolism of ethanol, 
acetaminophen, carbon tetrachloride, N-nitroso dimethylamine and other low-
molecular weight toxicants (Gonzalez, 1988). Activity of this isoform is often 
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measured as the rate of hydroxylation of p-nitrophenol (PNPH) to 4-
nitrocatechol. Its activity in fish liver has been reported in several species, 
implying the possibility of its involvement in the metabolism of these 
compounds (Wagner et al., 2012; Zamaratskaia & Zlabek, 2011). 
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2 Objectives 
The overall aim of this thesis was to evaluate the use of non-fish-based raw 
materials on the fish muscle quality of salmonids. The goal is to maintain the 
lipid quality and colour property of farmed fish while decreasing the use of FO 
and FM in feeds. The effect of sesamin on the FA profile is of great interest; 
the effects of some non-fish-based materials on FA profile, AST content and 
colour property are also of interest, while the influences of these materials on 
fish performance are also attracting attention. 
 
The specific objectives were: 
 
to study the effects of sesamin together with different vegetable oils (LO, 
purified LO, MO) on the FA profile in Baltic Atlantic salmon and rainbow 
trout (paper I, II) 
 
to study the effects of KM, MM, ZM and KO on the FA profile (paper III, IV) 
in Arctic charr 
 
to study the effects of KM, MM and KO on carotenoids and colour properties 
in Arctic charr (paper IV) 
 
to study the effects of sesamin, MM and ZM on CYP content, EROD and 
PNPH in Baltic Atlantic salmon and Arctic charr (paper I, III) 

 
to study the effects of the FA profile and AST on the oxidation property of fish 
muscle (paper IV) 
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3 Materials and methods 
This section contains a brief description of the materials and methods used in 
the studies. For a more detailed description of each method, see Papers I-IV. A 
summary of the materials and methods is presented in Table 3.  

3.1 Study design  

3.1.1 Study I 

Atlantic salmon juveniles (n=15) were fed six different diets. Four groups were 
fed diets based on a mixture of linseed:sunflower oil (MO, 6:4, v/v) 
supplemented with a sesamin/episesamin mixture (S, 1:1, w/w) at different 
levels (MO, MO + S 0.29 g 100 g-1, MO + S 0.58 g 100 g-1, MO + S 1.16 g 100 
g-1), while one group was fed a diet based on FO and another group was fed a 
diet based on a mixture of sesame oil:linseed oil (SesO, 1:1, v/v). Fish were 
tagged and fed at a water temperature of 10 ºC for 77 days. Initial weight and 
length and final weight and length were recorded and the daily growth 
coefficient (DGC) was calculated. White muscle and liver were sampled. An 
analysis was performed of the FA profile in white muscle, tocopherol and 
sesamin in white muscle and liver, and the total content of CYP, EROD 
activity and gene expression in the liver. 

3.1.2 Study II 

Rainbow trout (initial weight 36.5 g, n=18) were fed six diets in duplicate based 
on three vegetable oils (linseed oil, LO; purified linseed oil triacylglycerol 
fraction, TAG; a linseed oil and sunflower oil mixture 6:4 v/v, MO) with or 
without a sesamin supplement (0.58 g 100 -1 g). One group fed the fish oil diet 
was used as a control group. Fish were tagged and fed at a water temperature 
of 14.5 ºC for 58 days. Initial weight and length and final weight and length 
were recorded, and DGC was calculated. White muscle and liver were 
harvested. The former was used for analysis of FA profile, tocopherol, sesamin 
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content and gene expression. Liver was only used for the gene expression 
analysis. 

Table 3. Summary of the study designs in Papers I-IV 

Study I II III-Trial 1 III-Trial 2  IV 

Species Atlantic salmon Rainbow trout A. charr A. charr A. charr 
size Juvenile 36.5 g 30.5 g 105 g 100 g 
Trail 

length 11 weeks 58 days 24 weeks 4 weeks 15 weeks 

Treatment FO FO CD FM 
RO + meals  
(6 groups) 

 SesO LO ED MM 
FKO + meals  

(4 groups) 

 MO LO + S  ZM 
MO + meals  
(2 groups) 

 MO + S 0.29 TAG   
Standard  
(1 group) 

 MO + S 0.58 TAG + S    
 MO + S 1.16 MO    
  MO + S    

Sample White muscle White muscle White muscle  White muscle 
 Liver Liver Liver Liver  

Analysis Fish 
performance 

Fish 
performance 

Fish 
performance 

Fish 
performance 

Fish 
performance 

 Lipid content Lipid content Lipid content  Lipid content 
 Fatty acids Fatty acids Fatty acids  Fatty acids 

 Sesamin, 
tocopherol 

Sesamin, 
tocopherol Sesamin  Carotenoids 

 CYP, EROD  EROD, PNPH EROD, PNPH 
L*, a*, b*,  

C*, H* 
 Gene expression Gene expression   TBARS 

Abbreviations: FO, fish oil; FM, fish meal; CD,  commercial diet; ED, experimental diet; SesO, sesame 
oil+linseed oil; LO, linseed oil; MM, mussel meal; MO; linseed oil+sunflower oil; ZM, zygomycete meal; S, 
sesamin; TAG, purified linseed oil triacylglycerol fraction; CYP, cytochrome P450; EROD, ethoxyresorufin 
O-deethylase; PNPH, hydroxylation of p-nitrophenol to 4-nitrocatechol; TBARS, thiobarbituric reactive 
substances. 

