This is an author produced version of a paper published in Annals of Botany. This paper has been peer-reviewed but may not include the final publisher proof-corrects or pagination.

Citation for the published paper:

Access to the published version may require journal subscription. Published with permission from: Oxford Journals.

This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Annals of Botany following peer review. The definitive publisher-authenticated version is available online at:
http://aob.oxfordjournals.org/content/105/3/471

Epsilon Open Archive http://epsilon.slu.se
Original Article

Phylogenetic analysis of the genus *sorghum* based on the combined sequence data from *cpDNA* regions and the *ITS* generated strongly bootstrap supported trees with two major lineages.

Dickson Ng’uni1,*, Mulatu Geleta1, Moneim Fatih2 and Tomas Bryngelsson1

1Department of Plant Breeding and Biotechnology, Swedish University of Agricultural Sciences, Box 101, SE 230 53 Alnarp, Sweden
2Swedish Biodiversity Centre, Box 91, Pomonavågen 2, SE-230 53 Alnarp, Sweden

*Corresponding author

Email address:

 Dickson Ng’uni: dickson.nguni@gmail.com
 Mulatu Geleta: Mulatu.geleta.dida@ltj.slu.se
 Moneim Fatih: moneim.fatih@cbm.slu.se
 Tomas Bryngelsson: Tomas.Bryngelsson@ltj.slu.se
ABSTRACT

- **Background and Aims** Wild *Sorghum* species provide novel traits for both biotic and abiotic stress resistance and yield for the improvement of cultivated sorghum. A better understanding of the phylogeny in genus *Sorghum* will enhance use of the valuable agronomic traits found in the wild sorghum.

- **Methods** Four regions of chloroplast DNA (cpDNA; *psbZ-trnG*, *trnY-trnD*, *trnY-psbM*, and *trnT-trnL*) and the internal transcribed spacer (ITS) of nuclear ribosomal DNA were used to analyze the phylogeny of sorghum based on maximum parsimony.

- **Key Results** Parsimony analyses of the ITS and cpDNA regions as separate or combined sequence datasets formed strongly bootstrap supported trees with two lineages, the *Eu-sorghum* species, *S. laxiflorum* and *S. macrosparrum* in one and *Stiposorghum* and *Para-sorghum* in the other. Within *Eu-sorghum*, *S. bicolor*-3, 11 and 14 originating from southern Africa form a distinct clade. *S. bicolor*-2, originally from Yemen, is distantly related from other *S. bicolor* accessions.

- **Conclusion** *Eu-sorghum* species are more closely related to *S. macrosparrum* and *S. laxiflorum* than to any other Australian wild *Sorghum* species. *S. macrosparrum* and *S. laxiflorum* are so closely related that it is inappropriate to classify them in separate section. *S. almum* is closely associated with *S. bicolor* suggesting that the latter is its maternal parent considering that cpDNA is maternally inherited in angiosperms. *S. bicolor*-3, 11 and 14, from southern Africa are closely related but distantly related from *S. bicolor*-2.

Key words: Molecular phylogeny, *Sorghum* Moench, *Eu-sorghum*, *Zea mays*, non-coding regions, cpDNA, ITS.
INTRODUCTION

Sorghum Moench is highly heterogeneous which with *Cleistachne* Bentham form Sorghastrae (Garber 1950), one of the sixteen subtribes belonging to tribe Andropogoneae. Species of the genus *Sorghum* have chromosome numbers of 2n=10, 20, 30 or 40 (Garber 1950; Lazarides *et al.* 1991). There are five recognized sections and twenty five species within *Sorghum*. The sections are *Eu-sorghum*, *Chaetosorghum*, *Heterosorghum*, *Para-sorghum* and *Stiposorghum* (Garber 1950; Lazarides *et al.* 1991). *Eu-sorghum* includes cultivated sorghums and their closest wild relatives (De Wet and Hucay 1967). According to De Wet (1978) three species were recognized in section *Eu-sorghum*; including two perennial species *S. halepense* and *S. propinquum* and an annual, *S. bicolor*. However, in the earlier classification by Snowden (1935), *Eu-sorghum* consists of two subsections: *Arundinacea* and *Halepensia*. The subsection *Arundinacea*, commonly found in tropical Africa and India, consists of *S. bicolor* (L.) Moench, *S. arundinaceum* (Desv.) Stapf and *S. drummondii* (Sted.) Millsp. *S. propinquum* (Kunth) Hitchcock, *S. halepense* (L.) Pers and *S. almum* Parodi form subsection *Halepensia*, and found in the Mediterranean region and Southeast Asia.

The wild Australian *Sorghum* species constitute over two thirds of the recognized *Sorghum* species, of which one species each belong to *Chaetosorghum* and *Heterosorghum*. The section *Para-sorghum* comprises seven species. Of these, five are native to the northern monsoonal Australia, Africa and Asia (Garber 1950; Lazarides *et al.* 1991). *Stiposorghum* consists of ten species that are endemic to northern Australia (Garber 1950; Lazarides *et al.* 1991). The wild and weedy *Sorghum* species present a valuable source of agronomic traits such as pest and disease resistance (Kamala *et al.* 2002; Komolong *et al.* 2002; Sharma and Franzmann 2001) for introgression into *S. bicolor*. Exploitation of these valuable traits
requires a thorough understanding of the phylogenetic relationships between cultivated
sorghum and the wild sorghum genepool.

