Verticillium longisporum and plant immunity responses in Arabidopsis

Jonas Roos

Faculty of Natural Resources and Agricultural Sciences
Department of Plant Biology
Uppsala

Doctoral Thesis
Swedish University of Agricultural Sciences
Uppsala 2014
Cover: Confocal image of tobacco leaves infiltrated with GFP-tagged NPF5.12 (green) and a plasma membrane mCherry marker (red), and the resulting overlap (yellow) indicating co-localization of the two proteins.

(photo: J. Roos)
Verticillium longisporum and plant immunity responses in Arabidopsis

Abstract
Verticillium spp. are soil-borne ascomycete fungi belonging to a subgroup of Sordariomycetes, and the three major plant pathogens Verticillium longisporum, V. dahliae and V. albo-atrum cause disease on numerous plant species worldwide. In Sweden, V. longisporum poses a threat to Brassica oilseed crops, and is thus emphasized in this thesis. Here the early immune responses to V. longisporum in the model plant Arabidopsis and recent data on the V. longisporum genome are presented.

Three genes of importance in the Arabidopsis–V. longisporum interaction were studied. The genes were identified via transcriptome and single nucleotide polymorphism (SNP) analysis. RabGAP22, a RabGTPase-regulating protein, was found to contribute to V. longisporum resistance. Pull-down assays revealed SERINE,GLYOXYLATE AMINOTRANSFERASE (AGT1) as an interacting partner during V. longisporum infection and the two proteins were shown to co-localize in the peroxisomes. Unexpectedly, a role for RabGAP22 was also found in stomatal immunity. The monoterpene synthase TPS23/27 was on the other hand found to contribute to fungal invasion, by triggering germination of V. longisporum conidia. The third gene codes for a nitrate/peptide transporter, NPF5.12. Pull-down experiments and fluorescent imaging revealed interaction between NPF5.12 and a major latex protein family member, NPFBP1. Implications in plant immunity processes of these three genes are further discussed.

The genomes of two Swedish V. longisporum isolates were sequenced and found to have a size of approximately 70 Mb and harbor ~21,000 protein-coding genes. Initial analyses revealed that 86% of the V. longisporum genomes are shared with V. dahliae and V. albo-atrum, with a high extent of gene duplications. Large numbers of proteins were predicted to contain secretion motifs, and this group of proteins is presumed to play major roles in the interactions with V. longisporum host plants.

In conclusion, this thesis work has revealed new fungal and plant host genes and thereby laid the basis for new plant breeding and disease protection strategies.

Keywords: Arabidopsis thaliana, immunity, pathogen, Rab, terpene, Verticillium longisporum

Author’s address: Jonas Roos, SLU, Department of Plant Biology,
P.O. Box 7080, 750 07 Uppsala, Sweden
E-mail: Jonas.Roos@slu.se
Dedication

To my father, who immensely proud of his son would have read this thesis in its entirety, pretending to himself and the rest of us that he actually understood what it was about. – I would have loved to play along in his performance.

If sub specie aeternitatis there is no reason to believe that anything matters, then that does not matter either, and we can approach our absurd lives with irony instead of heroism or despair.
- Thomas Nagel

True wisdom comes to each of us when we realize how little we understand about life, ourselves, and the world around us.
- Socrates
Contents

List of Publications 7

1 Introduction 9
1.1 Verticillium fungal pathogens 10
1.1.1 Species and plant host range 10
1.1.2 Disease cycle of V. dahliae and V. longisporum 10
1.2 Fungal Genomes 11
1.2.1 Fungal genomes, transcriptomes and proteomes 11
1.2.2 Effector proteins 12
1.3 Brassica crops 13
1.3.1 Cultivation and economic importance 13
1.3.2 Genomes and evolution of plant species in Brassicaceae 13
1.4 The plant root 15
1.4.1 Arabidopsis root structure and vascular tissues 15
1.4.2 Hormones and root development 15
1.5 Plant immunity 17
1.5.1 Phytoalexins and pathogenesis-related proteins 17
1.5.2 Defense signaling 18
1.6 Known immune responses to V. longisporum 19
1.6.1 Xylem events 19
1.6.2 Resistance genes and defense signaling 19
1.6.3 Immunity-associated genes studied in this thesis 21
1.7 Small GTPases 21
1.8 Terpene secondary metabolites 22
1.8.1 Biosynthesis, functional diversity and gene regulation 22
1.8.2 Emission of terpenoids and effects on pathogens 23
1.8.3 1,8-cineole synthase 23
1.9 Transmembrane nitrate and peptide transporters 24
1.9.1 Transmembrane transporters 24
1.9.2 NPF family members 24

2 Aims of the study 25

3 Results and Discussion 27
3.1 TPS23/27 contributes to V. longisporum susceptibility 27
3.1.1 Identification of the monoterpene synthase TPS23/27 (Paper II)27
3.1.2 TPS23/27 promotes V. longisporum invasion (Paper II) 28
3.1.3 Regulation of TPS23/27 by MYC2-dependent JA signaling (Paper II) 28

3.2 Plant detection of pathogens 29
 3.2.1 The transmembrane transporter NPF5.12 (Paper III) 29
 3.2.2 Root-specific functions of RabGAP22 (Paper I) 29
 3.2.3 RabGAP22 and receptor-triggered immunity (Paper I) 30

3.3 Hormone signaling 30
 3.3.1 Brassinosteroids (Paper I) 30
 3.3.2 Jasmonic acid (Paper I) 30
 3.3.3 Abscisic acid (Paper I) 31

3.4 RabGAP22 and stomatal immunity (Paper I) 31

3.5 Summary 32

3.6 Verticillium genomes (Paper IV) 33

3.7 Additional information 34
 3.7.1 Soil contaminations 34
 3.7.2 Disease phenotypes of selected Arabidopsis mutants 35

4 Conclusions 37

5 Future perspectives 39

References 41

Acknowledgements 53
List of Publications

This thesis is based on the work contained in the following papers, referred to by Roman numerals in the text:

Additional publications

Paper I is reproduced with the permission of the publisher.
The contribution of Jonas Roos to the papers included in this thesis was as follows:

I Taken part in the planning of the study, and performed a large part of the experiments. Analyzed and interpreted the data, and co-authored the paper.

II Taken part in planning of the study. Analyzed and interpreted the data, and co-authored the manuscript. Performed most of the experimental work.

III Taken part in planning of the study. Analyzed and interpreted the data, and co-authored the manuscript. Performed a large part of the experimental work.

IV Taken part in planning of the study, preparation and collection of samples for sequencing, interpretation of data. Assisted in writing of the manuscript.
1 Introduction

Soil is a complex matrix, containing anywhere between 5,000 and 50,000 unique species of microorganisms in each gram of soil (Schloss and Handelsmann, 2006; Dance, 2008). For a plant, interaction with these microorganisms can be both beneficial and detrimental, for example fungal arbuscular mycorrhizas supply the plant with nutrients, and plant growth-promoting bacterial species aid in plant defense responses (Pineda et al., 2010; Campos-Soriano et al., 2012; Zamioudis and Pieterze, 2012). In contrast, interactions with soil-borne fungal, oomycete and bacterial pathogens are detrimental for the plant (Loreti et al., 2008; Klosterman et al., 2009; Akino et al., 2014).

In the United States it is estimated that 90% of the 2,000 major diseases on crops are caused by soil-borne pathogens (AgBioResearch, 2011). These soil-borne pathogens complete part of their lifecycle in the soil, where their resting structures persist for months or even years, and are triggered to germinate and infect plant roots whenever a susceptible plant appears. In Europe, major crop damages are caused by soil-borne plant pathogens in the genera Sclerotinia (Clarkson et al., 2012), Phytophthora (Jönsson et al., 2005), Verticillium (Johansson et al., 2006a), Fusarium (Peters et al., 2008), Ralstonia (Loreti et al., 2008), and others. With the ongoing global warming, the impact of these diseases in Europe is predicted to increase. The Nordic countries may become particularly affected, since the prolonged vegetative period will lead to an increased timespan for pathogen survival and multiplication in the soil (Roos et al., 2011). For example, predicted increases of Fusarium wilt (SJV, 2007) could result in higher levels of mycotoxins in grains used for both animal feed and human consumption (Fung and Clark, 2004).

This thesis is on plant immunity responses to V. longisporum, a soil-borne fungal pathogen of major importance for Brassica species grown in Sweden. The emphasis of the work is on genes invoked as part of the plant immunity
response in Arabidopsis. The intention of this summary is to highlight the latest understanding on defense responses and genomic information on plant pathogenic fungi that relates to *V. longisporum*.

