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Genetic Heteroscedasticity for Domestic Animal Traits 

Abstract 

Animal traits differ not only in mean, but also in variation around the mean. For 

instance, one sire’s daughter group may be very homogeneous, while another sire’s 

daughters are much more heterogeneous in performance. The difference in residual 

variance can partially be explained by genetic differences. Models for such genetic 

heterogeneity of environmental variance include genetic effects for the mean and 

residual variance, and a correlation between the genetic effects for the mean and 

residual variance to measure how the residual variance might vary with the mean. 

The aim of this thesis was to develop a method based on double hierarchical 

generalized linear models for estimating genetic heteroscedasticity, and to apply it on 

four traits in two domestic animal species; teat count and litter size in pigs, and milk 

production and somatic cell count in dairy cows.   

The method developed is fast and has been implemented in software that is widely 

used in animal breeding, which makes it convenient to use. It is based on an 

approximation of double hierarchical generalized linear models by normal 

distributions. When having repeated observations on individuals or genetic groups, the 

estimates were found to be unbiased.  

For the traits studied, the estimated heritability values for the mean and the residual 

variance, and the genetic coefficients of variation, were found in the usual ranges 

reported. The genetic correlation between mean and residual variance was estimated for 

the pig traits only, and was found to be favorable for litter size, but unfavorable for teat 

count.  

Keywords: Quantitative genetics, genetic heteroscedasticity of residuals, genetic 

heterogeneity of environmental variation, genetic heterogeneity of residual variance, 

double hierarchical generalized linear models, teat count in pigs, litter size in pigs, milk 

yield in cows, somatic cell count in cows   
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Our understanding of why variances and heritabilities take the levels they do is at best, 

however, superficial. 
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Abbreviations and symbols 

AgeC Age at calving 

DHGLM Double hierarchical generalized linear models – a class of models 

and a method for inference 

DIM Days in milk, number of days after calving 

htd Herd-test day 

HYM  Herd-year-month 

IRWLS Iterative re-weighted least squares 

SCC Somatic cell count 

SCS Somatic cell score 

SE Standard error, estimated variance of an estimate  

VCE Variance component estimate 

ys Year-season (of calving) 

 ,    Additive genetic effect of animal 

  Additive genetic relationship matrix 

 ,    Additive genetic effect of dam 

  Vector of residuals for the mean level 

   Vector of residuals for the residual variance level 

    Genetic coefficient of variation for the mean          

     Genetic coefficient of variation for the residual variance      

   
   

  

   Mean level heritability      
    

  

  
  Residual variance level heritability   

     

      
      

   

   ,      Effect of herd-birthdate (herd-year-month, HYM) 

  Hessian 

  Identity matrix 

  Additive genetic maternal effect 

 ,    Permanent environmental effect of animal or dam 

  Vector of hat values, the diagonal of the hat matrix 
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 ,    Additive genetic effect of sire 

  As subscript referring to residual variance level. Sometimes   is 

used instead of   (Paper II) 

 , , ,  Design (incidence) matrices 

  Vector of responses 

   Vector of working variables 

  Vector of fixed effects for the mean 

   Vector of fixed effects for the residual variance 

  Gamma distribution 

  Estimated mean    ̅̂ 

   Linear predictor for the residual variance,         

  Genetic correlation 

   Residual variance for the mean level 

  
  Variance component for animal genetic effect for the mean level 

       
  Variance component for animal genetic effect for the residual 

variance level 

  
  Estimated additive genetic variance,   

    
  or   

      
    

   

   

  Estimated additive genetic variance for the additively modelled 

residual variance,    

     
         

         
  or    

     
  

         
         

          
  

  
  Variance component for dam genetic effect for the mean level 

       
  Variance component for dam genetic effect for the residual 

variance level 

  
  Estimated residual variance,   

       ̂̅̅ ̅̅ ̅̅ ̅̅  

      
        

    
             

     

  
  Variance component for permanent environmental effect for the 

mean level 

       
  Variance component for permanent environmental effect for the 

residual variance level 

  
  Estimated phenotypic variance 

  
  Variance component for sire genetic effect for the mean level 

       
  Variance component for sire genetic effect for the residual 

variance level 

   
  Transformation of        

  by    
        

    (        
 )    

  

       
  Sum of all variance components for the residual variance level 

  
  Residual variance for the residual variance level 

  Vector of residual variances 

  Diagonal matrix with diagonal   
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1 Introduction 

Domestic animals are under continuous selection for several traits, and the 

success of increasing them has been tremendous. For instance milk yield in 

Swedish Holstein has increased from 4,297 kg per cow and year in 1960 to 

8,741 kg in 2010 (Swedish Dairy Association, 2011), and the number of live 

born piglets per litter has increased from 10.9 in 1994 to 13.1 in 2011 (Svenska 

Pig, 2012). 

However, for some traits, it is not only important to improve the mean of 

the trait, but also to control the variation around the mean. For instance, it 

would be ideal if sows always had reasonably large litters, to avoid the 

economically unprofitable small litters, but also to avoid oversized litters that a 

sow cannot raise. 

The variation around the mean, similarly to the mean itself, can be assumed 

to be influenced by both environmental and genetic factors. For example, by 

always providing feed of consistently good quality, the variation in milk yield 

will be reduced. That genetic influence on variation exists is more surprising, 

but it has been seen in for instance the difference in milk yield variation within 

daughter groups of sires (Van Vleck, 1968; Clay et al., 1979). 

Another phenomenon that has been observed is that the variation might be 

connected to the mean for a trait, for example a higher average milk yield is 

associated with higher variation. 

Whereas much methodology development has been done for estimation of 

breeding values and genetic variation for the mean level of traits, not much has 

been done in the area of estimation of genetic control of variation. One reason 

is that this kind of estimation is methodologically more challenging. The 

genetic influence on variation around the trait mean, and its connection to the 

trait mean, with a primary focus on the estimation process, is therefore the 

topic of this thesis. 
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2 Background 

2.1 Modelling and estimation of genetic heteroscedasticity of 
residuals 

In quantitative genetic models for animal traits, the residuals are often assumed 

to be homoscedastic, i.e., the residuals follow the same distribution and thus 

the variance is the same for all of them. However, evidence exists that both 

genetic and environmental factors control residual variance. Models, in which 

genetic or environmental effects or both are included in the residual variance, 

were introduced during the nineties. 

The modelling of the residual variance has been done on different scales. 