The Chloroplast genome is useful in providing information on the inference of the
evolutionary patterns and processes in plants (Raubeson and Jansen 2005). The genome has,
either solely or combined with other genomes, been widely used for inferring phylogenetic
relationships of different taxa including *Hordeum, Triticum, and Aegilops* -(Gielly and
Taberlet 1994), *Guizotia* (Geleta 2007), Solanaceae (Melotto-Passarin *et al.* 2008) and
Sorghum (Dillon *et al.* 2007). The noncoding chloroplast regions are phylogenetically more
informative than the coding regions at lower taxonomic levels because they are under less
functional constraints and evolves rapidly (Gielly and Taberlet 1994). One of the cpDNA
regions, *trnT-trnL* used in this study was reported to possess enough phylogenetic signals for
studies at lower taxonomic levels (Shaw *et al.* 2005).

The ITS region of the 18S-5.8S-26S nuclear ribosomal DNA (nrDNA) has been commonly
used for phylogenetic inference at the generic and infrageneric level in plants. The ITS loci
properties that include biparental inheritance, universality of primers, intragenomic uniformity
and intergenomic variability merit their utility for purposes of phylogenetic reconstruction
(Baldwin *et al.* 1995). The two regions (ITS1 and ITS2) generally evolve more rapidly than
coding regions and have shown to be equally informative being able to differentiate between
closely related species (Baldwin 1992) and more specifically to resolve phylogenetic
relationships of sorghum and related species (Dillon *et al.* 2001; Guo *et al.* 2006; Sun *et al.*
1994).
This study sought to resolve the phylogenetic relationships between the species within the genus *Sorghum* based on four regions of the cpDNA: *trnY-trnD, psbZ- trnG, trnY-psbM* and *trnT-trnL* and the ITS of nrDNA and also to evaluate the usefulness of the five non-coding regions of cpDNA in resolving relationships among the closely related species within section *Eu-sorghum*.

MATERIALS AND METHODS

Plant material

Details of twenty two *Sorghum* species along with genebank germplasm and Genbank sequence accession numbers used in this study are shown in Table 1. The germplasm accessions included the wild sorghum and some cultivated sorghum obtained from the Australian Tropical Crops Genetic resource Centre, Biloela, Australia. In addition, five accessions of *S. bicolor* and one accession of *S. arundinaceum* were obtained from the Zambian National Plant Genetic Resources Centre (ZNPGRC).

DNA extraction, PCR and sequencing

Each *Sorghum* species was represented by 1-2 accessions, except for *S. bicolor* where eleven accessions were used. Genomic DNA was extracted from fresh leaf tissues of seedlings raised in the greenhouse approximately at two weeks of age using a modified CTAB extraction method (Doyle and Doyle 1987). The quality of the DNA was analysed by agarose gel electrophoresis and DNA concentration was determined using a Nanodrop ® ND-1000 spectrophotometer (Saveen Werner, Sweden).
The primers for amplification and sequencing of the \textit{trnS-trnfM}, \textit{trnY-psbM} and \textit{trnT-trnD} regions were designed for this study while \textit{trnT-trnL} region was amplified and sequenced using the universal primers designed by Taberlet et al., (1991). A primer pair was used for each of the cpDNA regions. However, two primer pairs were designed for the amplification of the \textit{trnY-psbM} region. Universal primers, ITS4 and ITS5 (White \textit{et al.} 1990), were used for the amplification and sequencing of the ITS.

The sequences of the primers and information on specific primers supplied by Eurofins MWG GmbH used in this study are given in Table 2. A GeneAMP PCR system 9700 thermocycler was used for amplification at the following temperature regime: Denaturation at 94°C for 3 min and final 7 min extension at 72°C with intervening 30 cycles of 1 min denaturing at 94°C, 1 min primer annealing temperature at 51°C and 2 min primer extension at 72°C. Successfully amplified samples were purified using the QIAquick PCR purification kit (Qiagen GmbH, Germany) and the microcentrifuge according to the manufacturer’s instructions. Nine microlitres of purified PCR products was mixed with 1 µl of sequencing primers and sent to the sequencing facility in the University of Oslo, Norway (\url{http://www.bio.uio.no/ABI-lab/}), where DNA sequencing was done. The quality of the sequences was evaluated using Sequence Scanner version 1.0 (Applied Biosystems) and only high quality sequences were used for the analysis. All regions were sequenced using both forward and reverse primers. The sequences from the forward and reverse primers were aligned for each sample in order to generate consensus sequence. Since the sequences were of high quality, the forward and reverse sequences are in complete agreement, except in few cases. Such few discrepancies were resolved by repeating PCR and sequencing.
Sequence alignment and data analyses

The quality of the sequences was visually inspected using Sequence Scanner version 1.0 (Applied Biosystems). Multiple sequence alignment was performed using ClustalX version 2.1.10 (Larkin et al. 2007). The sequences were edited using BioEdit version 7.0.9 (Hall 1999) and PAUP* 4.0 Beta 10 was used for phylogenetic analyses. The phylogenetic analyses were approached in three ways. In the first approach, the four non-coding regions of the cpDNA were analyzed separately. In the second approach, a combined analysis included the cpDNA regions and the ITS. In these two approaches gap positions were treated as missing data. In the final approach, a combined analysis of the cpDNA regions and the ITS was undertaken, but to exploit the utility of indel positions, parsimony informative indels were coded as binary characters according to Simmons and Ochoterena (2000). Zea mays L. (Genbank U04796) was used as an outgroup species.