1.1 *Verticillium* fungal pathogens

1.1.1 Species and plant host range

Verticillium spp. are ascomycete fungi identified to cause *Verticillium* wilt on a wide number of important crop species, including cotton, tomato, and olive tree (Pegg and Brady, 2002). In Sweden, *Verticillium longisporum* and *V. dahliae* are known to infect several important crop species, such as oilseed rape and sugar beet (Steventon *et al.*, 2002; Johansson *et al.*, 2006a). The related *V. albo-atrum* is also of some importance for strawberry (Nallanchakravarthula, 2013). In contrast to *V. dahliae*, *V. longisporum* has a preference for species within the family *Brassicaceae*, including the important crop species oilseed rape, *Brassica napus* (Johansson *et al.*, 2006a; Eynck *et al.*, 2007; Zhou *et al.*, 2006).

Based on the phenotype of its conidia and DNA sequence analyses, *V. dahliae* var. *longisporum* was recognized as a separate species by Karapapa *et al.* (2001), and later also by Steventon *et al.* (2002). The most recent studies suggest *V. longisporum* is a diploid species that has arisen at least three times, via hybridization between different *V. dahliae* isolates and the so far unidentified ancestor species A1 and D1 (Inderbitzin *et al.*, 2011a). Phylogenetic studies recognize ten different *Verticillium* species, divided into two major clades, Flavexudans and Flavnonexudans (Inderbitzin *et al.*, 2011b; 2013), with *V. longisporum* placed among the Flavnonexudans.

1.1.2 Disease cycle of *V. dahliae* and *V. longisporum*

The disease cycle of *V. dahliae* and *V. longisporum* begins with the germination of specialized resting structures, microsclerotia. These consist of aggregates of melanized hyphae that are highly persistent and capable of surviving several years in the soil (Perry and Evert, 1984; Hawke and Lazarovits, 1995). Via so far unknown mechanisms, microsclerotial germination is triggered by the presence of a suitable host plant. Subsequently, fungal hyphae begin to colonize the root tissues, followed by direct penetration of root epidermal cells and finally entry into the xylem elements (Zhou *et al.*, 2006; Eynck *et al.*, 2007). The xylem is fairly poor of nutrients and to adapt to this, *V. longisporum* may acquire additional nutrients by digestion of cell walls and induction of ion leakage from neighboring cells (Singh *et al.*, 2009; Klosterman *et al.*, 2011; Yadeta and Thomma, 2013). While in the xylem,
fungal toxins and possibly occlusion of xylem tissues by the fungus lead to the characteristic wilting symptoms caused by *V. dahliae* (Hou *et al.*, 2008; Laouane *et al.*, 2011). In contrast, wilting symptoms are not seen on *B. napus* infected with *V. longisporum* (Dunker *et al.*, 2008; Floerl *et al.*, 2008; 2010; Ralhan *et al.*, 2012). For both fungal species however, typical disease symptoms include stunting, chlorosis of infected leaves and premature senescence (Zhou *et al.*, 2006; Eynck *et al.*, 2007). Formation of senescent and dying tissues is associated with the transition from a biotrophic to a saprophytic stage of both fungi. Here, breakdown of tissues by *V. dahliae* necrosis-inducing proteins may be of importance (Zhou *et al.*, 2012; Santhanam *et al.*, 2013). As the nutrient content in the senescing tissues start to decrease, both fungi begin producing microsclerotia. A process known to involve the hydrophobin gene *VDH1*, and *GARP1* in *V. dahliae* (Klimes and Dobinson, 2006; Klimes *et al.*, 2008; Gao *et al.*, 2010). The latter, a gene coding for a glutamic acid-rich protein. The disease cycle is completed when the *V. dahliae* and *V. longisporum* microsclerotia fall to the ground together with the plant debris.

1.2 Fungal Genomes

1.2.1 Fungal genomes, transcriptomes and proteomes

The swift advances in sequencing technology and analysis (Koboldt *et al.*, 2013) provide new resources to assess genes associated with fungal pathogenicity (Van de Wouw and Howlett, 2010). Since the first genome sequence of a fungal plant pathogen, *Magnaporthe oryzae* (Dean *et al.*, 2005), a large number of fungal genomes have become available (Kemen *et al.*, 2011; Ohm *et al.*, 2012; de Wit *et al.*, 2012). Genomic comparisons have shown that numerous events of gene duplications and gene losses have taken place during the evolution and host adaptation of plant pathogens (Kemen *et al.*, 2011; Ohm *et al.*, 2012; de Wit *et al.*, 2012; Stukenbrock, 2013). Comparison of genomes from pathogenic and non-pathogenic fungi is also a direct approach to new information on effector molecules and their evolution (de Jonge *et al.*, 2011; Schmidt and Panstruga, 2011; Giraldo and Valent, 2013). One interesting finding is the predicted horizontal gene transfer from fungi to oomycetes, explaining how the latter became plant pathogens (Richards *et al.*, 2011).

Genome sequences of *V. dahliae* and *V. albo-atrum* isolates are now available, and these genomes vary in size between 30.3 and 35.0 Mb (Klosterman *et al.*, 2011). In a whole-genome survey of the *V. dahliae* and *V. albo-atrum* genomes, ~1–4% of genomic sequences were attributed to repetitive sequences (Amyotte *et al.*, 2012). Among the identified transposable
elements (TE), *Copia*, *Gypsy* and *Tc1/Mariner* were among the most frequent classes. These TEs also appeared to be more common in gene-rich areas of the *V. dahliae* VdLs.17 genome. A more recent genome comparison of eleven *V. dahliae* isolates revealed a large variation in regions enriched for long terminal repeat (LTR) retrotransposons and effector genes (de Jonge *et al.*, 2013). Transposon-mediated rearrangements in these regions may help provide sequence diversity useful for host adaptation in this asexual fungus. Alongside genome sequencing, there is also increasing sets of transcriptome and proteome data for *V. dahliae* (El-Babany *et al.*, 2010; Singh *et al.*, 2012).

1.2.2 Effector proteins

Effector proteins are small proteins secreted by plant pathogens to overcome the host defenses (Hogenhout *et al.*, 2009; Giraldo and Valent, 2013). Typically, these secreted proteins have low sequence homology to other known proteins and their functions are often poorly understood. Among the studied effectors is AvrPtoB from *Pseudomonas syringae* (Abramovitch *et al.*, 2003), which suppress programmed cell death when delivered to the host cell via the specialized type III secretion system. The Avr2 effector from *Cladosporium fulvum*, is in contrast directed at suppressing Arabidopsis extracellular cysteine proteases, leading to increased susceptibility several fungal pathogens (van Esse *et al.*, 2008).

The *V. dahliae* genome contains 780 predicted secreted proteins, the function of which are mostly unknown (Klosterman *et al.*, 2011). Best studied is the *V. dahliae* Ave1 effector interacting with the tomato *Vel* disease resistance gene (de Jonge *et al.*, 2012). The PevD1 effector is another protein secreted from *V. dahliae*, and its N- and C-terminal domain are responsible for triggering of systemic induced resistance (SAR) and hypersensitive response (HR) in tobacco host plants, respectively (Wang *et al.*, 2012b; Liu *et al.*, 2013). LysM effectors are secreted by several pathogens and bind chitin, which is thereby prevented to bind host plant receptors (de Jonge *et al.*, 2010; Kombrink and Thomma, 2013; Sanchez-Vallet *et al.*, 2013). The *V. dahliae* genome contains six LysM effectors, but only one of these is expressed *in planta* and required for *V. dahliae* virulence on tomato (Klosterman *et al.*, 2011; de Jonge *et al.*, 2013). In contrast to LysM effectors, the necrosis- and ethylene-inducing-like protein (NLP) family members in *V. dahliae* have a cytotoxic effect, and two of the seven NLPs have been shown to induce cell death in *N. benthamiana* (Santhanam *et al.*, 2013). Similar to the limited information on effector function, not much is known on their transcriptional regulation. However the *V. dahliae* transcription factor VdSge1 was recently shown to be
required for expression of several putative effector genes (Santhanam and Thomma, 2013).

1.3 **Brassica crops**

1.3.1 Cultivation and economic importance

Oilseed rape (*Brassica napus*) is the third most important source of vegetable oil in the world, after soybean and palm oil (www.oilworld.de). It is also the most important oilseed crop in China, Canada, Europe and Australia. Both spring and winter types of *B. napus* and the closely related *B. rapa* (turnip rape) are grown in Europe, and produce high-quality oil used for food, feed and biodiesel. The total acreage in Europe comprises approximately 6.4 Mha.

In 2012, approximately 110,000 ha of *B. napus* and 3,000 ha of *B. rapa* were harvested in Sweden (www.svenskraps.se). Several *B. oleracea* subspecies, including white cabbage (428 ha), cauliflower (293 ha) and broccoli (255 ha) are also of importance (SJV, 2013). *Brassica* oil crops are presently grown in Sweden due to two major factors, the high market price of vegetable oil and the favorable impact they have on the crop rotation scheme. Incorporating *Brassica* species crop rotation practices lead to inhibitory effects on cereal and potato pathogens, and also lower the need of fertilizers (Kirkegaard *et al*., 1996, www.svenskraps.se).