3.1.3 Study III 

In Trial 1, Arctic. charr (Salvelinus alpinus) (initial average weight 30.5 g, 
n=20) were fed an experimental diet (ED) with the protein source composed of 
fish meal (FM), mussel meal (MM) and zygomycete meal (ZM) and lipid 
sources composed of FO, rapeseed oil (RO) and sesame oil (SO) in triplicate. 
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A commercial diet (CD) with similar lipid and protein content (Skretting Nutra 
Parr 2 mm, Stavanger, Norway) was fed as a control. Fish were fed at a water 
temperature of 4 ± 1 °C for 24 weeks. Initial weight and length and final 
weight and length were recorded and DGC was calculated. White muscle and 
liver were harvested. White muscle was used for the FA profile and sesamin 
analysis, and liver was used for the EROD and PNPH activity analysis. 
    In Trial 2, three diets with FM, ZM, MM respectively as the main protein 
source were fed to A. charr (initial average weight 105 g, n=20) at a water 
temperature of 6 ± 1 °C for 4 weeks in triplicate. Liver was taken for EROD 
and PNPH activity analysis. 

3.1.4 Study IV 

Figure 10. Lipid source and protein source of feeds in Paper IV 

Arctic. charr (initial weight 100 g, n=12) were fed 13 experimental diets based 
on different oil sources (RO, krill oil (KO), FO, LO) and protein sources (krill 
meal (KM), MM, FM) for 15 weeks. In order to obtain an optimal response, a 
13-type star model was used, while the centre-point was the standard reference 
in the experiment. Six feeds included RO as the lipid source (RO groups), four 
feeds used FO, KO and LO as the lipid source (FKO groups), two feeds mixed 
FO, KO with RO and LO as the lipid source (MO groups) and one feed 
included all these materials tagged as standard (Figure 10). Twelve feeds were 
fed to 12 tanks of fish, while the standard feed was fed to three tanks of fish. 
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The water temperature was 5-17°C during the rearing period. Initial length and 
weight and final length and weight were recorded, and average DGC was 
calculated. Nine fish were sampled from each tank, and white muscle was 
deselected and used for analysis of FA, carotenoid, colour and TBARS. 

3.2 Lipid extraction and fatty acid composition analysis 

In Papers I, II, III and IV, lipids of muscle and feed were extracted in 
hexane:isopropanol following the method of Hara and Radin (1978). Lipids in 
Papers I, II and III were separated into PL and TAG fractions by thin layer 
chromatography (TLC). Total lipids of feeds and white muscle in Paper IV and 
PL and TAG in Papers I, II, III were methylated with boron trifluoride 
according to Appelqvist (1968), and then analyzed using a gas chromatograph 
system (GC). 

3.3 Sesamin and tocopherol analysis 

For sesamin and tocopherol analysis, the lipid extracts of tissues and diets were 
dissolved in hexane and analyzed by HPLC (Moazzami & Kamal-Eldin, 2006). 
Separation was performed on a silica column using hexane/1, 4-dioxane (94:6 
v/v) as mobile phase and detection was achieved by fluorescence (excitation 
wavelength 296 nm and emission wavelength 324 nm). 

3.4 CYP450 content, EROD activity and PNPH activity analysis 

In Paper I liver microsomes was prepared for analysis while in Paper III liver 
S9 was prepared. CYP values were measured by the co-difference method 
(Omura & Sato, 1964). Hepatic EROD activity and hydroxylation of PNPH 
activity was determined according to a modified method from Zamaratskaia 
and Zlabek (2009) and Zamaratskaia and Zlabek (2011). The protein contents 
of the microsomes or S9 were assayed by the method of Smith et al. (1985).  

3.5 Gene expression analysis 

Total RNA was purified using an RNA isolation kit (Trizol® used in Paper I, 
Z3105 Promega used in Paper II), followed by DNase treatment. RNA quality 
and quantity were determined spectrophotometrically (A260/280). The cDNA 
was synthesised using the TaqMan Reverse Transcription Reagent kit (Paper I) 
or High-Capacity cDNA Archive kit (Paper II). Real-time PCR was performed 
with SYBR® Green PCR Mastermix (Paper I) or Power SYBR Green PCR 
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Master Mix (Paper II) using gene-specific primers. Standard curves were made 
for each primer pair and efficiency (E) was calculated as E=10 (-1/slope).   