RESULTS

Sequence characteristics of the Sorghum species

The sequence characteristics and parsimony analyses based tree statistics of four non-coding regions of cpDNA and ITS have been summarized in Table 3. The aligned sequences derived from all the cpDNA regions and the ITS revealed some differences in sequence length between the Sorghum species. The longest sequences were obtained from the trnY- psbM spacer ranging from 1028 (S. drummondii) to 1053 (S. extans) to nucleotides. The eight S. bicolor sequences from this spacer exhibited 2-3 nucleotides differences between them. Comparatively, the psbZ-trnG spacer provided the shortest sequences that ranged between 286 (Eu-sorghum species) and 291 (S. intrans) nucleotides. The similarity in sequence length between the Eu-sorghum species could be attributed to the occurrence of five nucleotide
indels within the psbZ-trnG intergenic spacer. Indels of similar magnitude at corresponding positions were also observed in S. laxiflorum and S. macrospernum. Sequence length variations were also observed between Sorghum species in the trnT-trnL spacer, ranging in number of nucleotides from 684 (S. arundinaceum) to 693 (S. leiocladum and S. laxiflorum). Low sequence length differences of 2 nucleotides in the trnT-trnL spacer were observed among the S. bicolor accessions. Significant sequence variations arising from transitions and transversions were observed at eight positions which resulted in the discrimination of S. bicolor-12, S. bicolor-13 and S. bicolor-14 from the rest of the S. bicolor accessions. The sequences derived from trnY-trnD spacer were between 318 (S. amplum, S. angustum) and 329 (S. extans) nucleotides. The sequences obtained from the ITS showed narrow length differences between the Sorghum species in the range of 528-534 nucleotides. Sequence differences between Sorghum species were observed with base substitutions in the ITS1 accounting for most of the variation. The S. bicolor accessions exhibited sequence length differences arising from a single nucleotide indel in ITS1 region.

Parsimony analysis of the ITS sequences

The aligned sequences of the ITS of the nrDNA provided comparatively the highest number of parsimony informative characters (69; 12.8%) of the regions used in this study, which could be attributed to an overall faster rate of base substitutions in the ITS than in the non-coding regions of the chloroplast DNA. The ITS revealed the consistency and retention indices of 0.87 and 0.97 respectively (Table 3). The 50% majority rule consensus of 91 trees is shown in Figure 1. Two lineages A and E were resolved. Lineage A was resolved with strong bootstrap support (100%) that contained the Eu-sorghum species (clade B, 100% bootstrap) and clade C with similar bootstrap support containing S. laxiflorum and S.
Analysis of the non-coding regions of cpDNA sequence data

The cpDNA regions, *psbZ-trnG*, *trnY-psbM*, *trnY-trnD* and *trnT-trnL*, revealed some differences in the number of parsimony informative characters, consistency and retention indices (Table 3). The cpDNA data show less homoplasy than the ITS data (Table 3), resulting in more fully resolved 50% majority rule consensus trees and generally greater bootstrap values for various nodes. Comparatively, the *trnY-psbM* spacer provided the highest number of parsimony informative characters, (32; 3.9%). The *psbZ-trnG* region provided the lowest number and percent parsimony informative characters (8; 2.7%). The *trnT-trnL* and *trnY-trnD* intergenic spacers generated sequences that had 19 (2.7%) and 12 (3.6%) parsimony informative characters, respectively. As measures of accuracy for the topologies obtained, consistency and retention indices were highest (0.94 and 0.98 respectively) for *psbZ-trnG* on comparison of the cpDNA regions used. The *trnY-psbM* spacer had the lowest consistency index (0.69) and retention index (0.93). The other non coding regions of the cpDNA had the consistency and retention indices in between these ranges. The 50% majority rule consensus of 100 trees most parsimonious trees is shown in Figure 2. Lineage A is resolved includes all the *Eu-sorghum* species, clade B with strong support (100%), *S. laxiforum* and *S. macrospermum* (clade C) with an equal bootstrap support. The strongly bootstrap supported (94%) Clade D includes all the *Eu-sorghum* species but excludes *S. arundinaceum*. The
strongly bootstrap supported (96%) internal clade H containing *S. almum* and *S. bicolor* -2 from Yemen excludes *S. drummondii* -2. All wild Sorghum species from Australian except *S. laxiflorum* and *S. macrosporrmum* form the second lineage (lineage J) that has very strong bootstrap support (100%; Figure 2). Clade K with moderate bootstrap support (71%) includes all *Stiposorghum* species and some *Parasorghum* species except *S. leiocladum* and *S. nitidum*. The internal relationships within Clade K are either moderately to strongly supported by bootstrap data (76-95%) or remain unresolved (Figure 2).