1.3.2 Genomes and evolution of plant species in *Brassicaceae*

The *Brassicaceae* family is ancient and contains several important model and crop species, including *Amoracia rusticana* (horseradish), *Raphanus sativus* (radish), *Brassica napus* (oilseed rape) and *Arabidopsis*. The genome sequences of several species are available (Table 1), contributing to our understanding of evolutionary events within this plant family (Oh *et al*., 2010; Franzke *et al*., 2011; Kiefer *et al*., 2014).

The *Brassica* genus includes the cultivated diploid species *B. rapa* (turnip rape), *B. nigra* (black mustard), and *B. oleracea* (cabbage), and the allotetraploid species *B. juncea* (Indian mustard), *B. napus* (oilseed rape), and *B. carinata* (Abyssinian mustard). The relationship between these *Brassica* species was described during the 1930s (Figure 1). Following the split of *Arabidopsis* and *Brassica*, approximately 15-20 million years ago (Yang *et al*., 1999), the ancient *Brassica* genome underwent triplication followed by the divergence into *B. rapa* (A genome), *B. nigra* (B genome) and *B. oleracea* (C genome). This hexaploidization event is identified today as shared gene synteny with *Arabidopsis* and triplicated regions in the A, B and C genomes (Cheng *et al*., 2012; Navabi *et al*., 2013).
Table 1. Sequenced diploid plant species within the family Brassicaceae.

<table>
<thead>
<tr>
<th>Species</th>
<th>Genome size (Mb)</th>
<th>Gene models</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arabidopsis thaliana</td>
<td>119</td>
<td>27,416</td>
<td>AGI, 2000</td>
</tr>
<tr>
<td>Arabidopsis lyrata</td>
<td>207</td>
<td>32,670</td>
<td>Hu et al., 2011</td>
</tr>
<tr>
<td>Schrenkiella parvula (Thellungiella parvula)</td>
<td>140</td>
<td>30,419</td>
<td>Dassanayake et al., 2011</td>
</tr>
<tr>
<td>Eutrema salsugineum (Thellungiella salsuginea)</td>
<td>241</td>
<td>26,531</td>
<td>Wu et al., 2012; Yang et al., 2013</td>
</tr>
<tr>
<td>Brassica rapa</td>
<td>285</td>
<td>41,174</td>
<td>Wang et al., 2011</td>
</tr>
<tr>
<td>Capsella rubella</td>
<td>135</td>
<td>26,521</td>
<td>Slotte et al., 2013</td>
</tr>
</tbody>
</table>

Figure 1. The three allotetraploid species Brassica napus, B. carinata, and B. juncea are a result of sexual crosses between the three diploid species B. nigra, B. oleracea, and B. rapa (U, 1935; Mizushima, 1950).

Despite the genome triplication, the B. rapa genome contains approximately twice the number of genes compared to A. thaliana, implying the B. rapa genome is currently undergoing a process of diploidization (Mun et al., 2009). Many of the triplicated genes appear to have been lost due to redundancy, except genes responding to hormones and environmental stimuli, which have been retained (Fang et al., 2012).

The resistance to V. longisporum in B. napus is generally low, and there have been attempts to introduce resistance by interspecific hybridization between cultivars of resistant B. rapa and B. oleracea species (Rygulla et al., 2007). The identification and characterization of microsatellite markers in B. rapa, B. oleracea and B. napus (Shi et al., 2013) and the recent construction of a consensus genetic map of B. napus (Raman et al., 2013) will likely further assist studies of genomic evolution and B. napus breeding efforts (Cai et al., 2012).

Contributing to the understanding of species evolution is the ongoing sequencing and characterization of 1001 genomes of wild Arabidopsis
accessions (Weigel and Mott, 2009; Cao et al., 2011). A comparative study aimed specifically at 180 Swedish accessions revealed a large variation in genome size, ranging from 160 Mb to 180 Mb, which was attributed mainly to variation in the copy number of 45S rDNAs (Long et al., 2013). Additional studies of the methylomes of 152 Arabidopsis accessions revealed the presence of several hundred methylated quantitative trait loci (QTL) (Schmitz et al., 2013). These loci were specifically targeted by RNA-directed DNA methylation and were activated and epigenetically activated in seeds and pollen.

1.4 The plant root

1.4.1 Arabidopsis root structure and vascular tissues

At the center of the Arabidopsis root are the xylem and phloem tissues, specialized for transport of water and organic nutrients respectively (Figures 2 and 3) (Lucas et al., 2013).

Xylem is the main water-conducting tissue, and transports certain hormones and mineral elements including nitrates (Myburg et al., 2013). Living parenchyma and xylem fiber cells provide structural support for the water conducting tracheary elements. These consist of two types of dead cells, tracheids and vessel elements, both with highly lignified secondary cell walls, making them impermeable to water.

The phloem carries sugars, organic nutrients, hormones, and signaling compounds. Active phloem loading and unloading of solutes by companion cells is believed to drive the transport by osmotic pressure (Turgeon and Wolf, 2009; De Schepper et al., 2013), and connected sieve-tube elements facilitate the transport.

1.4.2 Hormones and root development

Much of the understanding on hormones and root development comes from studies on Arabidopsis. The processes involved are highly complex and include numerous signaling pathways, plant hormones and transcription factors. In addition, these processes are influenced by light, water, gravity, nutrients and interactions with soil microorganisms (Garay-Arroyo et al., 2012; Jung and McCouch, 2013). Roles of small signaling peptides and small RNAs in root development are also emerging (Meng et al., 2010; Khan et al., 2011; Delay et al., 2013).

Among the most important plant root hormones are auxins, of which indole-3-acetic acid (IAA) is the most common naturally occurring. Establishment of a root to shoot auxin gradient as well as local auxin maxima by auxin influx
Figure 2. The Arabidopsis root. (A) Overview of root showing the main root, lateral roots, root hairs and xylem. (B) Close-up of root tip, showing the root cap and apical meristem. Further up, the epidermis, cortex, and stele are indicated. (Photo: J. Roos).

Figure 3. Schematic structure of xylem and phloem. (Image by Kelvin Song, licenced under Creative Commons Attribution-ShareAlike 3.0 Unported licence (http://creativecommons.org/licenses/by-sa/3.0/deed.en).
and efflux carriers guide the root cell division and differentiation (Grieneisen et al., 2007; Petersson et al., 2009), including the well-studied function for IAA in the formation of lateral roots from pericycle cells (Dubrovsky et al., 2008; Fukaki and Tasaka, 2009). The presence of a root to shoot auxin gradient, with a maximum in the root tip, is often referred to as polar auxin transport, and is mediated by the influx carriers AUXIN RESISTANCE 1 (AUX1) and LIKE AUX (LAX) proteins, whereas efflux carriers are exemplified by the PIN FORMED (PIN) proteins (Petrásek et al., 2006; Péret et al., 2012).

Auxins are involved in crosstalk with both brassinosteroids (BR) and gibberelins (GA) (Depuydt and Hardtke, 2011; Durbak et al., 2012). For example, auxin and repression of DELLA transcription factors are the two main components that induce GA-promoted root elongation (O’Neill et al., 2010; Reid et al., 2011). Furthermore, auxin-gibberelin interaction has a role in lateral root formation (Farquharson, 2010), a process that is negatively regulated by cytokinin and abscisic acid (ABA) (Fukaki and Tasaka, 2009) and positively regulated by jasmonates (Sun et al., 2009). The negative effect of cytokinins and ABA on lateral root formation seems to be caused by disturbance of PIN-mediated auxin transport, preventing the formation of the auxin gradient required for lateral root primordium growth (Laplaze et al., 2007; Shkolnik-Inbar and Bar-Zvi, 2010). Besides crosstalk with auxin in auxin-mediated root elongation (Yoshimitsu et al., 2011), BRs are involved in root cell division and expansion (Ibañes et al., 2009; Gonzáles-García et al., 2011), as well as crosstalk with GAs (Li and He, 2013).

1.5 Plant immunity

1.5.1 Phytoalexins and pathogenesis-related proteins

Phytoalexins are plant antimicrobial compounds that accumulate in response to pathogen infection (Biggs, 1972; Ahuja et al., 2012). For example in Arabidopsis, the two tryptophan-derived phytoalexins camalexin and indole-3-carboxylic acid accumulate in roots of V. longisporum-infected plants (Iven et al., 2012). Many phytoalexins are terpene-derived and display inhibitory effects on a wide range of fungal and bacterial species (Pitarokili et al., 2003; Yokose et al., 2004; Simić et al., 2004; Zuzarte et al., 2009; Arslan and Dervis, 2010). Other phytoalexins are derived from alkaloids, flavonoids and glycoconjugates (Ahuja et al., 2012), including the rice flavonoid sakuranetin, for which the key biosynthetic enzyme was recently identified (Shimizu et al., 2012).
Similar to phytoalexins, pathogenesis-related (PR) proteins are produced in plants in response to pathogen infection. PR proteins comprise proteinase inhibitors, defensins, thionins and lipid transfer proteins, and are described in a number of excellent reviews (Van Loon et al., 2006; Sels et al., 2008). Well-studied examples include the antifungal plant defensin PDF1.2 (Penninckx et al., 1996), the β-1,3-glucanase PR2 (Antoniw et al., 1980) and the chitinase PR3 (Verburg and Huynh, 1991).