3.6 Colour properties analysis 

The L*, a*, b* C* and H values of white muscle were measured using a 
Minolta Chroma Meter CR-300. The Chroma Meter was equipped with an 8 
mm diameter aperture and calibrated on a white reference plate. Measurements 
were processed at four points of the fillet.  

3.7 Carotenoid analysis 

3.7.1 Total carotenoid analysis  

The lipid extracts were used for carotenoids analysis. The total carotenoid 
content (TC) of muscle and diet was analyzed by the spectrophotometric 
method as Tolasa et al. (2005). TC was expressed as mg/kg muscle (or feed). 
The average retention rate of total carotenoids (RTC) was calculated. 

3.7.2 Specific carotenoid analysis 

Specific carotenoid was analyzed suing a HPLC with UV detector (480 nm). 
Separation was performed with a normal phase column using isocratic mobile 
phase, hexane:isopropanol (94:6 v/v). AST, canthaxanthin and lutein were used 
as standards. Carotenoid content was expressed as mg/kg. 

3.8 TBARS analysis 

TBARS was determined by a forced oxidation method with modification as ikn 
Sigurgisladottir et al. (1994). Fish muscle was heated at 90 °C for 5 min to 
accelerate oxidation. Trichloroacetic acid was used to extract malonaldehyde. 
Thiobarbituric acid was used to generate pink, and absorbance at 532 nm was 
measured. TBARS value was expressed as nmol/kg muscle. 

3.9 Statistical analysis 

Data from the biochemical analyses in all papers are presented as mean values 
± standard deviation. In Paper I and II, the General Linear Model (GLM) was 
used to compare the physiological responses to the different diets in Statistical 
Analysis System (SAS) 9.3 for Windows. In Paper III, data in Trial 1 was 
analyzed by student t-test while data in Trail 2 was analyzed by GLM in SAS. 
In Paper IV, data was firstly analyzed in the first instance by partial least 
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squares-discriminant analysis (PLS-DA) in SIMCA-P+13.0. To evaluate the 
effects of different components, three comparisons including different groups 
were made by using different statistical methods: the Bonferroni test 
(comparison 1), Scheffe test (comparison 2) and Duncan test (comparison 3). 
Differences were considered as significant if P < 0.05. 
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4 Summary of results 

4.1 Study I 

No significant differences in fish growth were found between the groups. 
Compared with the FO group, all MO groups showed lower levels of EPA and 
DHA both in phospholipids and triacylglycerols. Sesamin decreased the levels 
of ALA in white muscle phospholipids of all the groups fed sesamin (P < 0.05) 
and slightly increased the levels of DHA in some of the sesamin-fed groups. 
Compared with the MO group, sesamin significantly upregulated the 
expression of PPARα in the MO 1.16 group, SRB and HSL in MO 0.29 and 
MO 0.58 group. Total cytochrome P450 enzymes were higher in MO 0.29 (P = 
0.02) and slightly higher in MO 1.16 (P = 0.07) compared to MO. Sesamin 
content in liver differed with changes in the dose in feed, while its content in 
white muscle is similar in all the sesamin-fed groups. The amounts of α- and γ-
tocopherols in liver and the amounts of γ-tocopherol in white muscle were 
significantly lower in fish fed the FO diet compared to the MO diet (P < 0.05).  

4.2 Study II 

No significant differences in fish growth parameters were found in the six 
groups. Compared to the FO group, the FA profile changed from a high content 
of n-3 LCPUFA (EPA and DHA) towards a high content of ALA, with a 
decreased ratio of n-3/n-6 in all the vegetable oil-fed groups (P < 0.05). 
Although no significant increase in EPA or DHA was observed, sesamin in the 
LO diet significantly decreased the ALA level in triacylglycerols (P < 0.05), 
and the EPA level in sesamin-fed groups was slightly higher than their 
counterpart without sesamin. Compared to the LO group, the stripped-LO 
group (TAG group) showed higher levels of EPA, lower levels of ALA in 
triacylglycerol and an increased DPA level in phospholipid. In liver, PPARβ1A 
and ACO were upregulated (P < 0.05) in all the groups compared to the FO 
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group. The addition of sesamin upregulated PPARβ1A, CPT1 and ACO in the 
LO+S group; downregulated PPARβ1A and upregulated Δ6 FAD in TAG+S 
group; and downregulated PPARα, γ and ACO, and upregulated Δ6 FAD in the 
MO+S group. In white muscle, sesamin downregulated most genes in the 
LO+S and TAG+S groups, but upregulated CPT1, and the decreases of gene 
expression in the TAG+S group were more pronounced than in the LO+S 
group. Only PPARβ1A was upregulated in the MO+S group. Similar levels of 
sesamin and tocopherol was found in all the sesamin-fed groups. The MO 
group showed a lower level of γ-tocopherol than the LO and TAG groups (P < 
0.05).   