One approach is to assume that fixed and random effects act additively on the 

residual variance (Mulder et al., 2007) or the standard deviation. However, for 

these models there is no guarantee that the estimated residual variances or 

standard deviations will be larger than zero. SanCristobal-Gaudy et al. (1998) 

described a model in which fixed and random effects were assumed to act 

additively on the logarithm of the residual variances, and the estimated residual 

variances were thus always larger than zero. This model, called the exponential 

model, was the one used in this thesis. 

Several approaches have been used for estimation in these models. An 

expectation-maximization method was used by SanCristobal-Gaudy et al. 

(1998). Mulder et al. (2009) developed an iterative bivariate algorithm. 

Sorensen & Waagepetersen (2003) analyzed data on litter sizes in pigs using a 

Bayesian Markov chain Monte Carlo (MCMC) algorithm.  

Formulas for heritability of residual variance were derived by Mulder et al. 

(2007), and they also came up with formulas for translation of results from the 

exponential model to models with fixed and random effects additively included 

in the model for residual variances.  
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Many terms are used in this relatively new area of research to describe the 

underlying feature. These are genetic (or genetically structured) heterogeneity 

of environmental (or residual) variance, genetic control (or genetics) of 

environmental variation, or genetically structured differences in residual 

variance. Also the term canalization has been used to describe an evolved 

genetic buffering that keeps a trait stable around the mean under selection 

(SanCristobal-Gaudy et al., 1998). This is not to be confused with the term 

robustness, which means that a trait is stable (unchanged mean) despite 

environmental changes. A recent term is genetic variance for micro-

environmental sensitivity (not to be confused with (macro-environmental) 

sensitivity, which describes the same feature as robustness) (Mulder et al., 

2013). Uniformity has been used as well to informally describe the desired 

characteristic. In this thesis the term genetic heteroscedasticity was used in the 

title, because heteroscedasticity is a generally accepted statistical term. 

2.2 Double hierarchical generalized linear models (DHGLM) 

The term hierarchical generalized linear models is used for both a class of 

models and a tool for estimation (Lee & Nelder, 1996). It is an extension of the 

mixed model equations (Henderson, 1953), restricted maximum likelihood, 

REML (Thompson, 1962; Patterson & Thompson, 1971) and generalized linear 

models (Nelder & Wedderburn, 1972).  

Double hierarchical generalized linear models (DHGLM) is an expansion of 

the hierarchical generalized linear models to also include a structure for one or 

more variance components and/or the residual variance (Lee & Nelder, 2006). 

The structures can contain both fixed and random effects, and several 

distributions of the traits and random effects, as well as link functions between 

the parameters to be structured and the additively included effects, can be used. 

The estimation tool builds on the joint likelihood of the fixed and random 

effects, called the h-likelihood (Lee & Nelder, 1996). As estimation moves 

down in the hierarchy from the mean level to the levels of the residual variance 

and variance components, the h-likelihood is modified in one or more steps to 

be adjusted profile likelihoods not containing the parameters already estimated.  

The theoretical estimation of parameters, and the implementation for 

estimation, turn out to be straight-forward in many cases. Estimates are in 

general found to be unbiased, even for complicated binary traits (Lee et al., 

2006), for which penalized quasi-likelihood, PQL (Breslow & Clayton, 1993) 

has been shown to fail.  

DHGLM is a recently developed tool, but further applications in animal 

breeding are expected because of the richness of models, the easiness of 
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implementation, and the speed of fitting the models, which altogether makes 

the method suitable for the large data sets often collected in animal breeding 

(Rönnegård & Lee, 2013).  
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3 Aim of the thesis 

The aim of the thesis was to develop a DHGLM-based method that can be used 

for estimation in models with genetically structured heterogeneity of residual 

variance for large data sets, and to apply it for some domestic animal traits; teat 

count and litter size in pigs, and milk production and somatic cell count in 

dairy cows.  
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4 Summary of performed studies 

Papers are referred to by numbers I-IV.  

4.1 Material 

Three data sets were used for the studies; one set on litter size in pigs (Papers I-

II), one set on teat count in pigs (Paper IV), and one set containing two traits in 

dairy cows that were milk yield and somatic cell count (Paper III). A summary 

of the size of the data sets and the mean, median, variance, and standard 

deviation of the traits are found below (Table 1).  

Table 1. Size of data sets and the mean, median, variance, and standard deviations of trait values 

 Records Animals 

with 

records 

Animals 

in 

pedigree 

Mean Median Vari-

ance 

Stan-

dard de-

viation  

Litter size I-II 10,060 4,149 6,437 10.29 10 9.91 3.1 

Teat count IV 118,267 118,267 121,872 14.53 14 0.84 0.9 

Milk yield (l/d) III 1,693,154 177,411 466,720 29.13 29.2 45.5 6.7 

SCS
* 
III

 
1,693,154 177,411 466,720 2.36 2.05 2.76 1.7 

*
Somatic Cell Score, transformation of somatic cell count (SCC, count/ml) by                       

 . 

Simulation studies were performed in Papers I and II. Only part of the 

simulation study from Paper II will be summarized here. 

4.1.1 Litter size in pigs (Papers I-II) 

The data on litter size in pigs was from Sorensen & Waagepetersen (2003) and 

contained for each litter size the identity of sow (4,149 sows), parity (9 levels), 

season (4 levels), herd (82 levels), and type of insemination (2 levels). The data 
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was highly imbalanced; 13 herds contained five observations or less, and the 

ninth parity contained nine observations only.  

4.1.2 Simulated data (Paper II) 

For simulation of data, the pedigree of the pig litter size data was used, and the 

number of sows with records was fixed as in the original dataset. The total 

number of observations on litter sizes was either kept (  = 10,060), or 

increased by changing the number of repeated records per sow (parities) to 4 

(  = 4   4,149 = 16,596) or 9 (  = 9   4,149 = 37,341). A fixed effect of 

insemination type was simulated. The values of variance components for the 

simulation were taken from results by Sorensen & Waagepetersen (2003). 

4.1.3 Milk yield and somatic cell count in cows (Paper III)  

The data on dairy cow traits contained observations on milk yield (l/day) and 

somatic cell count concentration (SCC, count/ml), and the identity of the cow 

(177,411 cows). Further, the variables herd (1,759 levels), herd-test day (htd, 

21,570 levels), year-season of calving (ys, 32 levels), age at calving (AgeC, 

continuous), and days in milk (DIM, continuous) were given. 

The somatic cell count was transformed to somatic cell score by     

                    (Ali & Shook, 1980). 

4.1.4 Teat count in pigs (Paper IV) 

Observations on teat counts were connected with the pig identity (118,267 

pigs). The sire identity (586 sires) and dam identity (7,813 dams) were also 

added to the data. Effects considered were sex (2 levels), herd (17 levels), 

birthdate (year-month, 52 levels), 

and herd-birthdate (HYM).  