1.5.2 Defense signaling

Compared to vertebrates, plants do not have a circulatory system with mobile immune cells. Instead, it is believed that each plant cell is capable of initiating a defense response (Jones and Dangl, 2006; Spoel and Dong, 2012). Plant defense responses are complex, especially due to the crosstalk between different hormone signaling pathways. Consequently, the current knowledge is based on plant interactions with a few well-studied pathogens, such as the bacterium *Pseudomonas syringae* (Xin and He, 2013).

Plants have evolved two classes of immune receptors to detect molecules from foreign organisms. The first consists of membrane-localized pattern recognition receptors (PRRs) that detect microbe-associated molecular patterns (MAMPs), leading to MAMP-triggered immunity (MTI) (Nürnberger and Brunner, 2002; Parker, 2003; Beck et al., 2012). PRRs recognize evolutionarily conserved and essential structures of the pathogen, such as chitin from fungal cell walls (Kaku et al., 2006), lipopolysaccharides (LPS) from gram-negative bacteria (Zeidler et al., 2004), short peptides derived from bacterial flagellin (Gómez-Gómez and Boller, 2000) or the elongation factor EF-Tu (Zipfel et al., 2006). Binding of MAMPs to their respective PRRs activates downstream defense signaling, ultimately leading to responses including the production of antimicrobial compounds, production of reactive oxygen species (ROS), and deposition of callose to strengthen the cell wall (Jones and Dangl, 2006; Koeck et al., 2011).

Cytosolic and trans-membrane plant resistance (R) proteins define the second class of immune receptors and have the capacity to detect isolate-specific pathogen effectors, encoded for by avirulence (*Avr*) genes. Typically, these *Avr* effectors are secreted by the pathogen to evade the MAMP-triggered immunity response, and therefore bind to either the PRRs or their interactors. The *Pseudomonas syringae* effector AvrPto inhibits immunity by directly binding to the MAMP receptor FLS2 (Xiang et al., 2008). Other examples include the tomato I-2 protein recognizing the Avr2 effector from *F. oxysporum* (Houterman et al., 2009). Cytosolic R proteins typically consist of a variable N-terminal domain, a nucleotide-binding (NB) domain and an N-
terminal leucine-rich repeat (LRR) domain (Meyers et al., 2003; Maekawa et al., 2011; Bonardi et al., 2012). The N-terminal domains are often of the coiled-coil (CC) or Toll/interleukin-1 (TIR) classes, and mediate protein-protein interactions and effector binding. The central NB domain forms an ATP-binding pocket, and is required for R protein activation. Finally, the LRR domains function mainly in recognition and binding to pathogen effectors. This recognition leads to what is referred to as effector-triggered immunity (ETI). ETI is typically more specific than MAMP-triggered immunity and often leads to a localized cell-death, described first as HR by Stakman (1915), particularly effective against biotrophic pathogens (reviewed by Zurbriggen et al., 2010).

1.6 Known immune responses to *V. longisporum*

1.6.1 Xylem events

Infected *B. napus* plants secrete several antifungal compounds into the xylem, and consequently xylem sap extracted from infected plants at 21 dpi inhibits the growth of *V. longisporum* (Floerl et al., 2008). Proteins up-regulated in the xylem sap include endochitinases and β-1,3-glucanases, indicating that the xylem defense response may include direct degradation of the fungal cell wall.

Strengthening of the xylem by increased synthesis and deposition of lignin is a well-known response to *Verticillium* infection and may contribute to increased resistance by preventing the spread of the pathogen (Eynck et al., 2009; Gayoso et al., 2010; Shi et al., 2012). *V. longisporum* invasion also triggers expression of the transcription factor *VASCULAR-RELATED NAC DOMAIN 7* (*VND7*) in Arabidopsis, leading to de novo synthesis of xylem elements (Reusche et al., 2012). Newly formed xylem elements can be seen at 21 dpi, and presumably compensate for reduced water transport due to vascular obstruction by the fungus.

1.6.2 Resistance genes and defense signaling

To date, no specific resistance genes towards *V. longisporum* are identified. In contrast, the *V. dahliae*-tolerance (*VET1*) and *Ve* loci contribute to *V. dahliae* resistance in Arabidopsis and tomato respectively (Kawchuk et al., 2001; Veronese et al., 2003). The *Ve* locus in tomato contains two closely linked genes, *Ve1* and *Ve2*, coding for LRR-containing receptor-like proteins (Kawchuk et al., 2001). *Ve1* recognizes the Ave1 effector from *V. dahliae*, as well as the Ave1 homologs from *F. oxysporum* and *Cercospora beticola* (de Jonge et al., 2012). When expressed in Arabidopsis, *Ve1* confers resistance to *V. dahliae*, but not to *V. longisporum* (Fradin et al., 2011). The *Ve1*-mediated resistance is fairly well characterized and includes increases in H$_2$O$_2$, ...
peroxidases and lignins (Gayoso et al., 2010), and requires the defense signaling components BRI1-ASSOCIATED RECEPTOR KINASE (BAK1), ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) and NON RACE-SPECIFIC DISEASE RESISTANCE 1 (NDR1) (Fradin et al., 2009; 2011). The Ve1-mediated response is further accompanied by HR in tobacco and tomato but not in Arabidopsis (Zhang et al., 2013). A Ve1-like gene is also identified to confer resistance to V. dahliae in cotton (Zhang et al., 2011; 2012).

The plant hormones salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) are in general crucial components in plant defense signaling (Glazebrook, 2005; Verhage et al., 2010). The specific contribution of these hormones to disease is complex, not least due to the extensive crosstalk between them. V. longisporum is no exception to this, and results on the contribution of SA, JA and ET to immunity responses are often contradictory, which may in part be attributed to differences in infection procedures and experimental setup.

In a study of responses to V. longisporum in Arabidopsis, hormone pretreatments and infection studies revealed a general dependency on ET, whereas JA and SA appeared to be of lesser importance (Johansson et al., 2006b). More recent studies have supported a general independency of JA signaling, but some genes including NDR1, JASMONATE RESISTANT 1 (JAR1) and NON-EXPRESSER OF PR GENES 1 (NPR1) still appear important for resistance signaling (Pantelides et al., 2010, Fradin et al., 2011).

The active signaling component of JA, JA-Ile, is detected by the receptor CORONATINE INSENSITIVE (COI1) (Xie et al., 1998; Chini et al., 2009). However COI1 does not appear to have a role in JA signaling in the V. longisporum-specific defense, since coi1-16 plants do not show increased susceptibility (Johansson et al., 2006b; Fradin et al., 2011). Rather, COI1 has a JA-independent root-to-shoot signaling function, and is required for completion of the V. longisporum disease cycle and microsclerotial development (Ralhan et al., 2012).

No difference in the SA content in V. longisporum inoculated Arabidopsis roots is found during the first few days of infection (Iven et al., 2012), however from 7 dpi and onwards a significant increase is found for the SA marker genes PATHOGENESIS-RELATED 1 and 2 (PRI and PR2) (Johansson et al., 2006b; Pantelides et al., 2010). Involvement of SA in the later stages of infection is also supported by an increased SA content in the xylem of V. longisporum-challenged B. napus from 14 dpi and onwards (Ratzinger et al., 2009).

A contribution of ET to V. longisporum susceptibility is rather well established in Arabidopsis, as etr1-1 and ein3-1 mutants display enhanced resistance, associated with a decrease in fungal vascular colonization (Johansson et al., 2006b; Fradin et al., 2011; Pantelides et al., 2010).
RNA silencing is the mechanism by which the expression of RNA molecules is down-regulated or suppressed by small 21–26 nt RNAs (Baulcombe, 2004; Eamens et al., 2008). The process is well-studied in plant development and defense to viruses (Pumplin and Voinett, 2013; Schuck et al., 2013; Vargason et al., 2013). RNA silencing is also suggested as important for V. longisporum resistance in Arabidopsis, where mutation of conserved components in the RNA silencing machinery leads to increased disease development (Ellendorf et al., 2009). Small non-coding RNAs are also identified in cotton roots inoculated with V. longisporum, where resistant and susceptible cultivars activate transcription of separate RNA pools with peaks at 21 nt and 24 nt respectively (Yin et al., 2012).