4.3 Study III 

In Trial 1, no difference in fish growth was observed in the two groups. ED 
decreased the level of EPA and DHA in TAG fraction (P < 0.05). In PL, ED 
also decreased the EPA level (P < 0.05), but increased the DHA portion (P < 
0.05). Sesamin was detected in ED (≈ 6400 mg/kg) and white muscle of the 
ED group (21 mg/kg). Increased activity of CYP1A and CYP 2E1 in liver were 
observed in the ED group. In Trial 2, the ZM group exhibited higher EROD 
activity than the FM and MM groups, and the PNPH activity in the MM and 
ZM groups was higher than that in the FM group (P < 0.05 or P < 0.01). 

4.4 Study IV 

The FA profile of the RO groups (groups 1-6) was characterised by MUFA, 
ALA and LA, while FKO groups (groups 9-12) mainly had SFA, 16:1n-7 and 
EPA with a high n-3/n-6 ratio. The ALA level was lower in the FKO groups 
than in the RO groups. In the RO groups, the FA profile of group 2 and group 6 
were mainly composed of SFA, EPA, DPA and 18:1n-7. However, group 4 and 
group 1 contained a high level of ALA, LA, 18:3n-6, 20:3n-6, 18:1n-9 and 
20:1n-9. Group 1 showed comparable levels of AA, EPA and DHA compared 
with the other RO groups, although feed 1 contained lower levels of these FAs 
than the other feeds. In the FKO groups, the FA profile of group 9 was 
characterised by MUFA, n-6 PUFA and ALA. In contrast, group 10 showed an 
FA profile rich in EPA, DPA and DHA with a high n-3/n-6 ratio. Groups 7 and 
9 had higher a*, b*, C* and TC values and a lower H value than group 1. 
Group 1 exhibited lower a*, b*, C* and TC values than groups 2 and 4. A 
lower a* and TC value and higher H value were observed in group 4 than in 
group 2. Group 10 had the highest AST content and a*, b* and C* values in the 
FKO groups. The average retention rate of AST in all the groups is 1.32 %-
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5.08 % and the average AST content is < 3.5 mg/kg. The TBARS value of 
groups 2 and 10 was higher than that of other groups in comparisons 2 and 3. 
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5 General discussion  

5.1 Fish growth  

The results from Papers I and II coincided with the findings from the study of 
Mráz et al. (2010) on carp and the study of Trattner et al. (2008a) on rainbow 
trout, in which no effect of sesamin on fish growth was found. However, a 
recent study on Lates calcarifer reported that sesamin inhibited fish growth in 
early juveniles (Alhazzaa et al., 2012). Thus, fish size could be one reason for 
the different effects. Alhazzaa et al. (2012) hypothesised that sesamin may 
increase the activity of enzymes involved in FA oxidation and decrease the 
enzymes involved in lipogenesis, leading to problems in energy balance and 
thus slowing growth. It is possible that the fish in the early lifecycle are more 
sensitive to dietary intervention and their metabolism is more easily affected 
than larger fish. Another study on Atlantic salmon found reduced growth with 
a high dose of sesamin in feed (5.8 g/kg), but no distinct effect with low dose 
sesamin (1.16 g/kg) (Schiller Vestergren et al., 2012). 
    In Paper III, mycelium meal of a filamentous fungus, Rhizopus oryzae, was 
included as a protein source in experimental feed for fish and had no effect on 
fish growth. Previous studies on the utilisation of micro-organisms such as 
yeast meal in aquafeed show limited utilisation due to the deficiency of amino 
acids, high carbohydrate content and low digestibility caused by cell structure 
(Olvera-Novoa et al., 2002; Rumsey et al., 1992). Growth reduction has been 
reported in the fish fed feed containing yeast meal as the sole or main protein 
source (Perera et al., 1995; Storebakken et al., 2004). However, it is suggested 
that by altering microbe production or process conditions, a suitable 
composition of micro-organisms can be achieved for different fish species 
(Kiessling, 2009). The fungal biomass used in the present study has balanced 
nutrient composition, particularly the amino acid profile is close to that of FM, 
which makes it suitable as a fish feed ingredient (Thorarinsdottir et al., 2011).  
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In the Baltic Sea area, blue mussels (Mytilus edulis) are filtrating the 
excessive algal growth caused by the eutrophication from surrounding 
agricultural production (Jönsson & Elwinger, 2009). These mussels are of 
small size and of no or low interest for human consumption. They can be used 
as organic feedstuff replacing FM in feed for poultry or fish or as a fertiliser. 
MM contains a high portion of protein with a similar amino acid pattern to FM 
and a certain amount of lipids (≈10%) with a beneficial FA profile. It is 
considered to be a high-quality protein and lipid source for animal feed. 
However, Berge and Austreng (1989) have reported that there was a tendency 
towards poorer growth with an increased level of MM in the diet for rainbow 
trout due to the low energy density of the diet caused by its high ash content 
contributed by the shell. MM used in Papers III and IV was de-shelled with no 
negative ash content and thereby of higher nutritional quality.  