Figure 1 illustrates the 

unfavorable linear increase of the 

phenotypic variance with increase 

of the mean for paternal half sib 

groups.   

 

Figure 1. Comparison of the paternal half 

sib group means and variances for teat 

count observations. This illustrates 

unfavorable linear increase of the 

variance with increase of the mean.    
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4.2 Methods 

4.2.1 Models for litter sizes, somatic cell score, and milk yield  

Models with heteroscedastic residuals were used for the analysis of the traits 

litter size, somatic cell score, and milk yield (Papers I-III). Fixed and random 

effects were included in both the mean and residual variance levels of the 

models.  

Random effects are listed in Table 2. The models were similarly structured; 

the genetic effect of animal and the permanent environmental effect of animal 

were random effects for both levels. Fixed effects are given in Table 3. The 

models also included an intercept for both levels. 

Let   be the vector of observations. It was assumed that         

    , where   was the vector of fixed effects including an intercept,   was 

the vector of the animal genetic effects (animal identity),   was the vector of 

permanent environmental effects (animal identity),   was the vector of 

residuals, and  ,  , and   were known incidence matrices. 

The distribution of the animal additive genetic effects was         
   , 

where   was the additive genetic relationship matrix, and the distribution of 

the permanent environmental effects was         
   , where   was the 

identity matrix.  

The distribution of the residuals was assumed to be         , where   

was a diagonal matrix with diagonal  . It was moreover assumed that the 

residual variance was structured by                  , where 

symbols were the same as for the mean level above.  

The permanent environmental effects    (    
  )  and               

    

were assumed independent. The animal genetic effects         
    and 

    (         
  )  were assumed independent in Papers I and III but 

dependent in Paper II,  

(
 
  

)  (  (
  

            
 

                  
  

)). 

The subscript exp was used because the residual variance was modelled on a 

logarithmic scale. 

4.2.2 Model for teat counts  

For the teat counts in Paper IV, three additive genetic and two environmental 

effects were included in the mean level and two additive genetic and two 

environmental effects were included in the residual variance level. The effects 

are found in Table 2. The additive genetic structure ‘Full sib’ means that both 
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the sire and the dam effects were included, but their estimated variance 

components were forced to be equal. 

The mean model for teat count was                    

         , and the residual variance model was          
                     .  

The random effects were sire   and   , dam   and   , genetic maternal  , 

herd-year-month of birth     and     , and permanent environmental maternal 

  and     Following Canario et al. (2010) distributions of random effects were 

assumed to be (  and   were independent identically distributed, and so were 

   and   ) 

(

 
 
  

)  

(

   (

  
                     

          
   

          
         

  

)

)

 , 

(
   
    

)  (  (
    

                    

                           
  

)), 

(
 
  

)  (  (
  

             
 

           
        

  
)). 

 

Table 2. Random effects included in the models (Papers I-IV) 

 Genetic for 

mean 

Environmental 

for mean 

Genetic for 

residual 

variance 

Environmental 

for residual 

variance 

Genetic 

correlation 

Litter size I Animal Identity Animal Identity No 

Litter size II Animal Identity Animal Identity Yes 

Milk yield III Animal Identity Animal Identity No 

SCS III Animal Identity Animal Identity No 

Teat count IV Full sib and 

maternal 

HYM and 

maternal 

Full sib HYM and 

maternal 

Yes 

Table 3. Fixed effects included in the models (Papers I-IV) 

 Fixed effects for the mean Fixed effects for the residual variance 

Litter size I+II herd, season, insemination type, parity  insemination type, parity  

Milk yield and 

SCS III 

htd, ys, AgeC, (AgeC)
2
, (AgeC)

3
, 

DIM, exp(-0.05*DIM) (all except htd 

and ys continuous) 

herd, ys, AgeC, (AgeC)
2
, DIM, (DIM)

2
 

(all except herd and ys continuous) 

Teat count IV sex, herd, year-month of birth  sex, herd, year-month of birth 
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4.2.3 Estimation using DHGLM 

For notation simplicity, estimation using DHGLM is considered for the model 

for pig litter size data that include correlation between additive genetic effects 

for the mean and the residual variance (Paper II). The theory behind the 

estimation is found in the appendix in Paper II. 

The algorithm used is: 

1. Initiate weights     for the mean level and         for the residual 

variance level (   is the hat value, that is the diagonal of the matrix 

[     ]   [     ]    , where   is the Hessian). Initiate the working 

variables    for the residual variance level. 

2. Fit normal distribution 

             (
 
  

)  (
  
   

) (
 
  

)  (
  
  

) (
 
  

)  (
  
  

)(
 
  

)  (
 
  

) 

with    (    
  ),            e  

   ,           ,          
  i     

     , and        all being independent of each other, but   and    

correlated. 

3. Update the residual variance level with new weights         and new 

working variables              ̂          . 

4. Identical to step 2. 

5. Update the mean level with new weights             ̂ . 

6. Run step 2.-5. until convergence (    ). 

4.2.4 Phenotypic variance and heritability 

To be able to find the heritability values, an estimate of the phenotypic 

variation and therefore the residual variance was needed. The residual variance 

was found as the average of the estimated residual variances,   
       ̂̅̅ ̅̅ ̅̅ ̅̅ . 

The estimated phenotypic variance was   
    

    
    

  for the litter 

size, milk yield, and somatic cell count data, and   
    

    
  

 √           
      

    
    

  for the teat count data. The inclusion of 

the covariance was handled by Willham (1972) in the case of the direct genetic 

effect of animal together with the maternal genetic effect for which 

            . For the full sib model the theoretical correlation is       

       √ , and therefore  √         is included.  

Heritability values were defined as      
    

 , where the additive genetic 

variance component was estimated as   
    

  for the litter size, milk yield, 

and somatic cell count data, and as   
     

  for the teat count data.  

The average of the predicted values was    ̅̂, and the genetic coefficient 

of variation was         .  
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4.2.5 Residual variance heritability 

The residual variance heritability was derived by Mulder et al. (2007) and in 

Paper IV these equations were extended to include permanent environmental 

effects in the residual variance level. 

The additive genetic variance component        
  for the residual variance on 

the logarithmic scale, was substituted by the additive genetic variance 

component    

  for the residual variance on the additive scale. The heritability 

for residual variance was   
     

      
      

  , where    
  was the sum of 

all variance components on the additive scale (Mulder et al., 2007; Paper IV). 

