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Risk Assessment of Erosion and Losses of Particulate 
Phosphorus. A series of studies at laboratory, field and 
catchment scales 

Abstract 
Phosphorus (P) losses from agricultural land are considered a major contributor to 
eutrophication in many aquatic ecosystems. Areas more vulnerable to losses of P need 
to be identified in order to effectively apply mitigation measures aimed at reducing 
total loads of P. This thesis focuses on the identification of soils and fields vulnerable 
to losses of particulate P (PP) due to erosion. Two simple soil dispersion tests to 
estimate the initial risk of soil and P mobilization (DESPRAL and SST) were tested 
and compared in the laboratory. The outcome was combined with data relative to 
source (soil P content) and transport (unit stream power length-slope topographic factor 
calculated from a high resolution digital elevation model) risks to establish probable 
causes of P losses at field scale and to target critical source areas at catchment scale. 

DESPRAL showed higher precision and shorter execution time than SST, in addition 
to its already proven validation and reproducibility. Also, compared with other 
methods, the test returned a wider range of values for each textural class, allowing the 
differentiation of soils within these classes. This is especially important for fine-
textured soils, which are the most sensitive to the mobilization of particles. The study 
of long-term P and sediment losses from five fields confirmed the relevance of 
adequately identifying the source and transport conditions within fields when assigning 
appropriate countermeasures. Finally, the assessment of long-term losses from two 
contrasting catchments highlighted how transport and mobilization risks have a greater 
effect on P losses due to erosion than P accumulation in soil. When ranking the fields 
within both catchments according to this prioritization of factors, a greater number of 
high-risk fields were found in the catchment with more pronounced transport pathways. 

The outcome of this thesis is the proposal of methodology whereby easily obtainable 
data can be used in risk assessments to identify fields and catchments vulnerable to PP 
losses. The knowledge gained provides a good starting point to improve these 
assessments by incorporating means for prioritizing different mitigation measures 
currently not performed in Sweden. 
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For nitrates are not the land, nor phosphates and the length of fiber in the 
cotton is not the land. Carbon is not a man, nor salt nor water nor calcium. He 
is all these, but he is much more; and the land is so much more than its 
analysis. 

John Steinbeck, The Grapes of Wrath 
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1 Introduction 
The 20th century demonstrated how an exponential growth in the use of 
phosphorus (P) increased agricultural productivity, but also saw a rise in new 
environmental, social and political issues that need attention. Phosphorus (from 
the Greek phosphoros, meaning light-bringer) is a non-metallic element from 
the nitrogen (N) family in Group 15 or 5A of the periodic table and most of it 
occurs as minerals in phosphate rock. Due to the high reactivity of its most 
common elemental form (white P), it cannot be found as a free element on 
Earth, as it spontaneously combusts in air. As phosphate (PO4

3-), it is an 
essential component of all genetic material (DNA), and is used by cells to carry 
energy in the form of adenosine triphosphate (ATP). As hydroxyapatite 
(Ca5(PO4)3OH), it is the main component of bones and teeth. While P has been 
used in many applications in modern industry (e.g. production of detergents, 
pesticides, baking powders, matches and nerve agents), the vast majority of the 
extracted phosphate rock (approximately 90%) is destined for food production. 
Meeting increasing demand due to world population growth and diet change 
(increasingly meat intensive) might be complicated in the future by the fact 
that the majority of phosphate rock reserves are concentrated to a few areas of 
the world, mainly Morocco and Western Sahara (Cordell et al., 2009).  

Awareness of the environmental issues linked to P losses increased 
significantly during the second half of the 20th century and has continued to 
increase ever since. While the amounts of P lost from fields to water bodies 
through different processes may seem small compared with the amounts of P 
actually retained in soils, from an environmental point of view these losses are 
sufficient to cause significant damage to aquatic ecosystems. In the case of 
eutrophication, nutrient enrichment in water bodies causes rapid growth of 
undesirable algal populations, ultimately leading to oxygen depletion of those 
aquatic ecosystems when the dead algae decompose. The presence of an 
excessive amount of P accelerates the slow natural process of eutrophication, 
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turning it into what is called ‘cultural’ eutrophication (caused by human 
activity). The largest anthropogenically induced hypoxic area (i.e. area with 
reduced oxygen conditions) in the world is located in the Baltic Sea, with 
recent research estimates showing a total of 60 000 km2 of dead sea bottom. 
The main driver of this process is considered to be the increased inputs of 
nutrients from land (Carstensen et al., 2014).  

The increased awareness of the issue in recent decades has resulted in ‘Zero 
eutrophication’ becoming one of the 16 Environmental Quality Objectives 
established by the Swedish government for the new millennium (Gov. Bill 
2000/01:130). This is in line with the main requirement of the EU Water 
Framework Directive “achieving good ecological status in surface waters” 
(Directive 2000/60/EC). Reducing the eutrophication of water bodies involves 
dealing with P and N, the main question being which measures to prioritize, i.e. 
controlling the levels of P, the levels of N or a combination of both. In general, 
it is more or less accepted that control of P should be the main focus for inland 
waters (Schindler, 2012), while N is more important in marine environments 
(Howarth & Marino, 2006). In the case of the Baltic Sea, a thorough 
examination and evaluation of different mitigation strategies was made by an 
expert group appointed by the Swedish Environmental Protection Agency 
(SEPA), which resulted in a broader agreement on the fact that P inputs 
should be reduced, while no definitive consensus was reached regarding N 
(Boesch et al., 2006). 

In response to the abovementioned assessments, a wide research on P 
related issues was started. A major part of this research is supported by the 
Swedish Farmers’ Foundation for Agricultural Research, starting in 2009 with 
the focus on developing mitigation strategies for improved fertilizer utilization 
and reduction of eutrophication. A wide variety of projects have been 
conducted since then, focusing on areas such as feed conversion and 
sustainable livestock management (e.g. Parvage et al., 2013), soil processes 
and transport routes (e.g. Andersson et al., 2013; Paraskova et al., 2013; 
Djodjic & Spännar, 2012) and fertilization strategies to reduce P losses at 
source (e.g. Liu et al., 2013; Riddle & Bergström, 2013; Svanbäck et al., 2013)  
or along water routes to reduce P transport (e.g. Kynkäänniemi et al., 2013; 
Johannesson et al., 2011). The research presented in this thesis pertains to the 
issue of soil processes and transport routes and aims at improving the tools and 
methods used for the identification of soils, fields and areas most vulnerable to 
losses of P driven by erosion. Ultimately, one of the main objectives of the 
studies presented in this thesis was to devise simple methodologies and tools to 
be used by farmers and land managers for the effective placement of mitigation 
measures. 
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2 Background 

2.1 Agriculture as a Source of Nutrients 

The importance of agriculture as a non-point source of nutrients has grown as 
control of point sources such as wastewater has improved following the 
requirements of the EU Urban Wastewater Treatment Directive (91/271/EEC). 
In Sweden, over 95% of urban waste water undergoes biological and chemical 
processing and the removal of P reaches levels of 95% (Swedish EPA, 2014). 
In many areas of the world, agriculture is considered an important source of 
nutrients. In the USA, it is considered to be the main non-point source of P 
(Carpenter et al., 1998), while in Finland, agricultural P losses account for 62% 
of all P entering surface waters (Valpasvuo-Jaatinen et al., 1997). In the North 
Sea, the annual loads of P from anthropogenic diffuse sources comprise 46% of 
the total inputs of P (European Environmental Agency, 2005). In Sweden, 
agriculture accounts for 48% of the total anthropogenic P discharges to the 
Baltic Sea (SMED, 2011) and is thus its largest single source from land to sea. 
The majority of the agricultural land in Sweden is located in the southern and 
south-central parts of the country, which is also where the main problems of 
eutrophication occur.  

During a great proportion of the last century, high amounts of nutrients 
were added to farmland in Sweden in efforts to increase the productivity of 
agricultural land in the region. The increased inputs of nutrients, frequently a 
mix of both fertilizers and farmyard manure, generally exceeded plant uptake, 
thus causing a high surplus of P in soils. This is particularly evident in areas 
with intensive livestock farming. Nowadays, while excessive amounts of P are 
still applied to some fields of the country, the overall P average shows that 
inputs are in equilibrium with outputs (approx. 12 kg P ha-1) (Statistics 
Sweden, 2013). 
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2.2 Transfer of Phosphorus from Agricultural Land 

Transfer of P from land to water takes place through different processes 
(erosion, leaching and incidental losses) and pathways (e.g. overland flow, 
matrix flow, preferential flow) and in different forms (e.g. dissolved P, 
particulate P, organic P) (Haygarth & Sharpley, 2000). The main forms of P 
referred to throughout this text are dissolved P or dissolved reactive P (DRP) 
and particulate P (PP). The latter is also referred to as unreactive P (UP), 
calculated as the difference between Total P (TP) and DRP. The terminology 
refers to the molybdate reaction used in the analysis of the different P fractions 
in water1.  

The proportions of the different forms of P in water are closely related to 
the type of transport process that initiates the transfer of P from land to water. 
Transport processes are mainly dependent on soil type, hydrological 
conditions, climate and agricultural production. For instance, erosion is more 
likely to be the dominant process for P losses from fine-textured soils located 
on a sloping field, in which case P will mainly, but not exclusively, be lost as P 
attached to particles (PP). In contrast, leaching and losses of DRP are likely to 
dominate in sandy soils with low sorption capacity located in a flat area.  In the 
latter case, the values vary between different locations. In north-eastern 
Europe, the ranges of DRP content (as percentage of TP) have been reported to 
range between around 20-60% for the United Kingdom, 9-23% for Norway 
and 20-80% for Ireland (Ulén et al., 2007). In Sweden, the variation is also 
wide, with DRP comprising 20-85% of TP. The differences in variation are 
correlated with the occurrence of transport processes. In some areas, the main 
process occurring is soil erosion (higher percentage of PP), whereas in others it 
is leaching (Bergström et al., 2007). In the different river tributaries to Lake 
Mälaren in south-central Sweden, P associated with particles accounts for 
approximately 64% of TP (Persson, 2001). In addition, in the 21 monitoring 
catchments across Sweden which are part of the national monitoring 
programme for agricultural land, 13 have PP as the main fraction (>60% of TP) 
(Figure 1). However, in many of the cases where PP is the dominant fraction in 
TP, high concentrations of DRP have also been observed (e.g. catchments E23, 
E24, K32, O14, O18 and U8 in Figure 1). In other words, the presence of one 
fraction does not exclude the presence of the other. 