1.6.3 Immunity-associated genes studied in this thesis

In this thesis, the role of three different genes in the Arabidopsis-V. longisporum interaction is studied: Rab GTPase ACTIVATING PROTEIN 22 (RabGAP22), 1,8-CINEOLE SYNTASE (TPS23/27) and NITRATE PEPTIDE TRANSPORTER 5.12 (NPF5.12). Provided below is an overview of these gene families.

1.7 Small GTPases

Small GTP-binding proteins (20–40 kD) are ubiquitous in eukaryotic organisms and are divided into five families, Ras, Rho, Rab, Arf/Sar and Ran, based on their protein structures (Jiang and Ramachandran, 2006). These proteins cycle between an active GTP-bound and an inactive GDP-bound state, a process which is conserved among eukaryotic cells (Cherfils and Zeghouf, 2013). The inherent hydrolysis of GTP to GDP by the individual GTPase is slow, but is increased by several orders of magnitude by GTPase activating proteins (GAPs) (Barr and Lambright, 2010). The reverse process, dissociation of GDP and subsequent binding of GTP, is facilitated by guanine exchange factors (GEFs) (Figure 4). Addition of geranylgeranyl groups to C-terminal cysteines in Rab, Rho and Ras GTPases forms a lipid anchor that mediates their association to membranes. Guanine dissociation inhibitors (GDIs) regulate cytosol/membrane localization of small GTPases, by binding to the prenylated domain, thereby preventing membrane association (Cherfils and Zeghouf, 2013).

Ninety-three GTP-binding protein gene homologs are identified in the Arabidopsis genome, including Rab, Rho, Arf and Ran GTPases (Vernoud et al., 2003; Kowalczyk et al., 2011). The Rab GTPases constitute the largest family with 57 members, divided into eight subfamilies. Rab GTPases take part
in mechanisms underlying intracellular membrane trafficking such as vesicle budding, vesicle delivery, vesicle tethering, and vesicle fusion with the target compartment (Campanoni and Blatt, 2007). Rab proteins are also involved in other processes including hormone signaling and stress responses (Moshkov et al., 2003; Qi et al., 2005; Nielsen et al., 2008). GAPs are regulated in different ways, including interactions with other proteins and phospholipids, as well as phosphorylation and proteolysis of the GAPs (Bernards and Settleman, 2004).

Figure 4 The RabGTPase cycle. GEF: Guanine Exchange Factor, GAP: GTPase-Activating Protein; GDI: Guanine Dissociation Inhibitor, Pi: inorganic phosphate.

1.8 Terpenes

1.8.1 Biosynthesis, functional diversity and gene regulation

Volatile secondary metabolites emitted from the plant are referred to as essential oils. They are typically a mixture of terpenes, alkaloids, phenols, alcohols, aldehydes and ketones, with terpenes often being a major constituent (Hyldgaard et al., 2012). Some of the volatile secondary metabolites attract pollinating insects (Wright et al., 2005; Unsicker et al., 2009), whereas others assist in protecting the plant from herbivores (Heil and Ton, 2009; Unsicker et al., 2009; Santos et al., 2009; Köllner et al., 2013) or bacterial and fungal infections (Tabanca et al., 2006; Gachkar et al., 2007; Joy et al., 2007; Terzi et al., 2007; Yi et al., 2009; Zuzarte et al., 2009).

Terpenes are synthesized from five-carbon isoprene units (C5), resulting in monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), sesterterpenes (C25), triterpenes (C30) and carotenoids (C40). When modified by e.g. oxygenation or addition of methyl groups, they are often referred to as terpenoids. The number of plant terpene synthases is large, and many of them are multi-product enzymes (Degenhardt et al., 2009). In Arabidopsis, 32 functional terpene synthases are recognized (Aubourg et al., 2002) and about a third of these are functionally characterized (Chen et al., 2011). Current data
suggest that mono- and diterpenes are synthesized mainly in plastids, whereas sesquiterpenes are synthesized in the cytosol. Natural variation in this subcellular localization of terpene synthases also contributes to differences in terpene emission between Arabidopsis accessions (Huang et al., 2010).

1.8.2 Emission of terpenoids and effects on pathogens

Essential oils containing terpenes are shown to inhibit several pathogens, including *V. dahliae* (Arslan and Dervis, 2010). The specific inhibitory mechanism of terpenoids on bacterial and fungal pathogens vary. Disruption of cellular and organellar membranes is the most common, and other mechanisms include cell wall degradation and damage to membrane proteins (reviewed in Nazzaro et al., 2013). For example, the fungicidal effect of carvacrol and thymol on *Candida albicans* is suggested to be due to disruption of the plasma membrane, and inhibition of the biosynthesis of ergosterol, an essential component of the fungal cell membrane (Ahmad et al., 2011). Carvacrol and thymol thus function in a way similar to fluconazole (Diflucan®), a fungistatic human drug for treatment of fungal infections, to which there are signs of increasing resistance (Pfaller et al., 2010; Arendrup, 2014).

Emission of terpenoid secondary metabolites is an area of ongoing research and there is currently evidence for direct transport by ATP-binding cassette transporters (Yazaki et al., 2006; Crouzet et al., 2013). Similar mechanisms are used by fungal pathogens to overcome the effect of host terpenoids. For example, the fungus *Grosmannia clavigera* has an ABC-transporter GcABC-G1 capable of direct secretion of terpenes emitted by the pine host (Wang et al., 2012a). Consequently, deletion of this gene in the fungus makes it more susceptible to monoterpenes.

1.8.3 1,8-cineole synthase

Crystal structures are available for a few plant monoterpene synthases (Whittington et al., 2002; Hyatt et al., 2007), including the 1,8-cineole synthase from Greek sage (*Salvia fruticosa*) (Kampranis et al., 2007). 1,8-cineole synthase shows the typical α-helical terpene synthase fold, and conversion of a few amino acids at the catalytic site is enough to change the product specificity. The C-terminal domain contains the catalytic site whereas the N-terminal domain is suggested to have a “capping” function. The products formed by 1,8-cineole synthases are identified in several plant species, including Red Ironbark (*Eucalyptus sideroxylon*) and Arabidopsis (Chen et al., 2004; Keszei et al., 2010). In all species the main product formed is 1,8-cineole.
1.9 Transmembrane nitrate and peptide transporters

1.9.1 Transmembrane transporters

Transmembrane peptide transporters in plants are found in three different protein families. The oligopeptide transporter (OPT) family has 17 members in Arabidopsis, transporting tetra- and pentapeptides, as well as glutathione (Lubkowitz, 2011). A few members in the large ATP-binding cassette (ABC) family of transporters are capable of transporting peptides (Rea, 2007; Kang et al., 2011). The third family is the proton-dependent oligopeptide transporter (POT) family, recently renamed Nitrate Peptide transporter Family (NPF) (Léran et al., 2013). NPF members have been shown to transport nitrate, di- and tri-peptides, glucosinolate and ABA (Komarova et al., 2008; Lin et al., 2008; Kanno et al., 2012; Nour-Eldin et al., 2012). Phylogenetically, the 53 members in the NRT/PTR family are divided into four clades with no apparent substrate specificity (Tsay et al., 2007; Komarova et al., 2008; Nour-Eldin et al., 2012; Léran et al., 2013). The exception is that a specific clade seems to contain the glucosinolate transporters.

1.9.2 NPF family members

So far the function of only a few members in the Arabidopsis NPF family have been studied. For example, PTR5 (NPF8.2) is a plasma membrane-localized protein that mediates uptake of peptides during pollen germination. It also functions in nitrate transport during ovule and early seed development, as well as nitrate uptake from the rhizosphere (Komaraova et al., 2008). PTR3 (NPF5.2) is characterized as a di- and tri-peptide transporter, which when mutated cause increased susceptibility to P. syringae (Karim et al., 2005; 2007). Among the nitrate transporters, NRT1.8 is a low-affinity transporter responsible for uptake of nitrate from the xylem (Li et al., 2010), whereas NRT1.7 (NPF2.13) mediates phloem loading of nitrate in leaves (Fan et al., 2009).
2 Aims of the study

The emphasis of the work was to enhance the understanding of plant defense responses to *Verticillium longisporum*. The specific aims were to:

- Perform transcriptomic and SNP analyses to identify new defense-associated genes in Arabidopsis.
- Sequence the *V. longisporum* genome to assist in identification of fungal effectors.
3 Results and Discussion

This thesis spans several different areas of plant immunity. The aim is here to highlight the major findings, to describe the roles of the identified genes and proteins, and to put the results in a wider context.