Corresponding to the mean    , the genetic coefficient of variation for 

residual variance was         
   

 . Note that 

    
  

   
 

  
  

  
 (   (       

 )  )

  
         

 , 

when        
  is small (<0.2), thus      can be found directly from parameter 

estimates. 

4.3 Results 

4.3.1 Results from the analysis of data sets 

The variance component estimates (VCEs) from all studies are collected in 

Table 4. The VCEs for Litter size I and II differed because the genetic 

correlation   was not estimated for Litter size I. The additive genetic VCEs   
  

and        
  were larger, and the permanent environmental VCEs   

  and        
  

smaller for Litter size II. 

The genetic correlation between the additive genetic effects for the mean 

and the residual variance was found to be favorable for litter size (negative), 

but unfavorable for teat count (positive). Both correlations were significantly 

different from zero.    

For teat count the genetic maternal VCE was   
  = 0.01 (SE 0.003), and the 

correlation between the maternal and the sire-dam effect was     = -0.10 

(0.063) thus not significant. The mean and residual variance correlations for 

effects HYM and permanent environmental maternal were      = 0.47 (0.062) 

and    = 0.66 (0.086), respectively. 

A sire model for teat count was also fitted in Paper IV, and the results were 

similar to those from the sire-dam model. 

Estimated heritability and genetic coefficients of variation are found in 

Table 5, and formulas are given below the table.   
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Table 4. Variance component estimates and standard errors for the traits studied (Papers I-IV)   

   
    

         
         

    

Litter size I 1.35 (0.18)  0.44 (0.14) 0.09 (0.02) 0.06 (0.02)  

Litter size II 1.61 (0.18) 0.28 (0.13) 0.15 (0.03) 0.05 (0.02) -0.52 (0.07) 

Milk yield III 8.78 (0.21) 12.40 (0.14) 0.049 (0.0034) 0.37 (0.0031)  

SCS III 0.28 (0.011) 1.03 (0.0085) 0.046 (0.0038) 0.61 (0.0040)  

Teat count IV 0.15 (0.009)
* 

0.02 (0.002)
**

 0.12 (0.009)
* 

0.10 (0.007)
**

 0.79 (0.025) 

*
 Full sib additive genetic VCE,   

    
     

 . 
**

 Sum of environmental VCEs,     
    

 .  

Table 5. Estimated heritability and genetic coefficients of variation (Papers I-IV) 

     
    

     
           

       

Litter size I 10.3 6.74 8.53 4.64 0.16 0.11 0.03 0.32 

Litter size II 10.4 6.69 8.58 7.53 0.19 0.12 0.04 0.41 

Milk yield III 29.2 9.36 30.5 5.32 0.29 0.10 0.003 0.25 

SCS III 2.34 1.16 2.47 0.09 0.11 0.23 0.006 0.26 

Teat count IV 14.5 0.64 0.81 0.10 0.36 0.04 0.07 0.51 

   ̅̂  

  
       ̂̅̅ ̅̅ ̅̅ ̅̅   

  
                           

  

For litter size, milk yield and somatic cell score    
     

         
         

 ,    
        

    (        
 )    

 , 

       
                                     ,       

    
             

    . For teat count    
      

  

        
         

          
  

     
    

 , for litter size, milk yield and somatic cell score   
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4.3.2 Results from the simulation study 

Some results from the simulation study (Paper II) are given in Table 6. For all 

simulation settings, the averages of the VCEs for the additive genetic effects 

  
  and        

 , as well as the average of the genetic correlations   were well in 

agreement with the true values. The averages of the VCEs for the permanent 

environmental effects   
  and        

  were not near the true value in the original 

parity setting and in the four-parity setting. The mean level permanent 

environmental variance component was under-estimated, and the residual 

variance level variance component was over-estimated. In the nine-parity 

setting, the averages of the permanent environmental VCEs were close to the 

true values. 
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Table 6. Averages and standard errors of estimated variance components for simulated data with 

same pedigree as the litter size data (Papers I+II). The left hand column contains the simulated 

data structure 

   
    

         
         

    

True values 1.62 0.60 0.09 0.06 -0.62 

Original distrib.
*
 1.56(0.017) 0.24(0.016) 0.08(0.003) 0.13(0.004) -0.61(0.012) 

Four parities 1.65(0.017) 0.51(0.012) 0.09(0.002) 0.15(0.003) -0.64(0.008) 

Nine parities 1.62(0.013) 0.60(0.008) 0.09(0.001) 0.09(0.001) -0.64(0.005) 

*
Original parity distribution. In this setting twenty-seven out of 100 replicates did not converge. Estimates are 

for all replicates (with minor differences in results if these 27 replicates were included or not) 

4.4 News of the studies 

4.4.1 Estimation in animal models with genetic heteroscedastic residuals can 

be done using DHGLM 

Papers I and II consecutively show that DHGLM can be used for estimation in 

animal models with genetically structured residual variance heterogeneity.  

In the DHGLM setting correlations between the random effects for the 

same level had already been implemented (Lee et al., 2006). In Paper II, 

DHGLM was extended to include models with correlations between random 

effects for different levels, the mean level and the residual variance level.  

The algorithm was implemented in ASReml 4.0 (Gilmour et al., 2009), 

which is a common software used for animal models, and it became very fast 

and easy to use. 

Data of pig litter size, previously analyzed using the Markov chain Monte 

Carlo method (Sorensen & Waagepetersen, 2003), was re-analyzed using the 

algorithm.  

Simulation studies were done to study the performance of the algorithm 

with respect to bias and precision. It was found that the estimates were 

unbiased in the case of a (yet unspecified) number of repeated observations on 

individuals. 

4.4.2 DHGLM can be used for large data sets 

In Paper III the algorithm from Paper I was used for a large data set on milk 

yield and somatic cell count. Over 1.5 million observations on more than 

170,000 cows related through a pedigree of more than 400,000 animals were 

analyzed. This was an example that the algorithm can be used for large data 

sets. For the analysis a week was required to obtain convergence of VCEs.    
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4.4.3 DHGLM can be used for data without repeated observations  

The data used for Papers I-III all contained repeated observations on 

individuals. In Paper IV, a data set on teat count in pigs was used, hence no 

repeated observations on individuals. Even though in some cases it would be 

possible to use the algorithm anyway, results from fitting a model on 

individuals would be biased. Therefore half sib and full sib analysis were 

performed.   