1  The terminology used throughout this thesis essay for referring to unreactive phosphorus 
(UP) is particulate phosphorus (PP). The main reason for this is that PP can be more easily 
visualized by a broader audience. However, the term UP is used in Papers I-III, as it accounts 
more accurately for its calculation, namely the difference between total reactive P (TP) and 
dissolved reactive P (DRP). This includes all kinds of P attached to particles, as well as dissolved 
fractions which are not reactive with ammonium molybdate, such as organic P fractions. 
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In Sweden, TP concentrations and loads are generally considered to be low. 
Long-term TP flow-weighted concentrations (FWC) in the national monitoring 
catchments range from 0.047 to 0.38 mg L-1, while TP load range from 0.1 to 
1.0 kg ha-1 yr-1 (Figure 1). For reference, the corresponding data for micro-
catchments in the Nordic-Baltic region show mean annual TP losses ranging 
from 0.1 to 4.7 kg ha-1 yr-1, while losses in macro-catchments in Europe range 
from 0.1 to 6.0 kg ha-1 yr-1 (Kronvang et al., 2007). Losses from the 
Chesapeake region (USA) range from 3.2 to 24.2 kg ha-1 yr-1 (Boynton et al., 
1995). 

 
Figure 1. Mean annual phosphorus (P) transport and mean flow-weighted P concentration at the 
outlet of 21 Swedish monitoring agricultural catchments in the period 1996/1997-2012/2013. The 
red bars represent the dissolved fraction and the white represent the particulate fraction (PP). The 
dotted line represents mean annual flow-weighted concentration (FWC) of total phosphorus (TP). 
The letters in the catchment codes represent Swedish regions. Data extracted from the Swedish 
monitoring program investigating nutrient losses in catchments dominated by agricultural land. 

Losses of P due to erosion have been detected in a number of agricultural areas 
dominated by clay and silty soils across Sweden (Djodjic et al., 2012; Djodjic 
& Bergström, 2005; Ulén & Jakobsson, 2005). At field-scale, Ulén et al. 
(2001) have reported a significant correlation between TP losses and soil 
texture and showed that suspended solids (SS) concentrations were higher in 
water samples from fields with clay content >35%. Similarly, Kyllmar et al. 
(2006) reported higher P losses from catchments dominated by clay loam and 
clay soils than from catchments dominated by loamy sand or sandy loam soils. 
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They also reported significantly higher mean annual N losses in the latter 
catchments. More than half (55%) of all agricultural soils in Sweden contain 
more than 15% clay and 15% of all soils can be classified as heavy clay 
(>40% clay content) (Eriksson et al., 1999). According to Rekolainen et al. 
(1997), about 39% of all soils in Sweden contain more than 30% clay. 

The impact of P on water quality depends on its availability to algae as not 
all of the TP loads leaching to a water body are available to the biota. 
Bioavailable P can be defined as the sum of immediately available P (i.e. 
orthophosphate or DRP) and any form of P that can be transformed into an 
available form by natural processes (e.g. desorption, dissolution, enzymatic 
degradation) (Boström et al., 1988). Particulate phosphorus potential 
bioavailability is complex as it is a dynamic function of different chemical-
physical-biological phenomena occurring during transport of P through a 
catchment (Dorioz et al., 1998; Sharpley et al., 1992). As a reference, the 
potential bioavailability of PP from agricultural losses in Scandinavia varies 
between 5 and 41% (Rekolainen et al., 1997). In Sweden, bioavailability 
assessments have shown that an average of 41-45% of PP from tributaries to 
Lake Mälaren can become available to algae (Persson, 2001). In Finland, 
Uusitalo et al. (2003) found that PP makes a significant contribution to total 
bioavailable P losses, although previous Finnish studies had shown a low 
percentage of potential PP bioavailability (Ekholm, 1994). Similar studies in 
the USA, produced estimates of potential bioavailable PP from runoff in 
agricultural, forested, urban and mixed use streams of 24, 17, 73 and 26%, 
respectively (Ellison & Brett, 2006). In addition to all the estimates cited 
above, the possible long-term threat of P in sediments has been stressed by 
Stigebrandt et al. (2013), who suggest the existence of a temporary internal 
source of DRP stemming from anoxic sediments in the Baltic Sea. According 
to their results, P has been accumulating in the oxic sediments of the Baltic Sea 
due to e.g. accumulation of P associated with iron (Fe) oxides, burial of P in 
organic matter (OM) or P accumulation in bacteria, until the actual anoxic 
conditions have favoured the release of P as DRP, thus making it bioavailable. 

2.2.1 Soil Erosion 

As mentioned above, soil erosion is one of the processes through which P can 
be lost from agricultural areas. Soil erosion (from the Latin erodere – to eat 
away) is a two-part process by which soil particles are detached from the soil 
and transported by the action of an erosive agent (e.g. water, wind, tillage). 
Deposition of particles occurs when there is no more energy to continue the 
transport. Human-induced erosion is closely linked to agricultural practices, 
characterized by the replacement of natural vegetation by arable land with very 
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little or no vegetation to protect the soil surface during a large proportion of the 
year. Historically, attention has mainly been given to the effects of soil erosion 
at source with the focus on soil degradation and decreased agricultural 
productivity, which affects food security in many areas of the world (Pimentel, 
2006). However, the effects of soil erosion can also be seen offsite, as soil 
particles can pollute surface waters and act as carriers of other pollutants, such 
as pesticides or nutrients.  

Soil erosion can have several degrees of intensity (e.g. sheet, rill, gully). 
The most common form in Sweden is sheet erosion, which is the uniform loss 
of a thin layer of topsoil. While not necessarily very noticeable, this form of 
erosion can in fact be the most harmful in terms of nutrient losses, due to the 
preferential detachment of finer-sized soil particles, which have higher specific 
surface areas for adsorption of P (Sharpley, 1985). Another form of erosion 
observed in Sweden is rill erosion, which occurs when small channels (only a 
few centimetres deep) are formed by small intermittent water courses. Finally, 
gully erosion occurs when these small channels grow into deeper channels that 
cannot be removed by normal cultivation. Gully erosion is not usually seen in 
Sweden although gullies have occasionally been recorded after extreme flow 
events (see Figure 2).  

 
Figure 2. Severe erosion in the agricultural area of Krusenberg (region of Uppland, Sweden), 
April 2013. Photo: Faruk Djodjic. 

According to Ulén (2006), roughly up to 15% of the arable land in Sweden can 
be assumed to be a source of soil erosion. This estimate is based on the 
percentage of clay soils and of soils that might have limited natural or artificial 
drainage capacity. In Sweden, it is not uncommon to see surface water ponding 
due to overland flow ending in small depressions in fields due to the limited 
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capacity of drainage systems (i.e. spring flow or autumn) as seen in Figure 3. 
This can increase P losses in the affected areas, both because macropore flow 
is favoured under ponded conditions (Skaggs et al., 1994) and because surface 
water ponds can overflow to nearby streams, carrying over high amounts of 
particles and nutrients. 

Contrary to what one might expect, there are few existing studies on losses 
of SS and P due to erosion in Sweden. The few that have been carried out have 
resulted in the detection of severe forms of erosion, especially during snowmelt 
and thawing of frozen soil (Alström & Bergman, 1990). In one such study 
covering a 90 km2 area in southern Sweden it was estimated that 7% of the 
study area was affected by serious soil degradation (losses of 0.001-120 t ha-1 
yr-1) and that interrill erosion losses varied between 0.001 and 16 t ha-1 yr-1 

(Alström & Åkerman, 1992). As reference, the mean estimated soil erosion 
rate from plots across Europe with different land uses is 8.76 t ha-1 yr-1, with 
bare soil having the highest mean rate (23.4 t ha-1 yr-1) (Cerdan et al., 2006). 

 
Figure 3. Surface ponding overflowing to a stream in an agricultural catchment in the region of 
Östergötland. Photo: Anuschka Heeb 
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3 Assessment of Particulate Phosphorus 
Losses through Erosion 

Estimation of P losses from agricultural land requires an understanding of the 
journey of P from its application as a fertilizer or manure to its fate in receiving 
water, via its release from soil and subsequent transport from the release point 
to the water body. This is the basis of the P transfer continuum (source-
mobilization-delivery-impact) proposed by Haygarth et al. (2005) and 
illustrated in Figure 4. 

 
Figure 4. Phosphorus transfer continuum. Source: Withers and Haygarth (2007) 

In the past, agronomic soil test P (e.g. P-AL, Olsen P, Mehlich-3 P) were used 
for environmental purposes to identify thresholds for the prediction of surface 
water pollution (Maguire et al., 2005). Agronomic tests provide valuable 
information, especially when assessing DRP losses, but they need to be 
complemented with other information regarding the susceptibility of a site to 
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overland flow and erosion (Weld et al., 2001). This is the idea behind concepts 
such as the P index (PI) (Lemunyon & Gilbert, 1993) and Critical Source 
Areas (CSAs) (Pionke et al., 2000), which emphasize that P losses from 
watersheds originate from areas where high levels of P at the source overlap 
with high potential for P transport. As an example, observations of TP losses 
from agricultural catchments in the Nordic countries have shown that the losses 
are not related to surplus P in soils (Kronvang et al., 2007), but that other 
factors such as mobilization risk, overland flow risk, connectivity to the 
watercourse and hydrological processes have a greater influence on the form 
and intensity of P losses.  