In Paper IV, KM and KO were used in the feed for Arctic charr. No 
significant difference on fish growth was found, which is in agreement with 
previous studies (Julshamn et al., 2004; Tibbetts et al., 2011; Yoshitomi et al., 
2007). However, some studies found a reduced growth rate and weight when 
KM was included in fish feed (Hansen et al., 2010; Rungruangsak-Torrissen, 
2007). The negative effect on growth was mainly caused by fluoride 
accumulated in the exoskeleton of krill (Yoshitomi & Nagano, 2012). In the 
KM and KO used in this study, most of the fluoride was removed by 
purification. The removal of fluoride in krill-based raw material may be one 
possible way of avoiding negative effects on fish growth.  

5.2 Fatty acids 

When fish are fed vegetable oils, the decrease in n-3 LCPUFA reduces the 
nutritional value of fish with regard to consumers, which is a common 
disadvantage of VO usage in fish feed (Bell et al., 2003b; Caballero et al., 
2002). The results in Papers I, II and IV confirm this conclusion. The response 
to the dietary FA is usually more pronounced in triacylglycerols than in 
phospholipids, which is in agreement with previous studies (Bell et al., 2001; 
Pettersson, 2010; Pettersson et al., 2009b; Torstensen et al., 2004). It is known 
that fish can maintain a homeostatic FA profile in their bodies to maintain 
certain physiological functions. In phospholipids, EPA and DHA are essential 
components, playing an important role in physiological functions, thus their 
homeostasis becomes a priority (Turchini et al., 2009). However, 
triacylglycerols mainly function as storage lipids and their profile is more 
flexible and easier to modify through feed (Olsen & Henderson, 1997).  
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   The fatty acid profile of fish muscle can be altered by adding bioactive 
compounds such as the sesame seed lignan sesamin. It is suggested that by 
activating PPARs and inhibiting SREP, sesamin could affect a wide range of 
enzymes involved in desaturation and β-oxidation both at activity and mRNA 
levels (Ashakumary et al., 1999; Ide et al., 2004). PPARs are expressed in 
tissues, e.g. liver and adipose, and could induce genes involved in lipid 
transport, oxidation and thermogenesis such as CPT1 and ACO (Clarke, 2001). 
Gene expression analysis in the present studies showed that sesamin regulated 
the gene expression of PPARα, PPARβ1A, PPARγ, Δ5 and Δ6 desaturase, 
CPT1 and ACO and resulted in an increase of  DPA and DHA in liver (Table 4) 
(Paper I). In Paper II, the LO+S group had a decreased ALA level and slightly 
increased EPA level in triacylglycerols, showing upregulation of PPARβ1A, 
CPT1 and ACO in liver (Table 4). It is suggested that sesamin activated 
PPARα and PPARβ1A, and they regulated the other genes involved in β-
oxidation or elongation and desaturation, leading to the increase in EPA, DPA 
or DHA. Trattner et al. (2008b) also found an increased β-oxidation product 
and upregulated CPT1 with an increased DHA level.  

Table 4. Changes in some fatty acids and gene expressions regulated by sesamin compared to 
their sesamin-free groups in some studies.  

Study Paper I Paper II Trattner et al. (2008b) 
Group MO1.16 LO+S MO+S Sesamin  
PPARα ↑  ↓  
PPARβ1A  ↑   
PPARγ   ↓ ↓ 
CPT1  ↑  ↑ 
ACO  ↑ ↓  
Δ5 desaturase    ↓ 
Δ6 desaturase   ↑ ↓ 
ALA ↓ ↓ ↓ ↓ 
EPA  ↑ ↑  
DPA ↑    
DHA ↑   ↑ 

↑, upregulated; ↓, downregulated. Abbreviations: LO, linseed oil; MO, linseed oil+sunflower oil; S, sesamin; 
PPAR, Peroxisome proliferator activated receptor; CPT1, Carnitine palmitoyltransferase; ACO, Acyl-CoA 
oxidase; ALA, α-linolenic acid; LA, linoleic acid; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; 
DPA, docosapentaenoic acid. 
 