It was found that the results from the heteroscedastic analysis of the teat 

count data, were similar for the genetic half sib and full sib structure, and that 

the mean level heritability was the same as found by fitting a model with 

homoscedastic residuals. Therefore any of the structures could be used 

considering the teat count data.   
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5 General discussion 

5.1 Discussion of the results from Papers I-IV  

5.1.1 Comparison of the heritability values 

The estimated mean heritability values (Papers I-IV) were largest for teat count 

(    0.36), followed by milk yield (0.29), litter size (0.19), and SCS (0.11) 

(Table 5). This reflects the common statement that morphological traits like 

teat counts are more heritable than fitness and health traits such as litter size 

and SCS (Falconer & Mackay, 1996). 

The genetic coefficient of variation for mean was in opposite order with the 

largest value for SCS (     0.23), and thereafter litter size (0.12), milk yield 

(0.10) and teat count (0.04). The implication is that if the mean is changed by 

one genetic standard deviation, this change will correspond to a larger relative 

change for litter size than for teat count. The genetic coefficient of variation for 

SCS is difficult to interpret because of the logarithmic scale.  

The order of heritability values for the residual variance, and that of the 

genetic coefficient of variation for residual variance, were the same. Teat count 

represented the largest values (  
   0.07,       0.51), followed by litter size 

(0.04, 0.41), SCS (0.006, 0.26), and milk yield (0.003, 0.25). This was almost 

the same order as the mean heritability values, however, milk yield had the 

lowest value of residual variance heritability. For litter size, these values were 

well in agreement with previously published heritability values (0.021 to 

0.048) and genetic coefficients of variation (0.27 to 0.51) for residual variance 

in several species (Hill & Mulder, 2010). Genetic control of residual variance 

for teat count, milk yield and somatic cell count has not been analyzed 

previously. 

The genetic correlation between the mean and residual variance levels 

(Table 4) was favorable for litter size (-0.52), but unfavorable for teat count 

(0.79). For teat count the numerically positive estimate of the genetic 
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correlation indicates that selection for increased mean will lead to increased 

variation in the number of teats. Contrary, for litter size the variation is 

expected to decrease as the mean increases, but the sign of the genetic 

correlation has been shown to be dependent on the scale (Yang et al., 2011). 

5.1.2 Alternatives for the calculation of phenotypic variance 

The value of the phenotypic variance has impact on the heritability values, and 

is therefore important. The phenotypic variance   
  depends on the residual 

variance   
 , and the residual variance in models with heteroscedastic residuals 

can be calculated in several ways.  

A method previously used (Mulder et al., 2007) was to fit a model with 

homoscedastic residuals and to use the estimated phenotypic variance from that 

model for finding the heritability values for the mean and residual variance. 

However, the phenotypic variance from a model with heteroscedastic residuals 

is smaller than that from a model with homoscedastic residuals, because more 

variation is explained in the latter by the fixed effects for the residual variance. 

The residual variance   
  can be found as the average of the expected 

residual variances,   
           ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅    (       

   ) (Mulder et al., 2007; Paper 

IV), but it is easier and more correct to calculate the average of the estimated 

residual variances,   
       ̂̅̅ ̅̅ ̅̅ ̅̅ , which has been used in this thesis. This is 

similar to the average of the estimated mean values of the observations,    ̅̂. 

The above formula for   
  is however used to find       

    
  

   (       
   ), which is needed to find the additive genetic VCE    

  for the 

residual variance, corresponding to an additively modelled residual variance 

(Mulder et al., 2007; Paper IV). This is used for finding the heritability of the 

residual variance, which is the regression of    on   . The regression 

corresponds to the regression of   on   for finding the mean heritability value.  

5.2 Results when the dispersion in the Gamma distribution for 
the residual variance level is fixed  

In this section the dispersion in the Gamma distribution of the residual 

variances is discussed. Previous results (Papers I-IV) were from a Gamma 

distribution with under- or over-dispersion included. Here some results with 

fixed dispersion will be given (Table 7 and 8).  

The fitting of the Gamma distribution  

 ̂ 

   
  (

   

 
 
   

  
),         

is done by iteratively fitting and updating   in 
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    (   
 

   
),            (

 ̂ 

   
  ) 

but if the dispersion is not fixed, the residual variance in the normal 

distribution is          
  where   

  reflects under- or over-dispersion in the 

Gamma distribution. 

The litter size data was previously analyzed by Sorensen & Waagepetersen 

(2003), and their results were   
   1.62 (SE 0.213),   

   0.60 (0.155),        
   

0.09 (0.018),        
   0.06 (0.010), and    -0.62 (0.093). The VCEs when 

fixing the dispersion in the residual variance level (Table 7) are much more 

similar to these estimates, than those obtained by letting the dispersion vary 

freely (Table 4). This gives an indication that the best fit is obtained by fixing 

the residual variance level dispersion. 

However, while the likelihood function of the analysis Litter size II (Paper 

II) converged, for Litter size I (Paper I) and Teat count (Paper IV) it did not 

converge, but the parameter estimates converged. 

For the litter size data, the permanent environmental VCE for the residual 

variance could not be estimated, neither with nor without the genetic 

correlation.   

Table 7. Variance component estimates and standard errors for the litter size and teat count data 

with no under- or over-dispersion in the residual variance Gamma distribution  

   
    

         
         

    

Litter size I 1.36(0.196) 0.69(0.157) 0.02(0.012) 0.00(0.000)  

Litter size II 1.60(0.202) 0.54(0.153) 0.05(0.013) 0.00(0.000) -0.63(0.113) 

Teat count IV 0.15(0.009) 0.02(0.002) 0.14(0.011) 0.20(0.008) 0.79(0.024) 

Table 8. Estimated heritability and genetic coefficients of variation for the litter size and teat 

count data with no under- or over-dispersion in the residual variance Gamma distribution 

     
    

     
           

       

Litter size I 10.3 7.15 9.21 1.24 0.15 0.11 0.01 0.16 

Litter size II 10.4 7.08 9.21 2.34 0.17 0.12 0.01 0.22 

Teat count IV 14.5 0.64 0.81 0.07 0.36 0.04 0.08 0.58 

Formulas are found in the footnotes of Table 5.  

5.3 Genetic effects other than the animal genetic effect 

5.3.1 Animal genetic effect for the mean level, grouped genetic effect for the 

residual variance level 

It is not always possible to fit a model that includes the animal additive genetic 

effect both for the mean and the residual variance level. Moreover, when 
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repeated observations on individuals are not present, even if estimation is 

possible, the estimates will probably be biased (Paper II).  

One alternative is the full or half sib family model as suggested in Paper IV. 

Another alternative is to include an animal genetic effect for the mean level, 

and a full sib (sire-dam) or half sib (sire) effect for the residual variance level. 