3.1 Estimation of Mobilization Risk 

Mobilization of P attached to particles is called detachment. Erodibility is the 
inherent vulnerability of soils to detachment. The erodibility (K) factor defined 
in the Universal Soil Loss Equation (USLE) is determined by measuring soil 
losses from plots under natural or simulated rainfall. As expressed by Foster et 
al. (1981), erodibility is the rate of soil loss per unit of R or EI (rainfall 
erosivity) for a specific soil, as measured on a unit plot (22.1 m length of 
uniform 9% slope maintained in continuous clean-tilled fallow). This is the 
most accurate method to assess erodibility, but it is also expensive and requires 
large amounts of labour and time. These cost issues have led to the 
development of a nomograph constructed from numerous soil data collected 
across the USA, which provides a solution to an equation based on percentages 
of silt, sand and OM content, soil structure and permeability (Wischmeier et 
al., 1971). Values of the erodibility factor (K), converted to SI units2, range 
from 0.007 to >0.05 h ha ha-1 MJ-1 mm-1. There are other methods available to 
determine erodibility but, as already noted by Harris (1971), a method that 
produces accurate and reproducible measures is still lacking. An alternative to 
the K factor from the USLE/Revised USLE (RUSLE) is soil testing based on 
aggregate stability, as this is probably the soil property most closely related to 
erodibility (Amézketa, 1999). Two types of tests describe aggregate stability, 
those that refer to macro-aggregate stability (e.g. wet sieving) and those that 
refer to micro-aggregate stability (e.g. soil dispersion tests). Some examples of 
these methods are presented in Table 1. 
 

 
 

2  Empirical units (U.S customary units) converted to SI units by multiplying by 0.1317. 

20 

                                                        



Table 1. Examples of methods currently available to estimate sediment mobilization risk 

Type   Name  Comments Reference 

Field  Erodibility index 
(K) 

Mean annual soil loss per unit 
of Ra 

(Wischmeier & 
Mannering, 1969) 

Nomograph based on 
field measurements  Erodibility index 

(K) 

Equation using soil properties 
(texture, OM, stability, 
permeability)  

(Wischmeier et al., 
1971) 

Macro-aggregate/ 
Laboratory  Wet sieving Aggregation (aggregate size 

distribution) (Yoder, 1936) 

Macro-aggregate/ 
Laboratory  Wet single-sieve: 

WSAb  Aggregation (stability) (Kemper & 
Rosenau, 1986) 

Laboratory   Mechanically 
dispersed clay 

Dispersible clay after 
imposing different mechanical 
energy inputs  

(Watts et al., 1996) 

Micro-aggregate/ 
Laboratory  Dispersion ratio 

(%silt+%clay in undispersed 
soil) / (%silt+%clay after 
dispersal) 

(Middleton, 1930) 

Micro-aggregate/ 
Laboratory  Aggregation 

Index (AI) 100 (1 – WDCc/clay)  (Rhoton et al., 
2007) 

Micro-aggregate/ 
Laboratory  Index of Structure 100 (1 – natural clay/total 

clay) (Harris, 1971) 

Micro-aggregate/ 
Laboratory  DESPRAL Soil dispersed calibrated with 

soil loss from lysimeters 
(Withers et al., 
2007) 

Micro-aggregate/ 
Laboratory   

SST  
 

Soil dispersed calibrated with 
soil loss from lysimeters 

(Udeigwe et al., 
2007) 

aR is the rainfall erosivity factor, which considers rainfall amount and intensity; bwater-stable aggregate 
percentage; cWDC is water dispersible clay 

 
In the soil dispersion tests, the dispersed particles in a soil suspension are 
quantified at a specific time and depth calculated according to Stokes’ law3. 
More interestingly, tests such as DESPRAL (Withers et al., 2007) and SST 
(Udeigwe et al., 2007) have been calibrated with results from rainfall 
simulation experiments, in the way that the amount of soil dispersed is 
correlated with the amounts obtained in surface runoff from rainfall lysimeters. 
This means that the soil dispersion test does not provide an absolute result of 
SS losses, but rather a relative value which is useful to rank the vulnerability of 
different soils. In addition, the recovered aliquot is useful for analyzing the 
different P fractions that are mobilized and relating those to the properties of 
the corresponding soil. The two tests are fairly recent and have been used in 
several studies in Europe (DESPRAL) and USA (SST). An overview of the 

3  Mathematical equation expressing the settling velocity of small spherical particles in a fluid 
medium (Encyclopædia Britannica) 

21 

                                                        



two is presented in Table 2. Some of the flaws of soil dispersion tests discussed 
by Bryan (1968) are that they do not consider the possibility that high-velocity 
raindrops disperse previously undispersed material, and that they do not 
accurately reflect the mobilization risk of soils with a high sand content. Under 
Swedish conditions, neither of these is an issue, as rainfall is usually not severe 
and sand particles have less risk of being mobilized.  

Aggregate stability has been compared to field erodibility, proving to be a 
good indicator of soil susceptibility to runoff and erosion. For example, 
Barthès and Roose (2002) found that erodibility estimated in the field from 
Mediterranean soils was correlated with aggregate stability, specifically with 
slaking, usually represented through macro-stability tests. On the other hand, 
Middleton (1930) concluded that more erodible soils were those most 
susceptible to being dispersed. More recent studies comparing macro- and 
micro-stability tests have shown diverging results, some reporting a correlation 
between these tests (Perfect et al., 1990; Pojasok & Kay, 1990) and others not 
(Withers et al., 2007). 

Table 2. Studies using soil dispersion tests to describe sediment mobilization risk 

Test Origin Reference Range of SS  
dispersed  

Range of TP 
dispersed 

DESPRAL EU (Withers et al., 2007) 0.28 - 2.68 g 0.3 - 2.5 mg (approx.) 
 UK (Withers et al., 2009) 0.18 - 1.5 g L-1 0.16 - 3.0 mg L-1  
 Italy (Borda et al., 2010) 0.31 - 2.75 g L-1 0.12 - 3.30 mg 
 Italy (Borda et al., 2011) 0.85 - 1.41 g L-1 1.58 - 2.01 mg L-1 
 UK (Scholefield et al., 2013) Not available 0.10 - 4.4 mg L-1 
 UK (Zhang et al., 2013) Not available Not available 
SST USA (Udeigwe et al., 2007) 50 – 750 NTU 

(approx.) 
Not available 

 USA (Udeigwe & Wang, 
2010) 

Not available Not available 

 
In Sweden, studies reporting soil erodibility and sediment mobilization risk are 
scarce. This lack of soil erodibility data in Sweden has also been pointed out by 
Panagos et al. (2014), who reached this conclusion after an extensive literature 
review on soil erodibility. Some studies performed in Sweden on aggregate 
stability and soil dispersion are listed in Table 3. Many of these refer to the 
readily dispersible clay (RDC) test (Etana et al., 2009), which is based on 
Dexter (1988) and measures the clay fraction that potentially disperses in water 
after a small amount of mechanical energy is applied. This type of test has been 
specially used to study the impact of tillage on particle mobilization  
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Table 3. Examples of studies estimating sediment mobilization risk in Sweden 

Test Type of study Reference 

DESPRALa Soil comparison (Villa et al., 2012) 
Field-scale (Villa et al., 2014) 
Catchment-scale (Villa et al., Paper III ) 
Soil comparison (Villa et al., 2012) SSTa 

Readily dispersible clay  
(RDC)a 

Plots (Etana et al., 2009) 

Plots (Ulén et al., 2012a) 
Long-term fertility fields (Kirchmann et al., 2013) 
Field & lysimeter (Ulén & Etana, 2010) 
Catchment-scale (Ulén et al., 2011) 
Plots (Myrbeck et al., 2012) 

following (Czyz et al., 2002) 
K (RUSLE) Soil comparison (Villa et al., 2012) 

Catchment-scale (Ekologgruppen, 2012) 
Catchment-scale (GIS 
modelling)b 

(Larsson, 2011) 

K (USLE) Catchment-scale (GIS 
modelling)c 

(Sivertun & Prange, 2003) 

Aggregate stability: 
single-sieve 

Long-term fertility fields (Gerzabek et al., 1995) following (Murer 
et al., 1993) 

Dry aggregate stability  Plots (Myrbeck et al., 2012) 
following (Dexter & Kroesbergen, 1985) 

aMeasured as turbidity (NTU units); buse of 6 values of K based on a texture map produced by the Swedish 
Geological Survey; cuse of 5 values of K based on texture classes (clay, silt, sand), organic soils and 
gravels/hard rock. 

(Czyz et al., 2002; Watts et al., 1996) and is a good alternative to field 
erodibility estimations. However, the tests are more difficult to reproduce and 
are more time consuming than simple tests based on dispersion with water after 
shaking (i.e. SST and DESPRAL), which can more easily be used within 
routine  environmental tests and are already well validated.

3.2 Estimation of Transport Risk 

Phosphorus follows a complex journey since it is mobilized until it reaches a 
recipient water body. The complexity increases on moving up the scale, from 
laboratory/plot to field and catchment scales. Losses of P are temporally and 
spatially dependent (Pionke et al., 1996). Different factors affect delivery of 
mobilized P during transport, such as hydrological events, the balance between 
particulate and dissolved fractions, the different pathways taken and the effects 
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of land use and land management on both the transport and fractionation of P 
(Beven et al., 2005). For instance, not all of the PP that is mobilized will 
directly reach a stream, as some of it will be deposited along the way and 
possibly be re-suspended in another, future event (Ballantine et al., 2009). 
Identification of how overland flow is generated is also important in order to 
identify critical transport areas within a catchment. There are two types of 
overland flow based on how they are generated, infiltration-excess flow 
(Hortonian flow) or saturation-excess flow. The former occurs when the rate of 
precipitation exceeds the rate at which water can infiltrate (Horton, 1933). In 
the second case, the soil becomes saturated and any additional precipitation 
causes runoff, irrespectively of its intensity (Dunne & Black, 1970). 
Saturation-excess flow is common in the Nordic countries, especially after 
autumn rain, when the soil usually becomes saturated (Ulén et al., 2012b), and 
in spring, during snowmelt (DeWalle & Rango, 2008).  