Combined analysis of cpDNA and ITS sequence data

The combined cpDNA and ITS sequences generated a total of 3096 characters of which 140 characters (4.5%) were parsimony informative (Table 3). The maximum parsimony (MP) analysis involving the combined data from the cpDNA regions and the ITS sequence data with the gaps either considered as missing values (Figure 3) or when the gaps are scored as presence or absence characters (not shown), produced two main lineages. Lineage A contains all the *Eu-sorghum* species (clade B) that includes all *S. bicolor* and their immediate wild relatives, *S. x almum, S. halepense, S. drummondii* and *S. arundinaceum* with 100% bootstrap support. The other lineage, lineage J, consists of all Australian wild *Sorghum* species except *S. laxiflorum* and *S. macrosporrmum* with high bootstrap support (Figures 3). *S. laxiflorum* and *S. macrosporrmum* not only form the single clade (C), with strong bootstrap support but are also more closely related to the *Eu-sorghum* species with 100% bootstrap support than with other Australian wild *Sorghum* species. Within the *Eu-sorghum* section, clade D excludes *S. arundinaceum* from the rest of the species but a subgroup comprising *S. halepense-1, S. drummondii, S. almum* and four accessions of *S. bicolor-1, 2, 5* and 13 is formed as clade F with 99% bootstrap support (Figure 3). The strongly bootstrap supported (94%) Clade E
consists of three accessions of *S. bicolor*-3, 11 and 14. The *S. bicolor* accessions in this clade originated from southern Africa, one accession from Zimbabwe (*S. bicolor*-3) and other two accessions from Zambia. *S. bicolor*-2, an accession from Yemen seems to be distantly related with *S. bicolor* accessions from southern Africa but forms stronger association (clade H) with *S. almum* with strong bootstrap support (Figure 3).

Stiposorghum and *Para-sorghum* form one clade J with 100% bootstrap support (Clade J; Figure 3). The internal nodes of this particular clade, however, lack strong bootstrap support. Most of the *Para-sorghum* and all the *Stiposorghum* species form clade K with moderate bootstrap support and the two accessions of *S. nitidum* form a single clade (L) with equally moderate bootstrap support (Figure 3). Clade M consists of *S. brachypodum* and *S. exstans* with 95% bootstrap support. *S. intrans* and *S. stipoideum*-1 form clade N whereas *S. amplum* and *S. ecarinatum* form clade O but with a moderate bootstrap support of 78% (Figures 3).

DISCUSSION
Comparative DNA sequencing has become a widespread tool for inferring phylogenetic relationships and systematic studies as it is relatively fast and convenient. Phylogenetic inference and elucidation of the evolutionary processes that generate biological diversity have been accomplished even at lower taxonomic levels using non-coding regions of the chloroplast genome and the internal transcribed spacers of the nuclear ribosomal DNA (Kårehed *et al.* 2008; Mort *et al.* 2007). In this study, all the five cpDNA primers used in this study successfully amplified the target regions in the *Sorghum* species. Mort *et al.*, (2007) assessed the phylogenetic utility of the ITS and nine rapidly evolving cpDNA loci including *trnS-trnfM, -trnD-trnT, psbM-trnD* and *trnT-trnL* involving six taxa sets of 13-23 taxa using
published primer sequences (Shaw et al. 2005). Failure of PCR amplification was reported in
Tolpis (Asteraceae) and *Chrysosplenium* (Saxifragaceae) with the primer pair, *trnD-trnT*.
Attempts to amplify *trnT-trnL* region was not successful in all the taxa used. This implies that
successful amplification using published primers for some cpDNA regions of one taxon may
not have universal application across taxa. In this study, *trnY-psbM* provided the highest
number of parsimony informative characters while *trnT-trnL* and *trnY-trnD* were second and
third respectively. Based on the potentially informative characters generated, *trnT-trnL* and
psbM-trnD were identified as suitable for low taxonomic level phylogenetic studies (Shaw et
al. 2005). Of the cpDNA regions used in this study, *trnY-psbM*, *trnT-trnL* and *trnY-trnD*
intergenic spacers were proven to be useful in the inference of phylogenetics at low
taxonomic level in general and in the genus *Sorghum* in particular.

In the ITS analysis, all the *Stiposorghum* and *Para-sorghum* were resolved into a lineage
separate from the *Eu-sorghum*, *Heterosorghum* and *Chaetosorghum* species with a strong
bootstrap support (92%). Our results are consistent with the findings based on the analysis of
the ITS sequences (Dillon et al. 2001; Sun et al. 1994). However, on the whole the internal
relationships between species within section are unresolved (Figure 1). As implied and going by
its utility in numerous studies, the ITS is a useful marker for resolving phylogenetic relationships at
various taxonomic levels, in particular infrageneric. However, caution need to be taken when
analysing ITS sequence data to avoid problems resulting from concerted evolution on the ribosomal
DNA arrays. Concerted evolution may homogenize different paralogous gene copies in a genome
leading to the loss of all but one of the copies, i.e., different copies may be present in different
organisms by chance and consequently this will create disagreement between the gene trees and
species trees (Alvarez and Wendel 2003). A fundamental requirement for historical inference based
on nucleic acid or protein sequences is that the genes compared are orthologous as opposed to
paralogous. However, there are inherent risks in relying exclusively on rDNA sequences for phylogenetic inferences given the ‘nomadic’ nature of the rDNA loci between inclusion of paralogous genes and exclusion of orthologous comparisons (A'lvarez and Wendel 2003).