3.1 TPS23/27 contributes to V. longisporum susceptibility

3.1.1 Identification of the monoterpene synthase TPS23/27 (Paper II)

NON-RACE SPECIFIC DISEASE RESISTANCE 1 (NDR1) is a plasma membrane-localized protein contributing to resistance to a number of fungal and bacterial pathogens, including Pseudomonas syringae, Peronospora parasitica and V. longisporum (Century et al., 1997; Johansson et al., 2006b). NDR1 mediates interactions with R proteins such as RESISTANCE TO PSEUDOMONAS SYRINGAE 2 (RPS2) and RESISTANCE TO P. SYRINGAE PV. MACULICOLA 1 (RPM1) (Aarts et al., 1998, Day et al., 2006). Recently, NDR1 was also shown to mediate plasma membrane cell-wall adhesion, leading to speculations on broader roles for this protein in plant immunity (Knepper et al., 2011). With this in mind, a microarray approach was used to identify transcripts differentially expressed in Arabidopsis Col-0 and ndr1-1 mutant plants. Here we identified a large number of terpene synthase genes. Terpenes generally have an inhibitory effect on microorganisms, and we assumed that one or several of the identified terpene synthase genes would contribute to resistance to V. longisporum. From the identified genes in the microarray, the root expressed monoterpene synthase TPS23/27 (Chen et al., 2004) was 2.3-fold up-regulated in ndr1-1 compared to Col-0 in response to fungal challenge and was selected for further characterization.
3.1.2 TPS23/27 promotes *V. longisporum* invasion (Paper II)

Contrary to our assumption, we found that over-expression of TPS23/27 lead to increased susceptibility to *V. longisporum*, whereas silencing had no significant effect on the disease progression. Most of the studied monoterpenes inhibit the growth of microorganisms, however a few are also reported to have a stimulatory effect (Kadoglidou et al., 2011). TPS23/27 produces several volatile monoterpenes which are all predicted to be released into the rhizosphere (Chen et al., 2004). We chose to investigate the specific effect of the main product, 1,8-cineole, on the germination of *V. longisporum* conidia. We found that pure 1,8-cineole inhibited the germination, but diluted concentrations (10^-4x and lower) instead had a stimulatory effect. This indicated that previous investigations on the effect of terpenes and essential oils on the growth or microorganisms may be somewhat misleading, since often only high concentrations of the compounds are tested (see e.g. Rasooli et al., 2008; Kadoglidou et al., 2011). The actual concentration in planta is in almost all cases lower, and can thus have a very different effect on the bacteria or fungi. We therefore allowed *V. longisporum* conidia to germinate in the presence of wild-type Col-0, 35S:TPS23/27 or TPS23/27-amiRNA plants. In agreement with our previous observations we detected a clear increase in germination rate in the vicinity of the TPS23/27 over-expressing plants.

3.1.3 Regulation of TPS23/27 by MYC2-dependent JA signaling (Paper II)

In root growth experiments, roots of 35S:TPS23/27 plants were on average 18% shorter (p<0.001) compared to Col-0, a root phenotype not seen on TPS23/27-amiRNA plants (Figure 5). Treatments with MeJA are known to inhibit root growth (Staswick et al., 1992), and JAs are also shown to be involved in regulation of terpene synthase genes (Martin et al., 2003; Opitz et al., 2008; Köllner et al., 2013). We therefore decided to investigate the participation of JA, and found that treatments with MeJA resulted in a 3.4-fold up-regulation of TPS23/27 transcript levels. The central transcription factor in JA signaling MYC2 (Kazan and Manners, 2013) binds to G-box (CACGTG) and E-box motifs (CANNTG), and inspection of the TPS23/27 promoter sequence identified six such motifs. Subsequently we measured TPS23/27 transcript levels in 35S:MYC2 and myc2-1 plants. TPS23/27 levels were significantly increased and decreased in 35S:MYC2 and myc2-1 plants respectively, supporting a role for MYC2 in regulating TPS23/27 expression.
3.2 Plant detection of pathogens

3.2.1 The transmembrane transporter NPF5.12 (Paper III)
In the present work we identified NITRATE/PEPTIDE TRANSPORTER 5.12 (NPF5.12) as important in the immunity response to V. longisporum. When inoculated with V. longisporum, npf5-12 mutant plants displayed increased susceptibility, correlated with a decrease in NPF5.12 transcript levels. Treatment of nitrogen-depleted plants with the amino acids glutamine and tryptophan induced NPF5.12 transcript levels, indicating that NPF5.12 is involved in amino acid/peptide uptake.

In pull-down and BiFC experiments we found an interaction in planta between NPF5.12 and NPFBP1, a member of the major latex protein (MLP) family. The NPFBP1 protein contains a relatively large hydrophobic pocket, which could potentially bind to either hydrophobic amino acids, or a V. longisporum effector. Detailed studies of NPF5.12 and NPFP1 in the uptake and interaction with fungal effectors or sensing of fungal-derived signals are currently ongoing.

3.2.2 Root-specific functions of RabGAP22 (Paper I)
In the present study, cDNA from a RabGAP gene was identified as up-regulated in response to V. longisporum inoculation in roots of the white cabbage accession B. oleracea BRA723. Via phylogenetic and qRT-PCR analyses, we showed this cDNA to be homologous to the RabGAP22 gene in Arabidopsis. When tested for V. longisporum response, rabgap22-1 knock-out mutants showed a strong increase in susceptibility, indicating this gene was important for the immunity response. GUS staining of RabGAP22::GUS transgenic Arabidopsis plants further revealed a clear expression of RabGAP22 in root tissues. Regulation of the formation and growth of root and vascular
tissues is likely to be of high importance for root-invading pathogens like *V. longisporum*, and several Rab proteins are involved in such processes. The small GTPase RabA4 has a presumed involvement in secretion of cell wall components in the tips of growing root hair cells (Preuss *et al*., 2004; 2006), and similarly the RabGTPase RabG3b plays a role in tracheary element differentiation (Kwon *et al*., 2010). Finally, interesting examples come from human pathogens in the genera *Legionella, Listeria, Salmonella* and others, which are shown to interfere with Rab-mediated processes in order to establish favorable disease-promoting intracellular conditions (Brumell *et al*., 2007; Stein *et al*., 2012).

3.2.3 RabGAP22 and receptor-triggered immunity (Paper I)

Human Rab proteins regulate recycling of several membrane-bound receptor proteins (Grimsey *et al*., 2011; Goueli *et al*., 2012) and the small GTPase OsRac1 plays a role in a receptor complex recognizing fungal chitin (Akamatsu *et al*., 2013). We consequently investigated potential interactions between RabGAP22 and membrane-bound defense signaling components. BAK1 takes part in several responses initiated at the plasma membrane, including the FLS2-mediated resistance triggered by flagellin (Chinchilla *et al*., 2007) and the Ve1-mediated resistance to *V. dahliae* in Arabidopsis. Our observation that *V. longisporum*–susceptible bak1-4 mutant plants had reduced transcript levels of RabGAP22, suggested that RabGAP22 could function in an early signaling complex together with BAK1 and a so far unidentified MAMP receptor.

3.3 Hormone signaling

3.3.1 brassinosteroids (Paper I)

The identification of RabGAP22 as dependent on BAK1, together with the role of BAK1 in brassinosteroid reception (Wang *et al*., 2008), encouraged us to investigate the effect of brassinolide (BL) pretreatment on *V. longisporum* infection. This pretreatment resulted in a significant decrease in fungal colonization in both wild-type Col-0 and rabgap22-1 mutant Arabidopsis plants. A reduction in *V. dahliae* colonization is also seen following BL treatment in tobacco (Gao *et al*., 2013), indicating the requirement for BL is shared for both *V. dahliae* and *V. longisporum*.

3.3.2 Jasmonic acid (Paper I)

Studies on plant hormone responses to *Verticillium* have yielded highly varied results. Nevertheless, Arabidopsis basal resistance to *V. longisporum* and *V.
dahliae seems to require at least some of the components involved in jasmonic acid signaling (Tjamos *et al*., 2005; Johansson *et al*., 2006b; Pantelides *et al*., 2010; Fradin *et al*., 2011). In our *V. longisporum*-challenged plants, we detected an increase in JA signaling and JA and JA-Ile content at 2 dpi. Presumably this points to involvement of JA particularly in the early phase of *V. longisporum* infection, as no major impact on the JA/JA-Ile content has been found at later time-points (Ratzinger *et al*., 2009; Iven *et al*., 2012, Ralhan *et al*., 2012). RabGAP22 was found to contribute to repression of this early JA response, as both JA/JA-Ile content and JA signaling increased significantly in the *rabgap22*-1 mutants plants. This effect may be attributed to RabGAP22 interfering with peroxisomal-associated JA biosynthesis. Data pointing in this direction comes from our observation that RabGAP22 interacts with the photorespiratory enzyme SERINE:GLYOXYLATE AMINOTRANSFERASE 1 (AGT1) in peroxisomes. Interaction with peroxisomal processes and JA signaling has also been seen for both Rab11 in rice and RabE1c in Arabidopsis (Cui *et al*., 2013; Hong *et al*., 2013).