Topography is a key factor determining the spatial variation in hydrological 
conditions (Sørensen et al., 2006). There has recently been a considerable 
increase in the use of geographic information system (GIS)-based tools to 
identify transport pathways for nutrient pollution through topological 
representations (Shore et al., 2013; Galzki et al., 2011; Strauss et al., 2007; 
Heathwaite et al., 2005). These kinds of models describe the geospatial 
variation in transport risk in a very direct and intuitive way, and are useful as a 
decision support tool in catchment management. One example is the USPED 
model, which is a 3D improvement of the USLE/RUSLE models. In USPED, 
the Length-Slope (LS) parameter is derived from unit stream-power theory 
(Moore & Burch, 1986) and is a combination of the slope and flow 
accumulation (or upslope area) grids. This new LS parameter benefits from the 
ability to use higher-resolution elevation data compared with the LS factor in 
the USLE/RUSLE equations. One of the main limitations of the USLE/RUSLE 
models is that they only account for net erosion and obviate sediment 
deposition by only considering unidirectional flow (Kinnell, 2004). In contrast, 
the USPED model accounts for flow convergence/divergence. There are also 
concerns regarding the use of USLE outside the USA conditions under which 
the model was calibrated (Kinnell, 2010) and the fact that it might not be useful 
to predict sediment losses at the catchment scale (Boomer et al., 2008). 
Another example of the use of topographical attributes derived from DEM in 
the literature is the Topographical Wetness Index (Beven & Kirkby, 1979), 
which is an indicator of soil moisture variability over a surface and is also 
based on upslope area and slope. There are many variations on this index, 
mainly differing in the calculation methods used to compute upslope area, 
slope and stream cell representation (Sørensen et al., 2006). 
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4 Aim and Objectives 
The overall aim of this thesis was to improve current assessments of P losses 
due to erosion by devising more accurate methods for the identification of soils 
and fields vulnerable to erosion and PP losses. Specific objectives in Papers I-
III were to: 

 
1. Evaluate two soil dispersion tests (DESPRAL and SST) for the estimation 

of sediment and P detachment risk, and study the effect of soil sample 
storage duration on soil dispersion (I). 
 

2. Assess the mobilization of sediment and P from different types of soils 
using a single soil dispersion test (I-III). 
 

3. Establish probable causes of long-term SS and PP losses at field scale 
combining source and transport factors (II). 
  

4. Target and rank two agricultural catchments and critical source areas within 
these catchments which are more vulnerable to SS and PP losses (III). 
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5 Materials and Methods 

5.1 Study Sites 

The majority of the selected sites were located in southern Sweden (below 
latitude 60°), in predominantly agricultural landscapes (Figure 5). Only one 
soil used in the laboratory studies (I) was from a field located in a more 
northerly region. All of the soils form part of different national monitoring 
programmes with the aim of studying losses of nutrients from arable land 
(Ulén et al., 2012c; Kyllmar et al., 2006; Kirchmann, 1991). Due to the 
voluntary participation of farmers in the programmes, the exact location of the 
fields and catchments is not disclosed here. Information regarding crop 
management and fertilization strategies was gathered through yearly interviews 
with farmers from the different areas. In addition, long-term discharge and 
nutrient and SS concentrations at the outlet were recorded. The soils ranged 
from clay to loamy sand, of which clay was the dominant type (approximately 
30% of all samples), followed by silty clay. A summary of selected soil 
properties of samples from all the studies is presented in Table 4.  

The five fields selected in Paper II are part of the national monitoring 
programme ‘Nutrient losses from arable land’ (Ulén et al., 2012c), which 
started in 1972 with the main aim of studying the impact of different 
cultivation and fertilization strategies on nutrient losses under farmers’ normal 
operations. The programme included in the national environmental monitoring 
is commissioned by the SEPA. The fields selected ranged in size from 5 to 28 
ha and had textures varying from silty clay loam to clay. The fields had varied 
topography, from flat (20E) to relatively sloping (1D) or with a deep ravine 
(11M). They were selected from the 12 fields of the programme to study losses 
of SS and PP driven by overland flow. Fields 1D, 11M, 20E and 4O were four 
of the five fields that presented mean annual TP FWC and annual transport 
above the overall mean for all fields. In many of the other fields, SS and PP 
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concentrations were very low, meaning that the main process for losses was 
probably leaching rather than erosion. Long-term TP and PP losses from the 
fields showed no significant trend, although a decreasing trend in DRP was 
found in fields 11M and 4O, where an internal buffer strip was placed (Ulén et 
al., 2012c). This was surprising, given that buffer strips are meant to retain PP 
but have been shown to become a potential source of DRP in the long-term 
(Uusi-Kamppa, 2005; Daniels & Gilliam, 1996). Other studies on these fields 
can be found in the literature (Ulén et al., 2012c; Ulén & Etana, 2010; Ulén et 
al., 2008; Djodjic & Bergström, 2005; Ulén & Snall, 1998), as well as in yearly 
reports from the monitoring programme which are prepared at the Department 
of Soil and Environment (SLU) and published online through the publication 
series Ekohydrologi (Swedish University of Agricultural Sciences, 2013). 

Figure 5. Location of the study sites in Sweden. 
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The two catchments selected in Paper III (E21 and E23) are part of the 
Swedish monitoring programme for agricultural land (Kyllmar et al., 2006). 
Research on the monitoring catchments was started in the 1980s by the SEPA, 
with the aim of determining the relationship between different cultivation 
practices and water quality in runoff. Small monitoring catchments for nutrient 
losses are also used in many other countries such as Ireland (Fealy et al., 
2010), Australia (Government of Western Australia, 2014) and Norway 
(Deelstra et al., 2011). In addition, catchment E23 is one of the three pilot 
catchments used in the Swedish advisory programme ‘Focus on nutrients’ 
which was started in 2001 to reduce emissions of greenhouse gases and 
nutrient leaching and to ensure safe use of plant protection products (Focus on 
Nutrients, 2014). Catchment E21 is part of the national pesticide monitoring 
programme, which comprises four agricultural streams and two rivers 
(Adielsson & Kreuger, 2007). Both catchments are located in the same 
geographical region, only approx. 60 km apart, and both drain to the Baltic 
Sea. These catchments were selected due to their contrasting SS and PP loads 
observed at the outlet in spite of similar mean annual precipitation and similar 
discharge pattern. Long-term TP concentrations from the two catchments were 
below the 25th percentile (E21) and above the 75th percentile (E23) for 23 
Swedish agricultural catchments (Heckrath et al., 2008). Other reported mean 
annual TP FWC from the Nordic and Baltic countries range from 0.12 to 0.93 
mg L-1 in Norway, 0.073 to 0.23 mg L-1 in Denmark, 0.11 to 0.68 mg L-1 in 
Finland and 0.04 to 0.36 mg L-1 in Estonia (Vagstad, 2001). 

More information regarding these monitoring catchments can be found in 
the yearly reports of the monitoring programme (Swedish University of 
Agricultural Sciences, 2013) and in different studies (Ghafoor et al., 2013; 
Ulén et al., 2012d; Ulén et al., 2011; Ulén et al., 2004). 

Table 4. Selected soil properties of samples from the different study areas 

Study No. of samples Clay Silt Sand OM pH P-AL Soil TP 

(%) (mg 100g-1) 

Laboratory 21 18-57 24-65 4-58 2.3-17.6 6.1-7.6 3.5-23 - 
Mean (SD) 40(14) 43(10) 17(17) 4.7(4.6) 6.7(0.4) 8.2(6.4) - 

Fields 44 20-63 33-67 4-41 1.3-4.8 - - 34.7-112.0 
Mean (SD) 42(12) 46(9) 12(8) 2.7(0.8) - - 61.1(19.7) 

Catchments 89 4-77 8-54 2-87 1.8-18 5.6-7.9 1.6-24.5 36.9-148.5 
Mean (SD) 33(20) 27(8) 40(23) 4.0(2.6) 7.0(0.5) 8.1(4.7) 67.1(17.4) 
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5.2 Data Compilation 

Throughout the studies, quantitative data from primary sources (Papers I-III) 
and secondary sources (Papers II-III) were used. Soil dispersion tests were an 
important component of all the studies, but they were complemented with other 
data as the scale of the study increased.  

5.2.1 Soil sampling and analysis 

In all cases, soil samples were collected as composite samples (10 sub-samples 
per 1 m2 approximately) from the top 20 cm. Soil dispersion was estimated 
with the environmental test DESPRAL (I-III), following the procedure 
proposed by Withers et al. (2007) and with the SST test (I), following the 
procedure described by Udeigwe et al. (2007). In addition, the K factor from 
RUSLE (Paper I and in the present thesis essay with combined data from 
Papers II and III) was calculated using the following equations from Renard et 
al. (1997): 

K �𝑡 ℎ 𝑀𝐽 𝑚𝑚� � = 0.0034 + 0.0405 𝑒−0.5 �log𝐷𝑔+1.659
0.7101 �

2

  (1) 

Dg (mm) =  𝑒0.01 ∑𝑓𝑖 ln𝑚𝑖   (2) 

where Dg is the mean geometric diameter of soil particles (mm), fi is the 
primary particle size fraction (%), and mi is the arithmetic mean of the particle 
size limits of that size fraction. 