The combined analysis of the cpDNA and ribosomal ITS sequence data as the case when only combined cpDNA dataset was used resolved two major lineages (Figure 2 & 3). In one lineage A, the *Eu-sorghum* species form a clade B with 100% bootstrap support. These results indicate a close association between species within the section *Eu-sorghum*. Our results are in agreement with the findings from an assessment of phylogenetic relationships among *Sorghum* taxa based on 30 allozyme loci (Morden *et al.* 1990), which could not show clear delimitation between the *Eu-sorghum* taxa. Weedy form(s) of sorghum and as an example, *S. drummondii* occur wherever cultivated sorghum and *S. arundinaceum* grow sympatrically (De Wet 1978). Sympatric speciation, one of the theoretical models for the phenomenon of speciation, is the genetic divergence of various populations from a single parent species inhabiting the same geographic region, such that these populations become different species. However, our study has shown emergence of two subgroups within *Eu-sorghum* with strong bootstrap support (Figure 2). A strong phylogenetic affinity was obtained between *S. bicolor* - 3, an accession from Zimbabwe and three others *S. bicolor* accessions (11, 12 and 14) from Zambia and *S. halepense* - 1, as shown in clade E. The other subgroup, clade F, contains all other *S. bicolor* accessions (1, 2, 5 and 13; Figure 2). Within this clade, *S. almum* is closely associated with *S. bicolor* - 2, an accession from Yemen. *S. almum* is believed to be a recent fertile hybrid between *S. halepense* and *S. bicolor* (Doggett 1970). As the chloroplast genomes are believed to display maternal inheritance in the majority of angiosperms (Keeling
2004; Mogensen 1996; Udall and Wendel 2006), our phylogenetic results suggest that *S. bicolor* could be the maternal parent of *S. almum*.

S. drummondii, commonly known as Sudan grass, is believed to be a segregate from a natural hybrid between *S. bicolor* and *S. arundinaceum* and said to have originated in the region from southern Egypt to the Sudan (Hacker 1992). The cultivated species, *S. bicolor* is allied to *S. arundinaceum*, which according to Lazarides et al., (1991) is the wild progenitor of *S. bicolor*. This is consistent with our results which place *S. arundinaceum* in close relationship with *S. bicolor* with 100% support (Figures 3).

Various models of the origin of *S. halepense* have been suggested. Generally, the species is believed to have arisen as a segmental allotetraploid derived from the cross of two diploids (n=10) species. Doggett (1970) suggested that *S. halepense* was derived from the rhizomatous perennial, *S. propinquum* and the annual, *S. arundinaceum*. In the allozyme variation study involving *Eu-Sorghum*, *S. halepense* could not be differentiated from *S. bicolor* suggesting that the latter was one of the parental species of *S. halepense* (Morden et al. 1990). Our results (Figures 1 and 2) support the suggestion that *S. bicolor* is one of the parents of *S. halepense*.

Eu-sorghum species are closely related to *S. macrospermum* and *S. laxiflorum* with strong bootstrap support (Figures 3), consistent with the previous reports that were based on combined ITS1/ndhF/adh1 (Dillon et al. 2007) and ITS sequence data (Sun et al. 1994). This study has also revealed a very close relationship between *S. macrospermum* and *S. laxiflorum* with 100% support (Figure 1), which suggests the inappropriateness of classifying these species under different sections. The close association between these two species has already
prompted a suggestion to combine *Chaetosorghum* and *Heterosorghum* into a single section (Dillon et al. 2004; Sun et al. 1994), which is strongly supported by this data. The ancestry of cultivated sorghum has not been well understood. Based on the ease of formation of crosses (Doggett 1970) and chromosome morphological similarities (Gu et al. 1984) within *Eu-sorghum*, it has been assumed that no other sections except *Eu-sorghum* provided the ancestral material for cultivated sorghum (Oosterhout van 1992). However, the close association of *S. macrospermum* and *S. laxiflorum* with section *Eu-sorghum* indicates that there is strong sequence homology among them suggesting that these species are phylogenetically closely related.

The phylogenetic relationships among the Australian wild *Sorghum* species have been elaborately described (Dillon et al. 2001; Dillon et al. 2007; Dillon et al. 2004; Price et al. 2005; Spangler 1997; Spangler 2003; Spangler et al. 1999; Sun et al. 1994). The internal relationships among the Australian wild Sorghums are moderately bootstrap supported. *S. intrans* and *S. stipoideum* (2) belonging to section *Stiposorghum* form a clade N with moderate support (Figure 1). These species have also been reported to be comparable in morphology and distribution (Lazarides et al. 1991).

The analysis of the combined data set involving ITS and cpDNA resulted in a tree that is identical to that inferred from cpDNA alone. Similar results were obtained using the two loci on *Crassula* (Mort et al. 2007). In contrast to a cpDNA-based approach, phylogenetic studies using nuclear DNA sequences have traditionally been hampered difficulties distinguishing between orthologous and paralogous sequences (Small et al. 2004). The practice of obtaining sequence data from two or more loci that can reasonably provide independent tests of phylogeny is proven means of avoiding obtaining well supported but incorrect phylogenies.
that is not tracking organismal phylogeny (Mort et al. 2007). Chloroplast DNA loci, which are
often assumed to be uniparentally inherited and non-recombining, have been extensively used
for systematics and phylogenetics. However, the rate of evolution of the cpDNA genome is
slower than that of the nuclear genome. Correspondingly, the cpDNA regions that have been
used for phylogenetic studies are less variable than the most extensively used nuclear loci,
internal transcribed spacers of nuclear ribosomal DNA (ITS) (Mort et al. 2007; Small et al.
2004). It is often difficult to obtain adequate resolution of any phylogeny of closely related
taxa using few cpDNA loci due to the low number of phylogenetically informative characters
(Rokas et al. 2003). Hence, the practice of acquiring sequence data from several loci is a
proven means of acquiring a better resolved phylogeny (Mort et al. 2007; Rokas and Carroll
2005). In this study, the phylogeny of the genus Sorghum is well resolved when the combined
data from ITS and four cpDNA regions were used.

