Skip to main content
SLU publication database (SLUpub)
Research article - Peer-reviewed, 2012

High Resolution Crystal Structure of the Endo-N-Acetyl-beta-D- Glucosaminidase Responsible for the Deglycosylation of Hypocrea jecorina Cellulases

Stals, Ingeborg; Karkehabadi, Saeid; Kim, Steve; Ward, Michael; Van Landschoot, Anita; Devreese, Bart; Sandgren, Mats

Abstract

Endo-N-acetyl-beta-D-glucosaminidases (ENGases) hydrolyze the glycosidic linkage between the two N-acetylglucosamine units that make up the chitobiose core of N-glycans. The endo-N-acetyl-beta-D-glucosaminidases classified into glycoside hydrolase family 18 are small, bacterial proteins with different substrate specificities. Recently two eukaryotic family 18 deglycosylating enzymes have been identified. Here, the expression, purification and the 1.3 angstrom resolution structure of the ENGase ( Endo T) from the mesophilic fungus Hypocrea jecorina (anamorph Trichoderma reesei) are reported. Although the mature protein is C-terminally processed with removal of a 46 amino acid peptide, the protein has a complete (beta/alpha) 8 TIM-barrel topology. In the active site, the proton donor (E131) and the residue stabilizing the transition state (D129) in the substrate assisted catalysis mechanism are found in almost identical positions as in the bacterial GH18 ENGases: Endo H, Endo F1, Endo F3, and Endo BT. However, the loops defining the substrate-binding cleft vary greatly from the previously known ENGase structures, and the structures also differ in some of the alpha-helices forming the barrel. This could reflect the variation in substrate specificity between the five enzymes. This is the first three-dimensional structure of a eukaryotic endo-N-acetyl-beta-D-glucosaminidase from glycoside hydrolase family 18. A glycosylation analysis of the cellulases secreted by a Hypocrea jecorina Endo T knock-out strain shows the in vivo function of the protein. A homology search and phylogenetic analysis show that the two known enzymes and their homologues form a large but separate cluster in subgroup B of the fungal chitinases. Therefore the future use of a uniform nomenclature is proposed.

Published in

PLoS ONE
2012, Volume: 7, number: 7, pages: 1-13
Publisher: PUBLIC LIBRARY SCIENCE

      SLU Authors

    • Karkehabadi, Saeid

      • Department of Molecular Biology, Swedish University of Agricultural Sciences
      • Sandgren, Mats

        • Department of Molecular Biology, Swedish University of Agricultural Sciences

      UKÄ Subject classification

      Microbiology

      Publication identifier

      DOI: https://doi.org/10.1371/journal.pone.0040854

      Permanent link to this page (URI)

      https://res.slu.se/id/publ/40780