The alternative formula based on the nomograph proposed by Wischmeier 
et al. (1971), using texture, OM, structure class and permeability, was only 
used in Paper I due to the difficulties in finding information regarding 
permeability. In addition, hydraulic conductivity was considered to be high 
overall in Sweden and, thus was not used as a determining factor in the 
calculations. 

5.2.2 Topography 

The new Swedish digital elevation model (2-m grid) produced using airborne 
Light Detection and Ranging (LiDAR) was used to describe topographical 
attributes of the study sites (Papers II-III). These are of help in describing the 
potential sediment transport by overland flow. 

LiDAR is a remote sensing technology analogous to radar. In airborne 
LiDAR, the distance (range) to an object is measured by the delay time 
between the emitted laser pulse and the detection of the reflected signal. The 
new national digital elevation model (DEM) was produced after a commission 
appointed by the Swedish government to study the effects of climate change on 
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Swedish society recommended an updated and more accurate elevation model 
to complement the previous 50-m grid model in order to better estimate the 
risks of climate change (Lantmäteriet, 2014). The new national grid has a mean 
elevation error of less than 0.5 m for a 2-m grid and is planned to be 
completely finished by 2015, covering all of Sweden. Some of the applications 
of the technology lie in vegetation mapping, flood and pollution modelling, 
urban planning and archaeology. The accuracy of the new model is high and 
details such as small ditches in agricultural fields or trails in the terrain are 
captured. 

The topographical attributes from the DEM (i.e. slope, flow accumulation 
and unit-stream power LS) were calculated for every 2-m grid cell in ArcGis 
9.3. Slope is the maximum change in z-value for each cell and describes the 
overland flow velocity. It can range from 0° to 90°. Flow accumulation or 
upslope contributing area is the drainage area of any cell and indicates the 
overland flow paths. Both slope and flow accumulation parameters were 
calculated with the Spatial Analyst tools in ArcGis. The sediment transport 
index (combination of slope and flow accumulation) or LS, was calculated 
following the formula from Mitasova (2001): 

LS (𝐫) = (𝑚 + 1) �𝐴 (𝐫)
22.13

�
𝑚
�sin𝛽 (𝐫)𝑛

0.0896
�  (3) 

where A (r) is upslope contributing area per unit width, β (r) is the steepest 
slope angle, r = (x, y), and m and n are parameters dependent on the type flow 
and set to 0.6 and 1.3, respectively. 

5.2.3 Water Quality Data 

Long-term water quality data from monitoring fields (II) and catchments (III) 
were extracted for evaluating losses from agricultural land (Swedish University 
of Agricultural Sciences, 2014). Agrohydrological years (i.e. 1 July-30 June) 
were selected, in the case of Paper II from July 2000 to June 2011, and in the 
case of Paper III from July 1994 to June 2010 (catchment E21) and from July 
2002 to June 2010 (catchment E23). Although the monitoring programmes 
started in the 1970s and 1980s, the present study period was selected based on 
the start of the DRP analysis after filtration (membrane filter with 0.2 µm pore 
size), which has been shown to be effective in retaining most colloidal clay 
particles that are important for Swedish conditions (Ulén, 2004). Water 
samples were taken manually every fortnight, or more frequently during high 
flow periods. Throughout 2008-2009, the fields were equipped with data-
loggers that automatically recorded flow. Automatic flow-proportional water 
sampling was also introduced and ran in parallel with manual sampling for two 
years. Flow-proportional sampling in the catchments started in 2004 (E21) and 
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2008 (E23) and ran in parallel with manual sampling for 6 and 4 years, 
respectively. 

A brief evaluation of the parallel measurements in the fields showed that 
higher concentrations and transport were recorded when sampling was 
performed flow-proportionally (Figure 6). Mean TP annual transport increased 
in all fields, from 16% in field 11M up to 45% in field 7E. Increases in SS 
transport measured with flow-proportional sampling were higher in some fields 
(7E, 1D, 4O), whereas no apparent change was seen in other fields (11M and 
20E).  

Figure 6. Transport of total phosphorus (TP) (above) and suspended solids (SS) (below) from the 
five monitoring fields, as measured with flow-proportional sampling and manual sampling for the 
agrohydrological year 2009/2010. 

Comparison of loads and FWC measured with manual or flow-proportional 
sampling gave different results in catchments E21 and E23 (Table 5). In E21, 
annual loads and FWC were higher when measured with manual sampling. The 
opposite pattern was observed in E23 where loads and FWC were overall 
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higher when measured with flow-proportional sampling. Large differences 
were found in SS, which could be expected being an event-responsive 
compound. Other studies have reached similar conclusions. In Norway, one 
study showed lower P and SS loads when sampling was performed once a 
week than when performed more continuously with flow-proportional 
sampling (Haraldsen & Stålnacke, 2006). In Finland, Rekolainen et al. (1991) 
obtained the best results by combining flow-proportional sampling during high 
flow events with regular interval sampling during the rest of the year.  

Table 5. Mean annual transport and mean annual flow-weighted concentrations of the different 
phosphorus (P) fractions, as measured with manual and flow-proportional sampling for the years 
2004-2010 (E21) and 2008-2012 (E23) 

Catchment Sampling type TP DRP PP SS TP DRP SS 
(kg km-2) (mg L-1) 

E21 Manual 14.12 6.90 4.90 3189 0.09 0.04 22.93 
Flow prop. 10.31 4.84 3.25 1506 0.06 0.03 9.69 

E23 Manual 50.77 24.77 20.37 16096 0.27 0.13 84.33 
Flow prop. 55.88 24.35 25.33 23938 0.30 0.13 129.45 

5.2.4 Data Analysis 

In addition to the analysis carried out in each of Papers I-III, an overall analysis 
of the results from soil dispersion test and other erodibility estimations was 
performed within this thesis essay. The results are presented and discussed in 
section 6.1. Data from Papers II and III were combined for this purpose and are 
referred to as ‘combined data’. A classification tree was used to identify the 
conditions in which the soil dispersion test DESPRAL and KRUSLE yielded 
similar results. Each sample was assigned to one of four groups, where group 1 
had low DESPRAL and low KRUSLE, group 2 had low DESPRAL and high 
KRUSLE, group 3 had high DESPRAL and high KRUSLE, and group 4 had high 
DESPRAL and low KRUSLE. The KRUSLE threshold for low/high was set at 
0.026, which is commonly considered to be a moderate value. The DESPRAL 
threshold selected was 1000 NTU (median value from combined data). The 
four groups were classified based on the independent variables clay, silt, sand 
and OM content, and clay and silt/organic C (OC) ratio, which has shown in 
other studies to be an important variable controlling soil physical properties 
(Dexter et al., 2008). The ‘best split option’ was used to classify the groups. 
The analysis was carried out using JMP 10.0 software.  

In addition, to calculations of KRUSLE, the erodibility factor calculated in a 
500 m grid in Europe and based on the LUCAS (Land Use/Cover Area frame 
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Statistical Survey) dataset (Panagos et al., 2014) was extracted in ArcGis for 
every sample in Papers II and III. This database uses the algebraic 
approximation of the nomograph developed by Wischmeier et al. (1971) 
including texture, OM, coarse fragments, structure and permeability to 
calculate erodibility (Renard et al., 1997). 
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6 Results and Discussion 

6.1 Sediment and Phosphorus Mobilization Risk 

6.1.1 Experimental Evaluation of Soil Dispersion Tests (I) 

A comparison between the two methods that estimate soil mobilization risk by 
soil dispersion, DESPRAL and SST, showed that both tests were significantly 
correlated and that the ranking for the 10 test soils was similar. The DESPRAL 
test gave a smaller variation within replicate measurements than the SST test. 
This could be attributed to the higher dilution ratio used in SST, as higher 
dilution rates might introduce experimental errors (So et al., 1997). In addition, 
the SST test uses a much smaller amount of soil which might lead to a worse 
representation of the properties and variations in soils. In summary, both the 
DESPRAL and SST proved to be simple, easy to perform tests but the former 
was less time consuming, in addition to being more precise and reproducible, 
as previously proven (Withers et al., 2007). 

The use of turbidity as a substitute measurement for SS in the aliquot 
recovered from the dispersion test (DESPRAL) was successful in the different 
studies (r2 = 0.85 in Paper I, r2 = 0.82 in paper II; r2 = 0.89 in Paper III, at 
P<0.0001). In the combined data, the prediction accuracy decreased (r2 = 0.67, 
P<0.0001) due to the different slopes obtained in Papers II and III. The use of 
turbidity as an alternative method to estimate SS concentration has been 
proposed, as it is a quicker and cheaper method than conventional 
measurements. The advantages of using turbidity as a surrogate for SS have 
also been seen when measured in the field, where peaks driven by storm events 
can be captured thanks to the possibility of measuring turbidity continuously 
(Grayson et al., 1996). However, several concerns have risen related to the 
potentially confounded relationship between turbidity and SS concentrations 
caused by variations in particle size, particle composition and water colour 
(Gippel, 1995). This might explain the site-specific character of the surrogate 
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relationships, as well as their seasonality (Jones et al., 2011). In the present 
case, i.e. using turbidity as a surrogate in the aliquot from the soil dispersion 
test, the concerns relate to particle size distribution and not flow, as the aliquots 
were obtained under the same conditions.  

The effect of soil storage on soil dispersion was tested with the DESPRAL 
test and proved to be inconsistent. Five of the 11 soil samples showed non-
significant variations after 15 weeks of storage while six samples showed a 
significant decrease after only 8 weeks. The significant difference in variation 
was observed in finer-textured soils, similarly to results reported by Coote et 
al. (1988). There are only few studies in the literature addressing this effect but 
some have reported an increase in stability with increasing storage duration 
(Murer et al., 1993; Kemper & Rosenau, 1986; Kemper & Koch, 1966). Such 
variation has been occasionally been attributed to the residual microbial 
activity which may cause agglomeration in air-dried soil samples (Orchard & 
Cook, 1983), but data regarding the cause are still too scarce to reach a 
definitive conclusion. In all the above studies the recommendation is to 
perform the analysis immediately after air-drying, which was also considered 
in the present thesis work for all subsequent analyses that were performed. 