Conclusion
The cpDNA regions used in this study have shown ability to infer phylogenetic relationships
even at low taxonomic level. The \textit{trn}Y-\textit{psb}M, \textit{trn}T-\textit{trn}L and \textit{trn}Y-\textit{trn}D intergenic spacers
have specifically been identified to be more useful in inferring phylogenetics even at
intraspecies level. The close relationship between \textit{S. macrospernum} and \textit{S. laxiflorum} suggest
the inappropriateness of classifying them under different sections and thus the result strongly
back the proposal for merging of sections \textit{Chaetosorghum} and \textit{Heterosorghum}. The results
also indicated that the \textit{Eu-sorghum} species are more closely related with \textit{S. macrospernum}
and \textit{S. laxiflorum} than with any other Australian wild \textit{Sorghum} species. \textit{S. almum} is more
closely associated with \textit{S. bicolor} than with \textit{S. halepense}, its known parents. As the
chloroplast genome is maternally inherited, the results suggest that \textit{S. bicolor} is the most
probable maternal parent of *S. almum*. The *S. bicolor* accessions (3, 11 and 14) from southern Africa form a distinct and strong bootstrap supported clade. *S. bicolor*-2 originally from Yemen is distantly related to other *S. bicolor* accessions in this study. These results have indications of existence of opportunities for utilization of sorghum gene pools outside the section *Eu-sorghum* for the cultivar development and improvement.

ACKNOWLEDGEMENTS

This work could not have been possible without the valuable support that has been received. We thank the Nordic Genebank (now Nordgen) for the financial support. We are indebted to Dr. Sally Dillon of Australian Tropical Crops and Forage Genetic Resource Centre LMB 1, Biloela QLD 4715 Australia for the provision of sorghum germplasm. We would also like to thank Ms. Ann-Charlotte Strömdahl at SLU, Alnarp for her assistance in the laboratory work.
LITERATURE CITED

Figure legends

Figure 1. The 50% majority rule consensus tree (1000 bootstrap replicates with 100 random additions; MaxTrees = 100) the parsimonious tree generated from a phylogenetic analysis DNA sequence data from the internal transcribed spacers of the nrDNA of twenty one Sorghum species and Zea mays as an outgroup species. The indels are treated as missing data. The letters below the branch denote clade. Bootstrap values greater than 50% are indicated above the branches.

Figure 2. The 50% majority rule consensus tree (1000 bootstrap replicates with 100 random additions; MaxTrees = 100) the parsimonious tree generated from a phylogenetic analysis DNA sequence data from the four cpDNA of twenty one Sorghum species and Zea mays as an outgroup species. The indels were coded as binary characters and included in the analysis. The letters below the branch denote clade. Bootstrap values greater than 50% are indicated above the branches.