Results from such models, however, disagreed with results from models with 

the same genetic effect for mean and residual variance, and the mean 

heritability values were too small compared with those from the models with 

homoscedastic residuals. This has also been observed by Sonesson et al. 

(2013).    

5.3.2 Correcting the residual variance to remove additive genetic variance 

When an animal genetic effect is included in the mean level of a model with 

heteroscedastic residuals, the residual variance is truly an environmental 

variance under the assumption that no non-additive genetic variance is present. 

However, when a sire effect or a sire-dam effect is included in the mean level, 

the residual variance also contains three quarters or a half of the additive 

genetic variance, respectively.  

Therefore the residual variance model is not a model of environmental 

variation, and a correction is needed. Mulder et al. (2013) developed such a 

correction in the case of a paternal half sib (sire) model.  

The residuals are corrected by multiplication by √ ̅     
  √ ̅, where     

are the weights for the mean level. Exponentials of estimated responses from 

the residual variance level will be environmental residual variances for the 

mean. These have to be back-corrected by adding the additive genetic variance 

previously subtracted before using them as weights for the mean level. 

While it is obvious that the residual variance for the mean level must be 

corrected to only contain environmental variance, it is not that clear if the 

residual variance level must be corrected, because it is not obvious what effects 

to include in the residual variance. Fixing the dispersion to 1 might solve the 

problem. 

5.4 Scale 

Yang et al. (2011) simultaneously estimated Box-Cox transformation (      

                     ) to achieve conditional normality of litter size 

data, and fitted a model with heteroscedastic residuals, using a Bayesian 

Markov chain Monte Carlo approach. Comparing results for the untransformed 

and transformed data, surprisingly the estimate of genetic correlation was 

altered from being significantly smaller than zero (untransformed data), to 
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being significantly larger than zero (transformed data). This illustrates the 

importance of considering skewness of data. No scaling effect was found in 

Paper III, and Sonesson et al. (2013) found no scaling effect by comparing 

estimated variance components of untransformed and transformed weights in 

salmon. In these papers, however, the genetic correlation was not estimated. 

The common assumption of quantitative genetics is that trait values are 

sums of many small loads (Fisher, 1918), and therefore, by the law of large 

numbers, normal distributed. This is in practice not true for all traits, and most 

likely not when strong selection is involved. Box-Cox transformation might be 

a solution for this, but back-transformation of the estimates to the original scale 

of interest is not straight-forward for the genetic correlation.  

The transformation of somatic cell count into somatic cell score also alters 

the estimated parameter values, but it has not been considered what the 

difference will be for the genetic correlation (which was not estimated in Paper 

III).  

5.5 DHGLM and the approximation 

DHGLM has been criticized by several authors, and defended by the creators 

(Lee & Nelder, 1996; Lee et al., 2007; Lee & Nelder, 2009a; Louis, 2009; 

Molenberghs et al., 2009; Meng, 2009; Lee & Nelder, 2009b; Lee et al., 2006). 

To go through the criticism is outside the scope of this thesis, but a thorough 

summary can be found in Rönnegård et al. (2014).  

The algorithm used in Papers I-IV is an approximation of DHGLM (Paper 

II). The approximation in terms of iterative weighted least squares (IRWLS, 

explained well by Pawitan (2001)) was done to make it possible to use standard 

software for animal trait models, and to make it possible to fit a model with 

genetically structured residual variance heterogeneity to large data sets. This 

corresponds to penalized quasi-likelihood tools, PQL (Breslow & Clayton, 

1993) for generalized linear mixed models.  

How much bias the IRWLS approximation, and the DHGLM method itself, 

add to parameter estimates can be studied by simulations corresponding to the 

data set of interest, as done in Paper II.  

5.6 Evidence for genetic control of environmental variation 

The evidence for genetic control of environmental variation can be considered 

from different perspectives (Table 9).  

The first perspective is if selection can be done to reduce variance, but so 

far no studies have revealed convincing evidence for the possibility to select 



34 

for reduced residual variance (Hill & Mulder, 2010), contrary to the means of 

traits, which have been increased by selection even for traits expressing small 

heritability values (Nielsen et al., 2013).  

There is an interesting connection between mean level selection and the 

variance. In theory the genetic variance should decrease as a consequence of 

threshold selection of the mean, but in practice the phenotypic variance often 

increases (Falconer & Mackay, 1996). One explanation could be that 

homozygotes are more sensitive to the environment, because they will only 

have one enzyme as a product of the gene in question, and not the flexibility of 

two different enzymes. With time the environmental conditions also change, 

which could contribute to an increased variation and that different genes 

become involved. 

A difference between mean level selection and residual variance selection is 

that the mean is often selected upwards, while the residual variance is selected 

downwards. It might be that upward selection is easier than downward, 

because there is a downward limit (zero), but no upward limit. 

Table 9. Support for genetic control of mean   and residual variance   from selection, 

quantitative genetics (QG), and association studies (QTL/GWAS) 

 Selection QG QTL/GWAS 

  Response
1
 Breeding values and 

heritabilities
1
 

Some, but most 

heritability is missing
2
 

   No convincing 

response
3
 

Breeding values and 

heritabilities
3
 

Some
4
 

1
(Falconer & Mackay, 1996) 

2
(Maher, 2008) 

3
(Hill & Mulder, 2010) 

4
(Rönnegård & Valdar, 2011, 2012; Shen 

et al., 2012) 

Looking from a quantitative genetics perspective, as used in this thesis, 

evidence for the possibility to select for both the mean and the residual 

variance has been found. For the residual variance, heritability values have in 

general been found to be smaller than 0.1 (Hill & Mulder, 2010), but the 

genetic coefficients of variation have been found to be moderate.  

Finally, from the perspective of studies using molecular genetic information 

(e.g., genome wide association studies, GWAS), some evidence for additive 

genetic control of trait values have been found, but most of the heritability 

previously estimated is unexplained (Maher, 2008). This is an interesting topic, 

but outside the scope of this thesis. For residual variance, genetic control has 

also been found (Shen et al., 2012). 
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5.7 What genetically structured residual variance heterogeneity 
reveals about nature  

Genetic heterogeneity of residual variance is interpreted as a reaction on small 

differences in environment, sometimes called micro-environmental changes. 

This is illustrated in Figure 2. Two genotypes maintained in a range of 

environments may express a reaction norm (different inclinations) on the 

environments, but this is not what 

is modeled by including 

genetically structured residual 

variances. The modelled 

difference in residual variance is 

illustrated by different lengths of 

vertical lines at a given value of 

the environment. 