However, the gene expression level is not always directly related to a 
corresponding increase in n-3 LCPUFA. In Paper II, downregulation of 
PPARα, PPAEγ and ACO in liver were observed with a slight decrease in ALA 
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and increase in EPA in MO+S group (Table 4). In the studies by Trattner et al. 
(2008b), downregulated PPARα and Δ5 and Δ6 desaturase were also found 
with an increased level of DHA (Table 4). Thus the gene expression cannot 
explain all the effects on the FA profile. Further studies focusing on the 
mechanism of the sesamin effect on FA metabolism at a molecular level, 
including gene expression and proteome expression, need to be continued. 

In Paper II the effect was studied of LO and stripped-LO (minor polar 
compounds removed) on the role of sesamin. It was concluded that the 
stripped-LO group did not have a major influence on the sesamin’s effect on 
FAs. However, differences in the expression of some genes were found 
between the TAG+S and LO+S groups. These results indicate that the removed 
polar compounds in LO could have some effect on the metabolism of PUFA 
and may affect the role of sesamin. However, no further conclusions can be 
drawn from the results. 

Krill is as a known source of n-3 LCPUFA. Its positive effect on n-3 
LCPUFA has been reported in previous studies (Roncarati et al., 2011; 
Suontama et al., 2007). Results in Paper IV confirm that KO and KM 
improved the FA profile towards more desirable for human dietary purpose. 
The results also reveal that KM had a more pronounced effect on preserving n-
3 LCPUFA than MM. 

In Paper IV, the AA level was higher in the fish muscle of group 1 than in 
groups 7 and 9, but its level in feed 1 was lower and the LA level was higher 
than those in feeds 7 and 9. This result contradict the finding of Pettersson et 
al. (2009b) where no concomitant increase of AA was observed with an 
increasing LA portion in feed. Meanwhile, the ALA level was higher in group 
1 than in groups 7 and 9, and the level of EPA and DHA was similar. EPA and 
DHA proportions were lower in feed 1 than in feeds 7 and 9. Since EPA, DHA 
and AA are important FAs for fish (Bell & Sargent, 2003; Pettersson et al., 
2009b), it is hypothesised that Arctic charr synthesised them from the 
substrates (LA and ALA). Since there was a much higher level of LA than 
ALA in feed 1, the elongation and desaturation of LA led to the increase of AA 
and concomitantly to an accumulation of ALA. This hypothesis questions the 
conclusion given by Tocher et al. (2001) that Arctic charr has a weak ability in 
the desaturation and elongation of carbon 18 FAs to AA, EPA and DHA. In 
addition, ALA in groups 7 and 9 may mainly be catabolised by β-oxidation, 
but not converted into n-3 LCPUFA due to the sufficient amount of n-3 
LCPUFA in feeds 7 and 9. 

The high conversion rate of carbon 18 FAs to long-chain AA and DHA in 
group 1 could partly be explained by the deficiency of AST in the feed. Bell et 
al. (2000) found that dietary deficiency of vitamin E and AST increased the 
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recovery of desaturated and elongated products of ALA and EPA in isolated 
hepatocytes from Atlantic salmon, and the absence of AST had a greater 
stimulatory effect on the conversion of EPA to DHA than did the absence of 
vitamin E. An increase in AA and DHA was also observed in the liver total 
lipids of African catfish (Clarias gariepinus) fed feeds containing oxidised FO 
with vitamin E compared with fish fed oxidised FO without vitamin E (Baker 
& Davies, 1996). In this study, feeds 6, 7, 8, 9 included KO or KM and these 
contributed a certain amount of AST to the feeds (> 50 mg/kg). However, feed 
1 had no source of carotenoids (< 10 mg/kg). Thus it is possible that the 
deficiency of AST stimulated the conversion of carbon 18 FA to long-chain 
FA. A further study focusing on the effect of AST on elongation and 
desaturation is of interest.  

5.3 Carotenoid and colour properties 

In Paper IV, a clear distinction between the RO, MO and FKO groups was 
found. The results indicate that RO replacement decreased redness and TC, 
while KO contributed positive effects with regard to AST content and colour 
property in white muscle. Differences between groups 1 and 2 and groups 9 
and 10 indicate that KM had a significant effect on colour properties. It is not 
surprising to see the positive effect of KO and KM on pigmentation since they 
contain a huge amount of AST (KO, 884 mg/kg; KM, 482 mg/kg) which is the 
dominant carotenoid in salmonids. The MM effect on colour property was also 
confirmed by a slightly higher value of a* and TC in groups 3 and 4 than in 
group 1. Furthermore, the comparison between group 2 and group 4 suggests 
that the pigmentation effect of KM was more pronounced than the effect of 
MM. 