Figure 3. The 50% majority rule consensus tree (1000 bootstrap replicates with 100 random additions; MaxTrees = 100) the parsimonious tree generated from a phylogenetic analysis DNA sequence data from the four cpDNA regions and the internal transcribed spacers of the nrDNA of twenty one Sorghum species and Zea mays as an outgroup species. The indels were coded as binary characters and included in the analysis. The letters below the branch denote clade. Bootstrap values greater than 50% are indicated above the branches.
<table>
<thead>
<tr>
<th>Species</th>
<th>Section</th>
<th>Germplasm accession number</th>
<th>DNA sequence accession number</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. alburnum</td>
<td>Eu-Sorghum</td>
<td>AusTRCF302386</td>
<td>GQ121828, GQ121769, GQ121810, GQ121791, GQ121750</td>
</tr>
<tr>
<td>S. amplum-1</td>
<td>Stiposorghum</td>
<td>AusTRCF302455</td>
<td>N/A, N/A, N/A, N/A, N/A</td>
</tr>
<tr>
<td>S. amplum-2</td>
<td>Stiposorghum</td>
<td>AusTRCF302623</td>
<td>GQ121822, GQ121755, GQ121799, GQ121783, GQ121727</td>
</tr>
<tr>
<td>S. angustum-1</td>
<td>Stiposorghum</td>
<td>AusTRCF302588</td>
<td>GQ121824, N/A, GQ121793, GQ121775, GQ121737</td>
</tr>
<tr>
<td>S. angustum-2</td>
<td>Stiposorghum</td>
<td>AusTRCF302606</td>
<td>N/A, GQ121761, N/A, N/A, N/A</td>
</tr>
<tr>
<td>S. arundinaceum</td>
<td>Eu-Sorghum</td>
<td>ZMB 7203<sup>TS</sup></td>
<td>GQ121832, GQ121766, GQ121806, GQ121790, GQ121746</td>
</tr>
<tr>
<td>S. bicolor-1</td>
<td>Eu-Sorghum</td>
<td>AusTRCF304111<sup>FA</sup></td>
<td>N/A, N/A, N/A, N/A, N/A</td>
</tr>
<tr>
<td>S. bicolor-2</td>
<td>Eu-Sorghum</td>
<td>AusTRCF304113<sup>FA</sup></td>
<td>N/A, N/A, N/A, N/A, GQ121748</td>
</tr>
<tr>
<td>S. bulbosum-1</td>
<td>Stiposorghum</td>
<td>AusTRCF302418</td>
<td>N/A, N/A, N/A, N/A, N/A</td>
</tr>
<tr>
<td>S. bulbosum-2</td>
<td>Stiposorghum</td>
<td>AusTRCF302646</td>
<td>GQ121823, GQ121758, GQ121803, GQ121781, GQ121732</td>
</tr>
<tr>
<td>S. drummondii-1</td>
<td>Eu-Sorghum</td>
<td>AusTRCF300269<sup>EC</sup></td>
<td>N/A, N/A, N/A, N/A, N/A</td>
</tr>
<tr>
<td>S. drummondii-2</td>
<td>Eu-Sorghum</td>
<td>AusTRCF300269<sup>KX</sup></td>
<td>GQ121831, GQ121765, GQ121809, GQ121789, GQ121747</td>
</tr>
<tr>
<td>S. ecarinatum-1</td>
<td>Stiposorghum</td>
<td>AusTRCF302450</td>
<td>GQ121821, GQ121754, GQ121800, GQ121784, GQ121730</td>
</tr>
<tr>
<td>S. ecarinatum-2</td>
<td>Stiposorghum</td>
<td>AusTRCF302662</td>
<td>N/A, N/A, N/A, N/A, N/A</td>
</tr>
<tr>
<td>S. extans-1</td>
<td>Stiposorghum</td>
<td>AusTRCF302406</td>
<td>N/A, N/A, N/A, N/A, N/A</td>
</tr>
<tr>
<td>S. extans-2</td>
<td>Stiposorghum</td>
<td>AusTRCF302473</td>
<td>GQ121816, GQ121759, GQ121796, GQ121782, GQ121735</td>
</tr>
<tr>
<td>S. halepense-1</td>
<td>Eu-Sorghum</td>
<td>AusTRCF300167</td>
<td>GQ121830, GQ121768, GQ121808, GQ121788, N/A</td>
</tr>
<tr>
<td>S. halepense-2</td>
<td>Eu-Sorghum</td>
<td>AusTRCF300188</td>
<td>N/A, N/A, N/A, N/A, N/A</td>
</tr>
<tr>
<td>S. interjectum-1</td>
<td>Stiposorghum</td>
<td>AusTRCF302396</td>
<td>GQ121817, GQ121753, GQ121797, GQ121772, GQ121738</td>
</tr>
<tr>
<td>S. interjectum-2</td>
<td>Stiposorghum</td>
<td>AusTRCF302433</td>
<td>N/A, N/A, N/A, N/A, N/A</td>
</tr>
<tr>
<td>S. intrans</td>
<td>Stiposorghum</td>
<td>AusTRCF302390</td>
<td>GQ121825, GQ121752, GQ121795, GQ121780, GQ121733</td>
</tr>
<tr>
<td>S. laxiflorum-1</td>
<td>Heterosorghum</td>
<td>AusTRCF302503</td>
<td>GQ121833, GQ121771, GQ1218011, GQ121786, GQ121741</td>
</tr>
<tr>
<td>S. laxiflorum-2</td>
<td>Heterosorghum</td>
<td>AusTRCF302609</td>
<td>N/A, N/A, N/A, N/A, N/A</td>
</tr>
<tr>
<td>S. leio cladum-1</td>
<td>Para-sorghum</td>
<td>AusTRCF300148</td>
<td>GQ121814, N/A, GQ121805, N/A, N/A</td>
</tr>
<tr>
<td>S. leio cladum-2</td>
<td>Para-sorghum</td>
<td>AusTRCF300170</td>
<td>N/A, GQ121763, N/A, GQ121778, GQ121739</td>
</tr>
<tr>
<td>S. macro spernum</td>
<td>Chaosorghum</td>
<td>AusTRCF302367</td>
<td>GQ121834, GQ121767, GQ121812, GQ121787, GQ121742</td>
</tr>
<tr>
<td>S. maturan kense-1</td>
<td>Para-sorghum</td>
<td>AusTRCF302521</td>
<td>GQ121826, GQ121757, GQ121804, GQ121776, GQ121731</td>
</tr>
<tr>
<td>S. maturan kense-2</td>
<td>Para-sorghum</td>
<td>AusTRCF302636</td>
<td>N/A, N/A, N/A, N/A, N/A</td>
</tr>
<tr>
<td>S. ni tidum-1</td>
<td>Para-sorghum</td>
<td>AusTRCF302539</td>
<td>N/A, N/A, N/A, GQ121785, N/A</td>
</tr>
<tr>
<td>S. ni tidum-2</td>
<td>Para-sorghum</td>
<td>AusTRCF302558</td>
<td>GQ121815, GQ121764, GQ121807, N/A, GQ121740</td>
</tr>
<tr>
<td>S. plumosum-1</td>
<td>Stiposorghum</td>
<td>AusTRCF302399</td>
<td>GQ121819, GQ121762, GQ121798, N/A, N/A</td>
</tr>
<tr>
<td>S. plumosum-2</td>
<td>Stiposorghum</td>
<td>AusTRCF302489</td>
<td>N/A, N/A, N/A, GQ121773, GQ121729</td>
</tr>
<tr>
<td>S. plumosum-3</td>
<td>Stiposorghum</td>
<td>AusTRCF302635</td>
<td>N/A, N/A, N/A, N/A, N/A</td>
</tr>
<tr>
<td>S. stipoides-1</td>
<td>Stiposorghum</td>
<td>AusTRCF302394</td>
<td>GQ121827, GQ121751, GQ121794, GQ121734, GQ121734</td>
</tr>
<tr>
<td>S. stipoides-2</td>
<td>Stiposorghum</td>
<td>AusTRCF302660</td>
<td>N/A, N/A, N/A, GQ121779, N/A</td>
</tr>
<tr>
<td>S. timorens e-1</td>
<td>Para-sorghum</td>
<td>AusTRCF302381</td>
<td>GQ121820, GQ121760, GQ121801, GQ121777, GQ121727</td>
</tr>
<tr>
<td>S. timorens e-2</td>
<td>Para-sorghum</td>
<td>AusTRCF302459</td>
<td>N/A, N/A, N/A, N/A, N/A</td>
</tr>
</tbody>
</table>