6.1.2 Evaluation of Sediment and Phosphorus Mobilization Risk (I-III) 

A wide range of soil dispersion values were obtained from all soil samples. 
Turbidity in the recovered aliquot ranged from 177 NTU to 6003 NTU, while 
SS content ranged from 0.09 g L-1 to 2.8 g L-1. This range is in a similar order 
of magnitude as obtained in other studies (Table 2). In the combined data, the 
mean calculated value for KRUSLE (calculated using equations 1 and 2) was 
0.033 t h MJ-1 mm-1 (SD 0.009), which is close to the mean soil erodibility for 
Europe estimated to be 0.032 t h MJ-1 mm (SD 0.009) (Panagos et al., 2014). 
Mean soil erodibility calculated for Sweden in that same study was 0.025 t h 
MJ-1 mm-1. Ranges for low/medium/high soil dispersion must be established if 
this measurement is to be used in management or modelling tools. In the same 
way, we now know that a KRUSLE value of around 0.05 t h MJ-1 mm-1 is 
moderately high or, conversely, that 0.015 t h MJ-1 mm-1 is rather low. The 
results obtained would suggest that values lower than 550 NTU (~25th 
percentile) correspond to very low dispersion risk and, conversely, values 
higher than 1500 NTU (~75th percentile) correspond to a medium to high 
dispersion risk (Figure 7). At the moment, it is difficult to establish appropriate 
ranges for soil dispersion due to the low number of values available (N=133, 
from the combined data), but low and high values are proposed.  
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Figure 7. Distribution and boxplot of soil dispersion (NTU) for the combined data (Papers II and 
III). The lower and upper boundaries of the box indicate the 25th and 75th percentiles, respectively. 
Whiskers (error bars) above and below the box indicate the 90th and 10th percentiles, respectively. 
Inside the box, the dotted line indicates mean value, while the solid line indicates median value. 
Every outlier is represented by a filled dot. 

The erodibility factor, KRUSLE, and the soil dispersion (termed as KDESPRAL 

here) were significantly correlated, although the relationship could not be 
explained through a linear regression model, suggesting different relationships 
at various levels (Figure 8). The two methods were significantly correlated (r = 
0.55, P<0.0001), although a significant correlation could not be found with the 
extracted estimated K factor from the European project (Panagos et al., 2014). 
Results from the partitioning model showed the conditions under which 
different or similar results were obtained from the two methods. It was found 
that low values in both methods were obtained mainly for sandy soils (>57% 
sand). On the other hand, both methods showed high values mainly for samples 
with <57% sand and a silt/OC ratio >23. Finally, different results from the two 
were obtained for several groups of samples (e.g. silt/OC < 23 and clay </> 
65%). The use of the clay/OC and silt/OC ratios as factors influencing the soil 
dispersion response was explored after the conclusions drawn by Dexter et al. 
(2008). They showed that non-complexed clay to OC is more easily dispersed 
in water than complexed, and that for the soils they studied a complex was 
formed between 10 g clay and 1 g OC. In our case, in the combined dataset, a 
significant but weak correlation was found between soil dispersion and 
clay/OC (r = 0.24, P<0.0001), and between soil dispersion and silt/OC (r = 
0.45, P<0.0001). 
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Figure 8. The K factor from RUSLE versus soil dispersion from the DESPRAL test (N=133) 

Soil dispersion (KDESPRAL) and KRUSLE showed a similar ranking order for the 
different textural classes (five classes from the European Soil Database, 
ESDB4). In addition, KDESPRAL showed a wider range of values within each 
group. The highest mean value was obtained from the medium-fine textural 
class, followed by the fine textural class (Figure 9). On the other hand, the 
mean values were lowest in the coarse group. Similar results have been 
observed in other studies (Panagos et al., 2014; Torri et al., 1997), which agree 
with the general assumption that coarse particles are usually too heavy for 
transport, while very fine particles have usually high cohesion strength and are 
not thus prone to soil detachment. Accordingly, medium-fine soils have the 
highest risk of erosion (silt content was >55% in all samples from this group). 
The soil dispersion test showed a wider variation of values for medium and 
fine soils, whereas results from KRUSLE showed a very small range for all soil 
samples within these groups, which might be a problem when differentiating 
finer-textured soils. The erodibility factor under Swedish conditions might 
have a greater sensitivity to total erosion risk than, for example, rainfall 
intensity, as saturation-excess overland flow, which is less dependent on rain 
intensity, usually prevails over infiltration-excess overland flow. The extracted 
K values from the soil erodibility European database also showed that medium-
fine soils had the highest erodibility (Figure 9). However, the coarse group 
showed higher erodibility than expected. Moreover, the extracted estimated  

4 The definition of the five soil textural classes from the ESDB is: Coarse > 65% and clay <18
%; Medium <35% clay and <65% sand; Medium fine clay between 18 and 35% and <15% sand, 
or <18% clay and sand between 15 and 65%; Fine <35% clay <60%; Very fine >60% clay 
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Figure 9. Soil dispersion or KDESPRAL (above) and KRUSLE calculated and extracted from the soil 
erodibility European database (below), for the five soil texture classes established in the European 
Soil Data Base (ESDB). Data from Papers II and III (combined data). The number of observations 
in each group is: coarse (N=10), medium (N=53), medium-fine (N=8), fine (N=44), very fine 
(N=18). The bars represent 95% confidence interval. 

values were very similar across most of the groups, probably due to the greater 
scale used for the estimation (500-m grid), with the uncertainties this entails. 

Correlations of soil dispersion with selected soil properties showed that 
texture and OM were two important properties affecting soil dispersion. Soil P 
content (P-AL or soil TP) only significantly affected soil dispersion in Paper 
III. In Paper I, turbidity (soil dispersion) was positively significantly correlated
with clay content, and negatively correlated to sand and OM content. In Paper 
II, turbidity was positively correlated with silt, and negatively correlated with 
clay and OM. In Paper III, soil dispersion was positively correlated with clay 
silt, pH and soil TP, and negatively correlated to sand and P-AL. The positive 
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correlation between soil dispersion and clay content found in Papers I and III 
might be due to the low number of heavy clay soils included, as it is generally 
assumed that these soils form very stable aggregates. Other studies on soil 
dispersion have found correlations with OM, pH and clay (Withers et al., 2007) 
and with clay content (Udeigwe et al., 2007). Borda et al. (2010) established 
that 66% of the variance in SS is explained by clay, silt and Olsen P (soil test P 
which indicates plant-available P). To fully establish the properties that affect 
soil dispersion, a wider range of soil samples needs to be studied and other soil 
properties that have a demonstrated effect on soil dispersion need to be 
included in the analysis. Amézketa (1999) reviewed the factors controlling soil 
dispersion/flocculation 5 , such as electrolyte concentration (EC), sodium 
adsorption ratio (SAR) and soil pH. Low EC and high SAR (i.e. high 
concentrations of Na+ versus concentration of Mg2+ and Ca2+) 
(Panayiotopoulos et al., 2004) and higher pH values (Suarez et al., 1984) lead 
to higher dispersion of particles.  

Overall, potentially mobilized P was mainly attached to particles (94% of 
all TP mobilized). The amount of DRP was more strongly correlated with P-
AL than was the amount of PP. However, the amount of PP was better 
correlated with soil TP content. The amounts of TP and DRP dispersed in the 
soil dispersion test ranged from 0.17-3.2 and 0.01-0.41 mg L-1, respectively, 
which are similar to ranges obtained in other studies (Table 2). In Paper I, 
linear correlations showed that DRP was significantly and strongly correlated 
with P-AL and more weakly with the stronger extraction (P-HCl), which is 
closer to the soil TP content. In the combined dataset, DRP was only correlated 
with P-AL (r = 0.71, P<0.0001) and PP was only weakly correlated with P-AL 
(r = 0.27, P < 0.05). The relationship of DRP and soil test P has been reported 
previously and has been used to predict DRP losses (Maguire et al., 2005; Sims 
et al., 2000), while the relationship between PP and soil TP indicates that 
extraction with stronger acids recovers less soluble forms of P. 

Phosphorus enrichment ratio (PER) showed a wide variation and was 
negatively related to the amount of clay content and SS dispersed. Phosphorus 
enrichment ratio is the enrichment of eroded particles in P content, calculated 
as the content of P in SS to that in soil (Ryden et al., 1974). It ranged from 0.5-
6.7 (if one extreme value of 10.5 was excluded), with the majority of the values 
being in the range of 1-3. The range is similar to ranges obtained previously in 
field and catchment studies (Sharpley, 1985) and in mobilization studies 
(Borda et al., 2010; Withers et al., 2007). The highest value of 10.5 was 
observed in catchment E21, from a sandy loam soil with very high P-AL 

5 Floculation is the stabilizing mechanism opposite to dispersion. It refers to the agglomeration
of particles in to clusters or clumps of bigger size. 
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content, in combination with very low turbidity and amounts of SS dispersed. 
Phosphorus enrichment ratio exponentially increased with decreasing soil clay 
content, as seen in other studies (Borda et al., 2011; Gburek et al., 2005). The 
threshold was observed around 20-25% clay content, meaning that clay soils 
with lower clay content are more enriched in P than those with a higher clay 
content. Strongly significant correlations were found between PER and 
dispersed SS (r = -0.76, P<0.0001) and more weakly significant correlations 
between PER and P-AL and soil TP content (r = 0.60 and -0.55, respectively, 
P<0.0001). Other studies have reported that runoff and rainfall energy and soil 
P status have a greater effect on PER than soil physical properties (Cooke, 
1988; Sharpley, 1980) and have found significant correlations only with soil 
TP (Withers et al., 2007). While the relationship between PER and the amounts 
of SS dispersed was exponential, as in other studies (Borda et al., 2010), the 
relationship with P-AL seemed less clear (Figure 10). Menzel (1980) found 
that on sandy textured soils, sediment concentration has less effect on PER, 
which might explain why enrichment was higher in catchment E21 (Paper III), 
where P-AL might be driving the variation. The dispersion test provides a 
means to calculate the enrichment of P in eroded material and to analyze the 
different forms of P (e.g. labile P attached to Fe oxides) which is important 
when assessing the environmental impact of eroded soils (Diaz et al., 2013). 