For salmonid quality, redness of muscle is important. Carotenoid content in 
muscle determines the depth of redness. Most studies report a linear 
relationship between a*, b* and C* values and carotenoid content (Bjerkeng, 
2000). In Paper IV, a highly logarithmic correlation was found between a*, H 
and TC values, in agreement with results from the study of Christiansen et al. 
(1995). FA and lipid content was reported to affect colour property (Einen & 
Skrede, 1998), but this was not observed in the present study. 
    The efficiency of AST utilisation is of interest in Paper IV. Feeds used in the 
study contained sufficiently high AST content for fish to obtain the expected 
level of AST (6 mg/kg). However, RTC and AST content in the study were 
lower than the results from previous studies on salmonids (Nickell & Bromage, 
1998; Synowiecki et al., 1994). Species differences may exist in pigmentation 
retention efficiencies between Atlantic salmon, rainbow trout and Arctic charr 
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(Bjerkeng et al., 2000; Bjerkeng et al., 1999). Fish size is one possible reason 
for the poor deposition of AST in this study. Storebakken et al. (1986) and 
Olsen and Mortensen (1997) found that small fish had a lower AST content 
than large fish in the muscle of Atlantic salmon. The authors concluded that 
small size salmonids may reach a plateau level in their pigmenting capacity. 
The present results confirmed that fish size affects pigmentation.  

Pigment source could be another important factor affecting the retention and 
utilisation of AST. This analysis of carotenoid in feeds showed that AST 
mainly exists in di-ester form in KO and KM (not showed). Free AST is  
usually absorbed and deposited more effectively than AST ester (Foss et al., 
1987). AST ester needs to be hydrolysed into free form, incorporated into 
mixed micelles or lipoproteins, and then absorbed in the intestine before finally 
being transported to the liver and deposited in muscle (Rørvik et al., 2010). 
During this process, intestinal hydrolysis or cleavage is a limiting step for 
absorption (Storebakken et al., 1987). White et al. (2003) found that AST 
content in serum was higher in salmon fed free or mono-esterified AST than in 
salmon fed di-esterified AST. Since AST in KO and KM is mainly di-
esterified, it may have a low hydrolysis rate in Arctic charr. Further steps in the 
transport of AST may also play an important role in AST deposition. A future 
study focusing on the bioavailability of AST and the mechanisms of its 
absorption, transportation and metabolism is of interest.  

5.4 Sesamin, tocopherol in tissues 

Both sesamin and tocopherol are able to influence the metabolism of FAs. 
They or their metabolites have anti-oxidative properties, thus it is of interest to 
study their portion in fish tissue from the perspective of food nutrition and 
quality. In Paper I, the sesamin content in fish liver increased with the increase 
in sesamin addition, but its content in white muscle was similar. This indicates 
that most sesamin is catabolised by the liver, but not deposited in muscle. In 
rats, it has been proved that sesamin catabolises rapidly (Moazzami & Kamal-
Eldin, 2006). CYP has also been reported to be induced by sesamin (Trattner et 
al., 2008a). Thus, sesamin could be recognised as a xenobiotic compound and 
fish may try to metabolise it to avoid its accumulation in the body. If this is 
true, the expectation of keeping sesamin in fish muscle to enhance the nutrition 
value of fish through dietary sesamin may not be achieved.  
    Tocopherol is also found in fish liver and white muscle in Papers I and II. 
Studies have shown that tocopherol is deposited in the fish tissue of fish fed 
VO-based feed (Ng et al., 2004; Pettersson et al., 2009a). This is because VO, 
like palm oil and rapeseed oil, contains a certain amount of tocopherol. The 
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accumulation of tocopherol in fish could prolong the shelf life and improve 
fish quality. Sesamin has been reported to influence the level of tocopherol in 
the tissue and plasma of rats (Kamal-Eldin et al., 1995), however this effect 
was not observed between the fish fed feeds with or without added sesamin in 
Paper II. Only a slightly lower level of γ-tocopherol appeared in the group’s 
white muscle with the lowest sesamin addition in the feed compared to the 
other two sesamin-added groups in Paper I.  

5.5 Oxidation 

In Paper IV, the TBARS value was measured to investigate the effect of LC, 
the FA profile and carotenoids on oxidation in white muscle. Results showed 
that the LC and FA profile did not strongly affect the TBARS value, nor did n-
6 PUFA. However n-3 PUFA showed a slight correlation with the TBARS 
value. This could be explained by the more sensitive vulnerability of n-3 PUFA 
than n-6 PUFA (Cosgrove et al., 1987). Some groups (groups 2, 10 and 11) 
with a high TBARS value were found to have a high TC. This suggests that 
AST did not exhibit the expected antioxidant action. Contradictory results of 
the effect of AST on oxidation have been reported in previous studies (Fabio 
Brambilla et al., 2009; Ingemansson et al., 1993; Larsen, 2011; Sigurgisladottir 
et al., 1994). AST mainly acts as a singlet oxygen quencher (Shahidi & Zhong, 
2010). For oxidation in meat products, free radical is a more important factor 
than singlet oxygen. Thus the protective effect of AST may be of minor 
importance. On the other hand, high levels of antioxidants may also exhibit 
pro-oxidant effects, such as β-carotene (Young & Lowe, 2001). This would 
suggest a pro-oxidant-like effect, but not an antioxidant effect of AST in this 
study. Further study on the in vitro anti-oxidative effect and mechanism of 
AST needs to be undertaken.  