3.3.3 Abscisic acid (Paper I)

Involvement of ABA in the defense to *V. longisporum* has so far not been shown to be of major importance (Veronese *et al*., 2003; Ratzinger *et al*., 2009; Iven *et al*., 2012). The exceptions are a specific requirement for the ABA biosynthesis gene ABA2 (Johansson *et al*., 2006b), and increased levels of ABA in Arabidopsis petioles at 15 dpi (Ralhan *et al*., 2012). Thus, our observation that the ABA content increased approximately 2-fold in Arabidopsis at 2 dpi was somewhat unexpected. A contribution of RabGAP22 in this ABA response was further identified, as the ABA content was significantly lower in the *V. longisporum*-challenged *rabgap22*-1 mutant.

3.4 RabGAP22 and stomatal immunity (Paper I)

The impaired ABA response in *rabgap22*-1 mutant plants, and the strong expression of *RabGAP22* in stomatal guard cells, together suggested a role for RabGAP22 in stomatal immunity. When measuring Arabidopsis stomatal apertures we found an impaired stomatal closure in *rabgap22*-1 in comparison to Col-0 in response to ABA, *V. longisporum* and *P. syringae*. Heterotrimeric G proteins are involved in the stomatal responses to *P. syringae* (Zhang *et al*., 2008; Lee *et al*., 2013) and the small GTPase ROP11 negatively regulates ABA-mediated stomatal closure (Li and Liu, 2012). It could thus be speculated that several GT-pases jointly regulate stomatal responses. A possible function for RabGAP22 might be regulation of the number of K⁺ transporters in guard
cell membranes. Transport of K^+ into guard cell stomata leads to increased turgor pressure in the guard cells, causing stomatal closure. A similar function is seen for Rab11 in rice, which regulates transport of the OsVHA-a1 H^+-ATPase into the vacuole (Son et al., 2012). However we never observed RabGAP22-GFP fusion protein in the vacuoles, making this option less likely. A more tempting option is involvement of RabGAP22 in the ABA-regulated mechanism of stomatal closure. We observed significantly lower ABA levels in *V. longisporum*-inoculated *rabgap22*-1 mutants compared to wild-type Col-0, suggesting that RabGAP22 contributes to the ABA increase detected in response to *V. longisporum*.

3.5 Summary

Figure 6 summarizes the major findings of this thesis, along with our current hypotheses for how the three identified genes function in the early root response to *V. longisporum*.

The Rab GTPase-regulating protein RabGAP22 displayed multiple functions. A clear repressing role of RabGAP22 on JA and JA signaling was found, and RabGAP22 interaction with the photorespiratory protein AGT1 in peroxisomes further suggested a role in peroxisomal JA biosynthesis. Increased *V. longisporum* resistance in response to BL, and analysis of RabGAP22 transcript levels suggested a requirement of BAK1 for RabGAP22 function. We speculate that RabGAP22 functions in a receptor complex together with BAK1 and a so far unknown receptor, possibly by interfering with BAK1 phosphorylation.

The monoterpene synthase gene *TPS23/27* displayed a clear transcriptional response to MYC2-regulated JA signaling, and the TPS23/27 protein was shown to be located in chloroplasts in both roots and leaves. Plants over-expressing *TPS23/27* showed increased susceptibility to *V. longisporum*, and the plants also promoted germination of *V. longisporum* conidia. *TPS23/27* thus shows the characteristics of a novel *V. longisporum* susceptibility gene.

NPF5.12 was shown to be a plasma membrane-localized transporter in the NPF family, with a role in amino acid uptake. NPF5.12 interacted with the MLP protein NPFBP1 at the plasma membrane, and the two proteins showed potential involvement in SA signaling. The presumed role for NPF5.12 is in uptake of amino acids, small peptides, and fungal effectors.
3.6 *Verticillium* genomes (Paper IV)

To support future studies of *V. longisporum*-plant interactions, and to assist in discovery of effector genes, we sequenced the genomes of the two earlier described *V. longisporum* isolates VL1 (CBS110220) and 43-3 (here renamed VL2) (Steventon *et al.*, 2002; Fahleson *et al.*, 2003).

The sizes of the VL1 and VL2 genomes were both estimated at ~70 Mb, approximately twice the genome size of *V. dahliae* and *V. albo-atrum* (Klosterman *et al.*, 2011) (Table 2). The predicted number of genes in VL1 and VL2 were roughly twice that in *V. dahliae* and *V. albo-atrum*, and a high percentage (~40%) of the genes were duplicated in the two *V. longisporum* isolates. These features could be seen as support for a hybrid origin of *V. longisporum* but could also signify a whole-genome duplication after the split from *V. dahliae*.

Transposable elements in *V. dahliae* and *V. albo-atrum* are relatively few compared to other fungal species and consist mainly of the long terminal repeat retrotransposons (LTRs) *Copia* and *Gypsy*, and DNA transposons of the *TC1/Mariner* class (Amyotte *et al.*, 2012). In comparison, VL1 and VL2 contained roughly the same percentage of repetitive elements as *V. dahliae*.
and the majority of these belonged to the LTR classes *Gypsy* and *Copia*.

On average ~250 more predicted secreted proteins were identified in VL1 and VL2 compared to *V. dahliae* and *V. albo-atrum* (Table 2). Proteins belonging to lipid transport and metabolism were twice as frequent in VL1 and VL2. This could be indicative of an enhanced capacity for pathogenicity, as lipid metabolism is involved in supplying energy for pathogen growth and in production of intra- and inter-cellular signaling molecules (LaCamera et al., 2005; 2009). The presence of cysteine residues is a common signature of fungal effectors (Stergiopoulos and de Wit, 2009; Koeck et al., 2011) and ~100 such proteins were predicted in VL1 and VL2, among which glycosyl hydrolases and proteins with cellulose-binding domains were most common.

Table 2. Comparison of the *Verticillium dahliae* VdLS.17, *V. albo-atrum* VaMs.102 and *V. longisporum* VL1 and VL2 genomes.

<table>
<thead>
<tr>
<th></th>
<th>V. dahliae</th>
<th>V. albo-atrum</th>
<th>VL1</th>
<th>VL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base coverage</td>
<td>7.5x</td>
<td>4x</td>
<td>64x</td>
<td>64x</td>
</tr>
<tr>
<td>Genome size (Mb)</td>
<td>35</td>
<td>30</td>
<td>~70</td>
<td>~70</td>
</tr>
<tr>
<td>Protein-coding genes</td>
<td>10,553</td>
<td>10,221</td>
<td>20,794</td>
<td>20,995</td>
</tr>
<tr>
<td>Repetitive sequences</td>
<td>4.8%</td>
<td>0.7%</td>
<td>3.0%</td>
<td>7.6%</td>
</tr>
<tr>
<td>Secreted proteins</td>
<td>780</td>
<td>759</td>
<td>1072</td>
<td>999</td>
</tr>
</tbody>
</table>

3.7 Additional information

3.7.1 Soil contaminations

During year three of this thesis work, numerous recurring soil contaminations took place in the plant growth chambers. Simultaneously, we observed a striking lack of *V. longisporum* disease development in the same facilities. Identification of the soil microorganisms was therefore pursued both in an effort to reduce the number of contaminations, but also to investigate their potential biocontrol activities against *V. longisporum*.

Microbial samples were collected directly form the soil with a sterile inoculation needle, transferred to Luria-Bertani (LB) agar plates and cultivated at 25°C in darkness. The isolates where subsequently identified by sequencing of ribosomal 16S rRNA genes. Four distinct isolates were in this way
identified; all of which were fungal species common in soil and indoor environments (Figure 7).

The potential activity of the four fungi against *V. longisporum* was evaluated both *in vitro* and by treating the soil with each fungus prior to *V. longisporum* inoculation. However, none of the four fungi suppressed growth of *V. longisporum* *in vitro* or in soil-grown *V. longisporum*-inoculated plants. The origin of the sudden loss of *V. longisporum* susceptibility of Arabidopsis plants was therefore unresolved.

Figure 7. Microorganisms isolated from soil. A: *Penicillium corylophilum*, B: *Cunninghamella blakesleean*, C: *Trichoderma atroviride*, D: *Paecilomyces variotii*.

3.7.2 Disease phenotypes of selected Arabidopsis mutants

Several Arabidopsis T-DNA insertion mutants screened for *V. longisporum* disease phenotype during this study are not covered in the manuscripts. A summary of additional phenotypic data is shown in Table 3.

Table 3. Phenotypes of Arabidopsis mutants grown on soil and infected with *V. longisporum*.