The two capitalized letter superscripts at the end of the accession number denote country of origin and donor of that particular accession. A single letter means the country is a donor and origin of the accession. A=Australia; B=Burundi; E=Ethiopia; K=Kenya; T=Tanzania; Y=Yemen, Zm=Zambia and Zw=Zimbabwe.
Table 2. Primers used to amplify and sequence the five non-coding regions of cpDNA and the ITS of nrDNA

<table>
<thead>
<tr>
<th>Region of cpDNA</th>
<th>Primer name</th>
<th>Primer sequence (5'→3')</th>
<th>Source of primer sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>psbZ-trnG</td>
<td>tnSM-fw²</td>
<td>TGC TTC TCC TGA TGG TTG GT</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>tnSM-rv²</td>
<td>GCT CGC TAC ATT GAA CTA CGC</td>
<td></td>
</tr>
<tr>
<td>trnY-psbM</td>
<td>psBD-fw¹</td>
<td>CTG TCA AGG CGG AAG CTG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>psBD-rv²</td>
<td>GGG TCA CAT AGA CAT CCC AAT</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>trYB-fw²</td>
<td>GGT TAA TGG GGA CGG ACT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>trYB-rv²</td>
<td>AGG AAG TTA AGA TGA GGG TGG</td>
<td></td>
</tr>
<tr>
<td>trnY-trnD</td>
<td>trTD-fw²</td>
<td>TGA CGA TAT GTTACC TGC GTT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>trTD-rv¹</td>
<td>AAT CCC TGC GGG GTG Tat</td>
<td></td>
</tr>
<tr>
<td>trnT-trnL</td>
<td>trTL-fw²</td>
<td>CAT TAC AAA TGC GAT GCT CT</td>
<td>(Taberlet et al. 1991)</td>
</tr>
<tr>
<td></td>
<td>trTL-rv²</td>
<td>TCT ACC GAT TTC GCC ATA TC</td>
<td></td>
</tr>
<tr>
<td>ITS</td>
<td>ITS5-fw²</td>
<td>GGA AGT AAA AGT CGT AAC AAG G</td>
<td>(White et al. 1990)</td>
</tr>
<tr>
<td></td>
<td>ITS4-rv²</td>
<td>TCC TCC GCT TAT GGA TAT GC</td>
<td></td>
</tr>
</tbody>
</table>

¹ Primer was used for amplification only
² primer used for both PCR amplification and sequencing

Table 3: Sequence characteristics and tree statistics of the cpDNA and ITS regions from maximum parsimony (MP) analysis

<table>
<thead>
<tr>
<th>cpDNA regions</th>
<th>Combined cpDNA regions</th>
<th>Combined cpDNA regions and ITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>psbZ-trnG</td>
<td>trnY-trnD</td>
</tr>
<tr>
<td>LAS</td>
<td>286-291</td>
<td>318-329</td>
</tr>
<tr>
<td>PICs¹</td>
<td>8(2.7%)</td>
<td>12(3.6%)</td>
</tr>
<tr>
<td>TL</td>
<td>16</td>
<td>48</td>
</tr>
<tr>
<td>CI</td>
<td>0.9375</td>
<td>0.8958</td>
</tr>
<tr>
<td>HI</td>
<td>0.0625</td>
<td>0.1048</td>
</tr>
<tr>
<td>RI</td>
<td>0.9846</td>
<td>0.9734</td>
</tr>
<tr>
<td>RC</td>
<td>0.9231</td>
<td>0.8720</td>
</tr>
</tbody>
</table>

¹ Inclusive of the outgroup.
2 LAS=Length of aligned sequences.
PICs= Parsimony informative characters (number & percent).
TL=Tree length.
CI=Consistency index.
HI=Homoplasy index.
RI=Retention index.
RC=Rescaling consistency index.
Figure 1. The 50% majority rule consensus tree of 96 most parsimonious trees (1000 bootstrap replicates with 100 random additions, MaxTrees = 100) generated from phylogenetic analysis of the ITS sequence data of twenty one Sorghum species and Zea mays as an outgroup species. The indels are treated as missing data. The letters below the branch denote clade. Bootstrap values greater than 50% are indicated above the branches.
Figure 2. The 50% majority rule consensus tree of the 100 most parsimonious trees (1000 bootstrap replicates with 100 random additions, MaxTrees = 100) generated from phylogenetic analysis of sequence data from the four cpDNA regions of twenty one Sorghum species and Zea mays as an outgroup species. The indels are treated as missing data. The letters below the branch denote clade. Bootstrap values greater than 50% are indicated above the branches.
Figure 3: The 50% majority rule consensus tree of parsimonious tree (1000 bootstrap replicates with 100 random additions; MaxTrees = 100) generated from phylogenetic analysis of combined sequence data from the four cpDNA regions and the ITS of the nrDNA of twenty one *Sorghum* species and *Zea mays* as an outgroup species. The indels are treated as missing data. The letters below the branch denote clade. Bootstrap values greater than 50% are indicated above the branches.