Figure 10. Variation in phosphorus enrichment ratio (PER) with suspended solids dispersed (SS) 
and plant-available P (P-AL) for the 133 samples in the combined data (Papers II and III). 

41 



6.2 Assessment of Field-Scale Sediment and Phosphorus 
Losses (II) 

Sediment and P losses from the five fields were explained by source and 
transport favourable conditions (fields 11M and 1D), source limited conditions 
(fields 20E and 7E) or transport limited conditions (field 4O). The different 
situations are described in the following paragraphs. 

The greatest long-term SS and TP losses observed occurred in fields 11M 
and 1D, which could be explained by a high risk of sediment and P 
mobilization, as established with the soil dispersion test DESPRAL, together 
with favoured transport conditions (high LS factor). These fields could 
therefore be classified as source and transport favourable. The highest soil TP 
content was observed in field 1D and, combined with the high mobilization and 
transport risks, led to similar long-term TP concentrations and loads as in field 
11M, even though long-term SS loads were lower. This emphasizes the 
relevance of P content at the source in situations of high transport risk with 
regard to its potential environmental impact. 

The smallest long-term SS and P losses were observed in field 4O, despite it 
showing the highest SS mobilization risk and medium P mobilization risk. The 
low losses at the outlet could be explained by adverse topography, which limits 
the potential transport of particles through overland flow.  This field is long 
and flat – and thus characterized by a low LS factor – together with the 
presence of perennial fallow grown in the section closest to the outlet, which 
retained particles. This buffer area counteracted the high risk of PP 
mobilization observed with DESPRAL, effectively acting as a filter (Proffitt et 
al., 1991) and retaining coarser particles, thus allowing only finer and enriched 
particles to reach the outlet. This was reflected in the PER, which was higher in 
particles from drainage water than in mobilized particles. Consequently, this 
field was classified as transport-limited, meaning that more material is 
mobilized that can be transported (Morgan, 2005). 

Small SS and TP losses were observed in fields 20E and 7E, resulting from 
their low mobilization risk at the source (source-limited). Despite having 
higher P content at the source, field 20E had no effective overland transport 
pathways, which translated into PP loads similar to the levels found in field 
4O. On the other hand, field 7E showed the highest discharge levels of all the 
observed fields, which translated into medium loads of SS and P, suggesting 
that source limitation can, to a certain degree, be surpassed by high transport 
risk as a predictor of PP losses. The introduction of flow-proportional sampling 
showed a considerable increase in TP loads from this field (Figure 7), 
indicating once more the importance of flow episodes driving P losses. This 
being said, the question of possible losses from fields in which a source 
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limitation is accompanied by very high transport risk should be studied further. 
For instance, recent research on a field outside the monitoring programme 
indicated the possibility that mobilization risk could be surpassed by high 
transport capacity (Djodjic & Villa, unpublished) as a determining factor. The 
results from that study suggested that the control exerted by topography over 
hydrology and overland flow concentration may prove to be more important 
than susceptibility to mobilization. 

The present results show the importance of identifying source and transport-
prone fields for the correct placement of suitable mitigation measures. For 
instance, mitigation measures intended to control P losses at the source could 
be especially effective in fields 11M and 1D. Such measures could consist of 
application of lime products (CaCO3, CaO, Ca(OH)2) or gypsum 
(CaSO4∙2H2O) to improve soil structure. Phosphogypsum application has been 
shown to considerably decrease soil losses from dispersive soils and 
moderately decrease losses from nondispersive soils (Ben-Hur et al., 1992). 
Gypsum application has shown the potential to decrease PP losses from clay 
soils (Jaakkola et al., 2012) by increasing particle aggregation as well as 
decreasing DP losses by favouring P adsorption with the increase on the ionic 
strength. Measures aimed at controlling transport could be useful in fields such 
as 7E, where transport capacity in the form of discharge might be driving 
losses. Of these measures, buffer strips are one of the most common. A buffer 
strip 10 m wide can reduce up to 95% of the total PP load to streams, as well as 
increasing the diversity of flora and fauna (Vought et al., 1995). 

Differences in soil dispersion between fields were statistically significant, 
despite of the variations within fields. Overall, the values in each field were 
spread around the same percentile range and, thus, their classification in terms 
of lower or higher mobilization risk did not change. The variation of soil 
dispersion within fields was greater for the two largest fields, 11M and 7E. 
Given the design of the study, it was difficult to isolate the different factors that 
might be driving variability within fields, such as soil texture, OM content and 
land-use history. In field 11M, the values that stood out from the rest (938 and 
3972 NTU) were obtained at points located along the same slope (approx. 25 m 
apart from each other). Although there were no differences in soil texture, there 
still was a unit difference in OM which has been proven to be enough to 
generate significant decreases in erodibility in other studies (e.g. Fullen, 1998). 
The highest (discordant) value observed in field 7E may be due to that sample 
showing the highest silt (54%) and a low sand content (8%) combined with the 
lowest OM content in the whole field (2.1%). 
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Figure 11. Soil dispersion (KDESPRAL) and KRUSLE in fields from Paper II. 

The use of KRUSLE to estimate erodibility for the fields gave a similar picture in 
terms of higher and lower erodibility, with the exception of field 7E (Figure 
11), which showed low soil dispersion risk whereas the calculated KRUSLE 
value was high. If this is true, it is difficult to explain the rather low long-term 
SS observed at the outlet given such high discharge. Furthermore, given that 
the soil dispersion test DESPRAL is designed to represent the P mobilization 
risk under adverse conditions, it will usually tend to overestimate rather than 
underestimate the risk of detachment. All of this would suggest that KRUSLE 
may not be properly calibrated for Swedish conditions, as pointed out in Paper 
I.  

6.3 Ranking Areas Vulnerable to Sediment and Phosphorus 
Losses (III) 

Comparison of the SS and PP losses in the two catchments suggested that 
factors governing transport of SS and PP exert greater control over losses at the 
catchment scale in spite of lower plant-available P values in soils across the 
catchments, which is in line with findings in other studies (Shore et al., 2014; 
Jordan et al., 2012; Buda et al., 2009). Flow accumulation was similar in both 
catchments but the LS factor was higher in E23. In addition, mobilization risk 
was significantly higher in catchment E23. The co-occurrence of higher LS and 
higher mobilization risk lead to higher SS and P loads in the outlet of E23 than  
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Figure 12. Risk of P losses in the agricultural catchments E21 (left) and E23 (right). Higher risk 
areas are represented by a larger red dots, while low risk areas are represented by small blue dots. 

in that of E21, even though the overall soil P content was lower. A similar 
differentiation to the one between the catchments was observed between the 
two halves of catchment E23, where the north half had higher LS and 
mobilization values, leading to higher P concentrations in water across this 
section. 

Ranking of fields across both catchments translated into a higher proportion 
of fields identified within the top 50% in risk being located in catchment E23 
(Figure 12). Most of the high risk fields in this catchment were located near the 
main stream, with connected transfer pathways to the stream. The ranking was 
established prioritizing transport risk before mobilization and source risks, 
considering the results from the catchment comparison. The results from this 
study support the notion that implementation of mitigation measures should be 
prioritized in the areas showing the highest risk of P losses. The subsequent 
challenge for future research would then be to set the different thresholds for 
high or low risk areas. It is a widely accepted fact that the majority (~80%) of 
P losses originate from a small proportion of the catchment area (~20%) 
(Sharpley et al., 2009). For instance, Tim et al. (1992) identified high risk 
source areas of soil erosion, sediment and P pollution in 15, 16 and 21% of a 
watershed area, respectively. Ghebremichael et al. (2010) found that 80% of 
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TP losses in a 71 km2 basin originated from only 24% of the watershed. 
Busteed et al. (2009) found that 85% of the pollutant load came from only 10% 
of a 2400 km2 basin.   

As an example, buffer strips to mitigate PP losses were located along the 
main stream in E21, where according to the present study there was a low risk 
of PP losses, while almost no buffer strips were located in catchment E23, 
where the highest risks of PP losses were identified. The case of these two 
catchments can thus serve as an illustration of how resources should be 
allocated in a more balanced manner and in consistency with proper 
assessments of the risk of PP losses. Selecting the most vulnerable half of 
the catchments instead of focusing on identifying only the 20% most 
vulnerable areas (i.e. CSAs) within the catchments could be a good 
compromise in terms of effective management of the available resources for 
mitigation. 
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7 Evaluation of the Methods 
The methods used in this thesis were intended to estimate losses of P by 
erosion and therefore only give a partial view of the broader problem of P 
losses in general. Losses of P by other processes such as leaching (e.g. losses 
occurring in sandy soils with low sorption capacity) are not fully represented. 
In such cases, P is mobilized by solubilization rather than by physical 
detachment of soil particles, and plant-available P has greater importance than 
topographical attributes. The methods presented here already use P-AL (plant-
available P) as an indicator of source risk and could therefore be 
complemented with P sorption capacity (e.g. measures of Al-AL and Fe-AL), 
which has been proven to play an important role in estimating losses of P by 
leaching. 