 

Figure 2. A difference in residual 

variance is illustrated by different lengths 

of vertical lines at a given value of the 

environment.  

The inclusion of reaction norms (reactions on macro-environmental changes) 

in models with genetically structured residual variance heterogeneity has been 

studied by Mulder et al. (2013), who found by simulation that reaction norms 

and genetic heterogeneity of residual variance could be separated using 

DHGLM.  

Reaction norms are intuitively easier to interpret than genetically structured 

residual variance heterogeneity. The latter can be observed and modelled, but 

what the underlying mechanisms are, is hard to grasp. However, if reaction 

norms, dominance, epistasis, epigenetics, or generally, all sorts of interplays 

between genes and environment adapting to and altering themselves and each 

other, are present in the data but not modelled, these phenomena will end up in 

the residual variance, and hence create a genetic structure in the residual 

variance. This is probably a part of what genetically structured residual 

variance heterogeneity explains about nature.  
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6 Conclusions 

An algorithm building on DHGLM, fast and feasible for large data sets on 

animal traits with pedigrees was developed and was found to be capable of 

giving unbiased estimates. However, several repeated observations per 

individual were necessary to obtain unbiased estimates. In the case of a single 

observation per individual, the analysis could be done for genetic groups such 

as half or full sib groups.  

The algorithm can be used to find genetic control of environmental 

variation, and to find genetic correlation between the mean and the residual 

variance of a trait. 
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7 Future research 

7.1 Multiple traits and genetic heterogeneity 

Lundeheim et al. (2013) and Chalkias et al. (2013) analyzed data on several 

pig traits modeled with homoscedastic residuals with the aim to find genetic 

correlations among these traits. To include genetic correlation between traits, 

for instance between litter size and teat count, or between milk yield and SCS 

is also possible for both levels of a model with heteroscedastic residuals. 

The simultaneous fitting of litter size and teat count traits in a model with 

heteroscedastic residuals, might be problematic because all animals will have a 

single observation of teat count, and only a few animals will have one or more 

observations of litter size. A possible solution used by Lundeheim et al. (2013) 

is to analyze teat count together with litter size of the first parity, litter size of 

the second parity, and so on. Then all traits (teat count, size of first litter, and 

size of second litter) come with a single observation per individual.  

There will probably be only a few observations of litter size per half or full 

sib group, because altogether few individuals will have observations of litter 

size. Therefore, even when including sire genetic effects instead of the animal 

genetic effects for both levels of a model with heteroscedastic residuals, the 

estimates using DHGLM might be biased. 

Milk yield and somatic cell score, on the other hand, are traits very suitable 

for simultaneous analysis, because repeated observations of both traits are 

given for each individual observed. A natural extension of the study done in 

Paper IV would be to first include the genetic correlation between the mean 

and the residual variance within traits, and thereafter to analyze the traits 

simultaneously with genetic correlations between them, at least for the mean 

level. 

Note that for milk yield and somatic cell count, inclusion of a sire genetic 

effect instead of the animal genetic effect could be a way to increase 
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computing speed, but inclusion of a sire-dam genetic effect will only slightly 

reduce complexity, because few cows are full sibs.  

7.2 Simulation study for fixed residual variance level dispersion 

The agreement between the results for the litter size data analyzed with fixed 

dispersion (   
   ) in the Gamma distribution of the squared residual 

variances (Table 7), and the results obtained by Sorensen & Waagepetersen 

(2003), indicates that fitting the DHGLM with fixed dispersion for the residual 

variance level might give better estimates than when the dispersion is allowed 

to vary freely. A simulation study comparing DHGLM with and without fixed 

dispersion for the residual variance level could provide more insight.  

For the three models and data sets analyzed with fixed dispersion (Table 7), 

convergence was only obtained for one of them, and another aim of a 

simulation study could be to compare the frequency of convergence between 

DHGLM with fixed dispersion for the residual variance level, and the DHGLM 

algorithm as used in the Papers I-IV (under- or over-dispersion allowed). 

7.3 Sire and sire-dam genetic effects and different effects for 
the mean and residual variance level 

The correction described in section 5.3.2 should be implemented in the 

heteroscedastic analysis of teat count (Paper IV), because the residual variance 

contains additive genetic variance. The correction could be implemented as a 

standardized tool in a future project. 

Future research on how to correct for different genetic effects for the mean 

and residual variance would also be interesting. The heteroscedastic model 

with the animal genetic effect for the mean level, and the sire or the sire-dam 

effect for the residual variance level is intuitively attractive, and the residual 

variance is purely environmental, but the estimates of the genetic variance 

components and the genetic correlation were severely biased in most examples 

studied. A correction of this would be desirable. 

7.4 Genetic effects included in any variance component 

Hill & Mulder (2010) suggested to include a genetic effect in both the residual 

variance and in the variance component of the permanent environmental effect. 

In this thesis only the residuals are assumed to be heteroscedastic, but in a 

DHGLM setting there are no theoretical limitations to structuring also other 

variance components. In addition to the suggestion on structuring the variance 
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component for a permanent environmental effect, an interesting approach 

could be to model the additive genetic effects to be heteroscedastic by 

structuring the additive genetic variance   
  with genetic and environmental 

effects.  

It is possible to do the structuring of any variance component in a small 

scale (factors with ten or fewer levels) using the software GenStat. If GenStat 

were extended to include sparse matrices and tools for pedigree handling, 

mainly computing power together with the size and structure of the data would 

limit the possibility to include random effects in the residual variance and other 

variance components. 

7.5 DHGLM without approximations 

The DHGLM used in Papers I-IV is approximated by normal distributions 

(Paper II). This was necessary to use the algorithm on large data, and to 

implement the algorithm in ASReml. 

When repeated observations are too few (per animal or per genetic group, 

‘too few’ has not been derived as a specific number or fraction, this could also 

be done in future research), it has been seen that estimates are biased. It might 

be that the normal distribution approximation causes this bias, and that the bias 

will disappear if the DHGLM is not approximated. 

Future research could look into this. For instance it would be an option that 

GenStat was adapted to handle pedigrees, because choosing higher order 

Laplace approximations is already possible in GenStat. However, the higher 

order approximations require more computer power and time, so the fit of 

DHGLM on large data will probably not be feasible until calculation efficiency 

has been increased.  

7.6 Other trait distributions than normal 

Some of the traits considered in this thesis should intuitively be modelled by a 

Poisson distribution (litter size, teat count and somatic cell count), while the 

normal distribution modelling of milk yield is intuitively correct.  