5.6 CYP 450 

In Paper I, sesamin affected the content of total CYP 450 and EROD activity. 
In previous studies, both total CYP content and EROD activity were also found 
to be affected by sesamin (Schiller Vestergren et al., 2012; Trattner et al., 
2008a). In the study of Wagner et al. (2014), a high dose of sesamin caused 
reduced growth and several metabolites associated with energy metabolism 
(e.g. glucose, glycogen, leucine, valine, creatine, carnitine, lactate and 
nucleosides) in liver and muscle were affected by sesamin. Another study by 
(Kokushi et al., 2012) found similar metabolites in carp fed the feed containing 
environmental pollutant-heavy oil. Since EROD is often used as a biomarker 
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for exposure to xenobiotic compounds in fish, the induced CYP indicates that 
sesamin may be recognised as a xenobiotic compound by fish, negatively 
affecting the metabolism. Although no distinct reduction in fish growth was 
found in the studies, the results from the other studies showed effects which 
might be important for fish welfare.  

In Trial 1 in Paper III, the activity of EROD and PNPH in liver was 
determined to expose the ED effect on fish. Higher EROD and PNPH activity 
in the ED group indicates that the ingredients in ED affect physiological 
activity in fish. EROD and PNPH activity was measured in Trial 2 to study 
further the effect of MM and ZM on fish response. Increased activities of the 
two enzymes in the ZM group suggest that ZM caused a response similar to 
toxicological exposures. The fungus used in the study was grown on the spent 
sulphite liquid from the paper pulp industry. This medium may contain some 
pollutants that might lead to the toxicological-like response. Thus, it is possible 
that some toxicants deposited or produced from ZM should not be excluded. 
The application of ZM as protein sources for fish feed requires further study. 
The MM used in the study is food grade. This may explain its less pronounced 
effect on this enzyme activity. Additionally, although EROD is widely studied 
and used as a biomarker for exposure to xenobiotic compounds (Sarasquete & 
Segner, 2000), there are very few studies on PNPH in fish. The present study 
confirmed in the first instance the existence of PNPH activity in Arctic charr. 
A further study focusing on the enzyme property with dose-response of a 
known xenobiotic would provide more information about this enzyme and its 
metabolic action in fish.   
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6 Main findings and conclusions 
The findings and conclusions can be summarised as follows. Different 
compounds of feeds are changing from fish meal and fish oil towards plant 
materials and microfungi, and towards lower food chain organisms from the 
aquatic environment. Such compounds include proteins, oils and binders. 

In this thesis the possible effects of these non-evolutionary compounds of 
salmonid diets on their performance were investigated.  

 
 Salmonid growth was not affected by KM, KO, MM, ZM or sesamin in the 

studies in this thesis.  
 

 Sesamin decreased the ALA level in the white muscle of Atlantic salmon 
and rainbow trout. It slightly increased the level of DHA in some groups. 
Sesamin affected lipid metabolism.  
 

 Krill and mussel meal and oil can be used to increase n-3 LCPUFA and 
enhance pink in the white muscle of Arctic charr. The effect of KM was 
more pronounced than that of MM.   
 

 The utilisation rate of AST in KM and KO was low in Arctic charr. The 
low bioavailability of AST could be due to the AST di-ester in KO and 
KM. 
 

 Sesamin affected the level and activity of CYP 450 in Atlantic salmon. ZM 
and MM increased the activity of EORD and PNPH in liver microsomes of 
Arctic charr.  
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7 Future perspectives 
This thesis investigated the effects of some non-fish-based raw materials on the 
fish muscle quality of salmonids. Information has been gained about FA, 
carotenoid and CYP 450. Based on the findings from this thesis, it may be 
useful to focus more attention on the following areas of research:  
 
 Dose-response study on the influences of ZM, MM, KM and KO on fish 

growth and CYP 450    
 

 The effect on FA metabolism of sesamin/episesamin and sesamin with fish 
of different sizes and life stages 
 

 The mechanism on a molecular level, including gene expression and 
proteome expression, for the role of sesamin in FA metabolism 

 
 The identification of potential bioactive compounds in VO affecting FA 

metabolism 
 

 The effect of AST on the conversion of carbon 18 FAs into LCPUFA 
 

 The bioavailability of AST in KO and KM and the mechanism of its 
absorption, transportation and metabolism 
 

 The effect of KM, KO, MM on sensory properties and the stability of fish 
muscle during storage 

 
 Consequences of the new feeding strategies in aquaculture on human 

nutrition and health. 
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