In order to perform the soil dispersion test, as with every other soil test 
performed in a laboratory, the soils were taken away from their natural 
environment and some of their properties may therefore have been subjected to  
slight modification, namely in the form of moisture content or structure 
variation. Thus, the tests will never fully reproduce the natural conditions of 
the soil, but this is largely compensated for by the fact that they are easier to 
perform and reproduce than erodibility measurements in the field. This also 
applies to many aggregate stability tests. Field-scale measurements of 
erodibility require a great amount of resources and time and are not feasible if 
the intention is to perform risk assessments at catchment or regional level.  

All this being said, performing the soil dispersion tests also demands some 
use of resources for soil sampling and analysis. A cost-effective alternative to 
these tests could be the development of pedotransfer functions, for which a 
higher number of samples with a wider range of properties (e.g. pH, OM, EC, 
Al and Fe oxides) would need to be tested. Yet another alternative could be to 
limit soil sampling to previously targeted risk transport areas detected through 
GIS calculations with high-resolution DEM.  
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The possible variation in soil dispersion due to sample storage duration may 
be a logistic constraint when using these tests, as samples would have to be 
analyzed immediately after air-drying. The initial intention of using stored soils 
from different surveys located outside monitoring programmes had to be 
revised in light of the results from Paper I. This makes it difficult to scale up 
the results obtained in the study areas to regional and national level. More 
research on the variation of soil dispersion with sample storage duration would 
need to be performed to fully establish the test as a routine tool in risk 
assessments. Moreover, attention should be given to the variation in soil 
dispersion during different parts of the year. The values of soil dispersion in 
the present work were used as single values, although they might vary 
depending on the time of the year at which they were taken. In the thesis, 
samples were taken at the same time for each of the studies. 

The use of fields and catchments as study units allows the analysis to get 
closer to the impact point. However, this also means that there is an increase in 
uncertainty stemming from moving up in scale, which is added to the greater 
complexity of different processes, sinks and sources interacting in the 
landscape. In addition, results are usually more difficult to reproduce than 
those obtained at smaller scales. This might be especially true for the results in 
Paper II, which were fundamentally descriptive and where confounding factors 
might arise if applied in other fields. For this reason, there is a clear need to 
develop the proposed methodology into a quantitative tool or model that would 
allow validation of the results obtained. A sensitivity analysis of the different 
parameters affecting SS losses would also be useful to verify whether the 
results from the soil dispersion test would substantially improve the model. 

Using a simplified method on a larger scale would obviously not allow all 
the processes and mechanisms driving the observed P losses to be fully 
explained, but it could be a useful way of screening the risks and prioritizing 
implementation of mitigation measures and of meeting the demands for time- 
and cost-effective methods from the regulatory authorities.  

Finally, the classification of risks within the two catchments (Paper III) 
should be interpreted with caution. The results should be viewed as relative 
indications rather than in absolute terms, as they were established comparing 
fields from the two catchments and presented as ranges in percentages. The 
ranking method used would also need to be validated in smaller subcatchments 
where the CSAs are controlled by soil and land management, as well as 
topography. The use of intensive synoptic sampling would be especially useful, 
as the results could not be properly validated due to the small variability across 
the catchments, which was probably related to the low number of episodes 
sampled.   
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8 Conclusions 
In summary, this thesis assessed the risk of erosion and losses of PP for 10 
soils, five fields and two catchments in agricultural areas in Sweden. The 
results could serve as the basis for proposing alternative methodologies to 
identify catchments/fields vulnerable to soil erosion and losses of PP to those 
currently in use. The main conclusions that can be drawn are:  
• Comparison of soil dispersion tests showed that the DESPRAL test was 

more precise and less time-consuming than the SST test. Both tests 
provided an alternative to erodibility measurements and aggregate indexes 
to estimate initial sediment mobilization risk from agricultural soils, 
introducing wider ranges to differentiate soils within textural groups and 
especially within finer-textured soils, which are the most sensitive to 
mobilization.  

• The soil dispersion test DESPRAL provided the means to estimate the 
different P fractions mobilized, as well as the enrichment in P of the eroded 
material (PER). The latter showed a significant negative correlation with 
the amount of sediment dispersed and was positively, although more 
weakly, correlated with the P content in the soil. In addition, the recovered 
aliquot could potentially be used to estimate the environmental impact of 
the eroded material by analyzing the release potential of the eroded P. 

• Soil dispersion varied significantly with soil storage duration for some 
samples, while for others it remained stable over time. A probable cause of 
the variation is soil texture, as finer-textured soils showed most variation. 
More research needs to be done to clarify whether this variation is stable 
across all types of soils. The simplest short-term solution to this problem 
would be to analyze the samples directly after drying. 

• Long-term field-scale losses were explained by a source and transport 
favourable situation in two fields, transport limitation in one field and a 
source limitation situation in two other fields. These types of qualitative 
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assessments are important for risk screening and are useful for proper 
placement of suitable mitigation measures. 

• Losses of PP in the two catchments were driven by the presence of effective
transport pathways, identified with the LS parameter, rather than by P
accumulation in soils, suggesting that soil test P could not be used on its
own to predict PP losses. However, P content in the soil could be expected
to have greater importance in the case of two catchments with similar
transport risk.

• A ranking scheme was proposed for the identification of vulnerable areas
for PP losses from two catchments based on three indicators, of which
transport risk (LS factor) was favoured over mobilization (soil dispersion)
and source (soil test P, P-AL) risks, in that order. The results support the
idea that mitigation measures should be prioritized in detected high risk
areas for PP losses. Identification of the most vulnerable fields in a
catchment would help to prioritize the allocation of mitigation measures, as
no such prioritization is currently being made in Sweden.
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9 Resumen (Summary in Spanish) 
Las pérdidas de fósforo (P) desde tierras agrarias son uno de los principales 
factores que contribuyen al problema de la eutrofización de masas de agua. 
Una parte importante de estas pérdidas se produce debido a procesos de 
erosión en los que el P asociado a sedimentos (P particulado) es transportado a 
través de flujo superficial. Las áreas más vulnerables a dichas pérdidas deben 
ser identificadas adecuadamente a fin de establecer las medidas de mitigación 
correspondientes a nivel de campo y cuenca. El objetivo principal de esta tesis 
es contribuir al desarrollo de metodología para la efectiva identificación de 
suelos y campos vulnerables a pérdidas de P particulado mediante el uso de 
herramientas de fácil implementación destinadas a autoridades competentes y 
agricultores. 

En primer lugar, se realizó un estudio metodológico a nivel de laboratorio 
de dos métodos de análisis de dispersión del suelo (DESPRAL y SST) para la 
estimación del riesgo inicial de movilización de sedimento y P. A continuación 
se estudiaron las pérdidas de P y sedimento en cinco campos pertenecientes al 
programa sueco de monitorización de campos agrarios, con el objetivo de 
estudiar su posible clasificación según los principales factores que determinan 
las pérdidas por erosión. Para ello, se propuso el uso de indicadores 
pertenecientes a las distintas etapas del continuo de transferencia del P: un 
indicador de fuente (contenido de fósforo en el suelo), un indicador del riesgo 
de movilización (vulnerabilidad del suelo a la dispersión) y un indicador del 
riesgo de transporte (el factor topográfico LS, “length-slope”). Este último 
indicador está compuesto por los atributos topográficos ángulo de pendiente y 
acumulación de flujo, los cuales fueron calculados mediante el sistema de 
información geográfica ArcGIS, a partir del modelo digital de elevación de alta 
resolución LiDAR de Suecia. Por último, todas las consideraciones 
metodológicas y herramientas de análisis estudiadas se aplicaron a dos cuencas 
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de monitorización para identificar áreas de riesgo de pérdidas de P (“critical 
source areas”).  

De los dos métodos de análisis de dispersión evaluados, DESPRAL mostró 
una mayor precisión y un menor tiempo de ejecución, resultados que se añaden 
a su ya probada reproducibilidad y válida calibración. Además, en 
comparación con otros métodos, se comprobó que esta herramienta de análisis 
permite obtener rangos de valores de dispersión más amplios para cada clase 
de textura, lo cual facilita la diferenciación de los suelos en base a su riesgo de 
movilización. Esto último es especialmente relevante en el caso de suelos 
arcillosos y limosos, que son generalmente más vulnerables a los procesos de 
erosión. Por su parte, el estudio de los cinco campos de monitorización 
evidenció la importancia de identificar las condiciones en fuente y de 
transporte a la hora de seleccionar medidas de mitigación de pérdidas 
adecuadas, un paso fundamental a la hora de implementar las medidas de 
mitigación apropiadas a nivel de campo. Finalmente, la evaluación de dos 
cuencas de monitorización puso en evidencia que los factores de riesgo de 
transporte y movilización tienen un mayor efecto sobre las pérdidas de P por 
erosión que la acumulación de P en el suelo. En línea con esto, se comprobó 
que las pérdidas de P eran mayores en la cuenca con mayor riesgo de 
generación de flujo superficial a pesar de que el contenido de P en el suelo era 
significativamente menor y, en consecuencia, la identificación de los campos 
más vulnerables dentro de las cuencas se realizó priorizando el riesgo de 
transporte sobre la movilización y, a su vez, de esta sobre el contenido en P de 
los suelos. Esta clasificación de los campos de las dos cuencas dio pie a la 
identificación de un mayor número de campos de alto riesgo en la cuenca con 
mayor número de vías de transporte pronunciadas. 

Esta tesis propone metodología a través de la cual datos fácilmente 
obtenidos puedan ser usados en un análisis de riesgo para la identificación de 
campos y cuencas vulnerables a las pérdidas de P particulado. El conocimiento 
adquirido es un buen punto de partida para mejorar estos análisis, al incorporar 
los medios necesarios para la priorización de las distintas medidas de 
mitigación, algo que actualmente no se lleva a cabo en Suecia. 
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