The transformation of somatic cell count into somatic cell score solves the 

problem of normality for SCC. For the litter size and teat count traits, arguing 

for a normal distribution approximation of the Poisson distributions is 

reasonable in view of the size of the data, and also because of the quantitative 

genetic assumption that a trait value is the sum of many loads (Fisher, 1918). 
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Future research could however include other models for trait values. Many 

distributions are accessible in the DHGLM setting, those are for instance 

normal, Poisson, binomial, Gamma, and negative binomial. 

As described in the previous section, it is not yet feasible to fit a DHGLM 

without approximation for large data sets. Hence, using other models than the 

normal, makes estimation difficult, and solving the estimation problems makes 

estimates biased, but still these barriers could perhaps be overcome.   

7.7 Other residual variance models than the exponential 

Figure 1 illustrates a linear connection between the mean and the residual 

variance of teat count for paternal half sib groups. This questions the use of the 

exponential structure of residual variance.  

Other models for residual variance have been suggested. Two of them are 

the additive residual variance model in which   itself is considered additive, 

and the standard deviation model in which √  is considered additive. The 

problem of both of these, is the requirement for both   and √  to be larger 

than zero, a problem that is solved by additive modelling of     .  

Future research could include alternative links for  . DHGLM has the tools 

to handle many links (identity, log, inverse, logit (for estimation of 

probabilities), probit (similar to logit, threshold by cumulative normal 

distribution), and complementary log log (also complement to logit)), but not 

the square root, which therefore should be implemented if possible (Lee et al., 

2006).    

7.8 Model assessment 

Model assessment has been studied by Mulder et al. (2013), and future 

research should include and develop these tools, preferable implement 

standardized tools for selection of models. 

7.9 Other uses of DHGLM 

7.9.1 Genome wide association studies 

In this thesis, analysis of genetically structured residual variance heterogeneity 

by DHGLM was used in a quantitative genetic setting. In other studies 

DHGLM has been applied to single nucleotide polymorphism (SNP) marker 

data to perform genome wide association studies (Shen et al., 2011). In usual 

analysis of SNP data, p-values are compared to find important loci. Using 
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DHGLM the estimated variance components are compared among loci to find 

the controlling genes. 

Rönnegård & Valdar (2011) took this a step forward and used DHGLM to 

study variance controlling genes. Associations were estimated on both the 

mean and residual variance level for the trait studied. 

Future use of DHGLM for molecular genetic data is an area to develop.  

7.9.2 Other uses of DHGLM with correlation between effects for the mean and 

residual variance level 

Other uses of DHGLM with correlation between effects for the mean and the 

residual variance level include, among many possible topics, finance data (Lee 

& Nelder, 2006) and spatial modelling.  

7.10 Teat count in pigs as a model trait 

Intuitively, teat count in pigs should be highly genetic. It is difficult to imagine 

any environmental influence on the trait other than for instance hormonal 

states, disease, or stress in the sow as the fetus develops. When the teats have 

been developed, the number of them will not be changed. 

This is contrary to the traits litter size, milk yield, and somatic cell count, 

where more environmental factors can be in continuous action during a 

lifetime, for instance feed quality, feed intake, stress, bacteria, and disease. 

The teat count could therefore be an exceptional model trait (similar to the 

example of abdominal bristles in flies (Falconer & Mackay, 1996)) for 

studying genetic variation. Not only it is intuitively genetic, it also takes a span 

of trait values, which makes it easier to model than a binomial trait. 

An intriguing topic for future research would be to combine pedigree, 

sequence information, and teat count observations to obtain knowledge of the 

fancy e-topics, such as (gene-) environment interaction, (gene) expression, 

epistasis, and epigenetics.  
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8 Sammanfattning på svenska 

Inom husdjursavel försöker man ständigt öka produktiviteten genom att öka 

djurens produktionsegenskaper – till exempel större kullar och ökad 

tillväxthastighet hos grisar, och ökad mjölkproduktion hos kor. Samtidigt vill 

man ha uniformitet; kullarna ska vara lika stora, grisarna ska växa lika snabbt 

och så vidare.  

Egenskaper i dottergrupper från olika tjurar kan ha olika variation inom 

grupperna, trots att gruppen av mödrar borde vara i stort sett identiska. Därför 

menar man att gener också bidrar till kontroll av variation. Miljöskillnaderna 

för husdjur är marginella, särskilt inom samma land eller produktionssystem, 

varför man tänker på skillnaden i variation inom grupper som reaktioner på 

oidentifierade miljöskillnader. Om det är så att gener kontrollerar 

uniformiteten, bör man kunna selektera för uniformitet.  

Det verkar också finnas samband mellan väntevärde och variation. I så fall, 

om sambandet är att variationen ökar om väntevärdet ökar, finns en risk med 

den intensiva aveln som bedrivs att just uniformiteten kan äventyras när 

väntevärdet ökar.  

Modeller som inkluderar genetiska komponenter i både väntevärdet och i 

residualvariansen, samt korrelationen mellan de två genetiska komponenterna, 

kan användas för att svara på frågorna. Om den genetiska delen av variationen 

i residualvariansen är betydande, kan vi kanske selektera för uniformitet. 

Korrelationen mellan den genetiska komponenten i väntevärdet och den 

genetiska komponenten i residualvariansen kan ge en indikation på hur 

uniformiteten påverkas av selektion för ökat väntevärde.  

Skattning av modellerna kan göras med Bayesianska metoder, men det tar 

lång tid, och därför används i denna avhandling istället en metod baserad på 

teorin för dubbla hierarkiska generaliserade linjära modeller (DHGLM). En 

algoritm har härletts utifrån DHGLM, och för att kunna använda den på stora 

datasett, har den approximerats med normalfördelningar. På så sätt kan den 

användes i standard programvara för husdjursavel, och den har implementerats 
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i ASReml 4.0. Algoritmen är snabb, och en simuleringsstudie har visat att den 

leder till bra skattningar när det finns tillräckligt många upprepade 

observationer per individ eller grupp.   

I avhandlingen har algoritmen använts på egenskaperna mjölkproduktion 

och celltal hos kor samt kullstorleker och spenantal på grisar. De estimerade 

arvbarhetsvärdena ligger inom de interval som tidigare har rapporterats för 

båda medelvärdet och residualvariansen. Den genetiska korrelationen mellan 

medelvärdet och residualvariansen blev endast estimerat för kullstorleker och 

spenantal. För kullstorleker var den gynnsam, men för spenantal var den 

ogynnsam. Detta betyder att för spenantal kan det vara så att residualvariansen 

ökar när medelvärdet ökar, till exempel på grund av selektion för ökat 

produktion.   
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