<table>
<thead>
<tr>
<th>Locus</th>
<th>Gene</th>
<th>Mutant</th>
<th>Soil phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>At1g12110</td>
<td>NITRATE TRANSPORTER 1 (NPF6.3)</td>
<td>SALK_097431</td>
<td>As Col-0</td>
</tr>
<tr>
<td>At1g12110</td>
<td>NITRATE TRANSPORTER 1 (NPF6.3)</td>
<td>SALK_138710</td>
<td>As Col-0</td>
</tr>
<tr>
<td>At1g19250</td>
<td>FLAVIN-DEPENDENT MONOOXYGENASE 1</td>
<td>SALK_026163</td>
<td>As Col-0</td>
</tr>
<tr>
<td>At1g26240</td>
<td>Proline-rich extensin-like family protein</td>
<td>SAIL_535_B04</td>
<td>As Col-0</td>
</tr>
<tr>
<td>At1g26390</td>
<td>FAD-binding family protein</td>
<td>SALK_083228</td>
<td>As Col-0</td>
</tr>
<tr>
<td>At1g31950</td>
<td>Terpenoid cyclase</td>
<td>SALK_138882</td>
<td>As Col-0</td>
</tr>
<tr>
<td>At1g32450</td>
<td>NPF FAMILY PROTEIN 7.3 (NPF7.3)</td>
<td>SALK_043036</td>
<td>Susceptible</td>
</tr>
<tr>
<td>At1g64400</td>
<td>LONG-CHAIN ACYL-COA SYNTHETASE 3</td>
<td>SALK_027707</td>
<td>As Col-0</td>
</tr>
<tr>
<td>At1g71530</td>
<td>Protein kinase superfamily protein</td>
<td>SALK_027496</td>
<td>As Col-0</td>
</tr>
<tr>
<td>At1g74590</td>
<td>GLUTATHIONE S-TRANSFERASE TAU 10</td>
<td>SAIL_96_F10</td>
<td>As Col-0</td>
</tr>
<tr>
<td>At1g75750</td>
<td>GAST1 PROTEIN HOMOLOG 1</td>
<td>SALK_001187</td>
<td>As Col-0</td>
</tr>
<tr>
<td>At2g02130</td>
<td>CYSTEINE-RICH 68 (PDF2.3)</td>
<td>SALK_034705</td>
<td>Resistant</td>
</tr>
<tr>
<td>At2g16720</td>
<td>MYB DOMAIN PROTEIN 7</td>
<td>SALK_020256</td>
<td>As Col-0</td>
</tr>
<tr>
<td>At2g19990</td>
<td>PR-1-like</td>
<td>SALK_014249</td>
<td>Susceptible</td>
</tr>
<tr>
<td>At2g26560</td>
<td>PHOSPHOLIPASE A 2A</td>
<td>SALK_059119</td>
<td>Susceptible</td>
</tr>
<tr>
<td>Accession</td>
<td>Gene Name</td>
<td>Accession</td>
<td>Phenotype</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>At2g30770</td>
<td>CYP71A13</td>
<td>SAIL_505_E9</td>
<td>As Col-0</td>
</tr>
<tr>
<td>At2g31180</td>
<td>MYB DOMAIN PROTEIN 14</td>
<td>SALK_018565</td>
<td>As Col-0</td>
</tr>
<tr>
<td>At2g33050</td>
<td>RECEPTOR LIKE PROTEIN 26</td>
<td>SALK_092826</td>
<td>As Col-0</td>
</tr>
<tr>
<td>At2g38870</td>
<td>Putative protease inhibitor</td>
<td>SALK_111051</td>
<td>As Col-0</td>
</tr>
<tr>
<td>At2g44110</td>
<td>MILDEW RESISTANCE LOCUS O 15</td>
<td>SALK_078782</td>
<td>As Col-0</td>
</tr>
<tr>
<td>At2g47180</td>
<td>GALACTINOL SYNTHASE 1</td>
<td>SALK_128044</td>
<td>Susceptible</td>
</tr>
<tr>
<td>At3g09270</td>
<td>GLUTATHIONE S-TRANSFERASE TAU 8</td>
<td>SALK_150234</td>
<td>As Col-0</td>
</tr>
<tr>
<td>At3g09270</td>
<td>GLUTATHIONE S-TRANSFERASE TAU 8</td>
<td>SALK_049091</td>
<td>As Col-0</td>
</tr>
<tr>
<td>At3g12580</td>
<td>HEAT SHOCK PROTEIN 70</td>
<td>SALK_088253</td>
<td>As Col-0</td>
</tr>
<tr>
<td>At3g13610</td>
<td>2OG-Fe(II) oxygenase family protein</td>
<td>SALK_132418</td>
<td>As Col-0</td>
</tr>
<tr>
<td>At3g13610</td>
<td>2OG-Fe(II) oxygenase family protein</td>
<td>SALK_050137</td>
<td>As Col-0</td>
</tr>
<tr>
<td>At3g59220</td>
<td>ATPIRIN1</td>
<td>SALK_063087</td>
<td>Resistant</td>
</tr>
<tr>
<td>At4g12400</td>
<td>Carboxylate clamp-tetratricopeptide repeat protein</td>
<td>SALK_023494</td>
<td>Susceptible</td>
</tr>
<tr>
<td>At4g13020</td>
<td>Serine/threonine protein kinase (MHK)</td>
<td>SALK_037491</td>
<td>As Col-0</td>
</tr>
<tr>
<td>At4g16990</td>
<td>RESISTANCE TO LEPTOSPHAERIA MACULANS 3</td>
<td>GABI 491 E04</td>
<td>As Col-0</td>
</tr>
<tr>
<td>At4g21680</td>
<td>NPF TRANSPORTER 7.2 (NPF7.2)</td>
<td>SALK_024892</td>
<td>As Col-0</td>
</tr>
<tr>
<td>At4g23700</td>
<td>Putative Na+/H+ antiporter family</td>
<td>SALK_033417</td>
<td>As Col-0</td>
</tr>
<tr>
<td>At4g23810</td>
<td>WRKY family transcription factor 53 (WRKY53)</td>
<td>SALK_034157</td>
<td>Resistant</td>
</tr>
<tr>
<td>At5g15410</td>
<td>DEFENSE NO DEATH 1</td>
<td>dnd1</td>
<td>Susceptible</td>
</tr>
<tr>
<td>At5g24530</td>
<td>DOWNY MILDEW RESISTANT 6</td>
<td>dmr6-1</td>
<td>As Col-0</td>
</tr>
<tr>
<td>At5g24780</td>
<td>VEGATATIVE STORAGE PROTEIN 2</td>
<td>SALK_036845</td>
<td>As Col-0</td>
</tr>
<tr>
<td>At5g42600</td>
<td>MARNERAL SYNTHASE 1</td>
<td>SALK_152492</td>
<td>As Col-0</td>
</tr>
<tr>
<td>At5g48010</td>
<td>THALANIOL SYNTHASE 1</td>
<td>thas1-1</td>
<td>Resistant</td>
</tr>
<tr>
<td>At5g48010</td>
<td>THALANIOL SYNTHASE 1</td>
<td>thas1-2</td>
<td>Resistant</td>
</tr>
<tr>
<td>At5g64905</td>
<td>ELICITOR PEPTIDE 3 PRECURSOR</td>
<td>SALK_017813</td>
<td>As Col-0</td>
</tr>
</tbody>
</table>

V. longisporum symptoms on Arabidopsis Col-0 are generally mild, and include chlorosis, stunting and premature senescence. Plants scored as susceptible displayed more pronounced symptoms compared to Col-0, and a more rapid disease progression. Plants scored as resistant displayed none, or very mild disease symptoms.
4 Conclusions

- The Rab GTPase-activating protein RabGAP22 contributes to *V. longisporum* resistance.
- RabGAP22 contributes to stomatal closure in response to inoculation with *V. longisporum* and *P. syringae*, and in response to treatment with ABA and flg22.
- RabGAP22 protein localizes in the nucleus, and interacts with AGT1 in the peroxisomes.
- RabGAP22 represses early JA signaling in *V. longisporum* inoculated plants.
- Over-expression of the monoterpene synthase TPS23/27 causes increased susceptibility to *V. longisporum*.
- Plants over-expressing TPS23/27 promote germination of *V. longisporum* conidia.
- The TPS23/27 protein is subcellularly located in plastids.
- TPS23/27 is under transcriptional control by MYC2-dependent JA-signaling.
- Plants mutated in the transmembrane transporter NPF5.12 display increased colonization by *V. longisporum*.
- Amino acid treatment of nitrogen-depleted Arabidopsis plants suggests NPF5.12 may play a role in uptake of amino acids.
- NPFBP1, a member of the major latex protein (MLP) family interacts with NPF5.12 in the plasma membrane and in the peroxisomes.
- The *V. longisporum* VL1 and VL2 genomes comprise approximately 70 Mb and 21,000 genes.
- *V. longisporum* shares approximately 86% of its genes with *V. dahliae* and *V. albo-atrum.*
5 Future perspectives

Listed below are the main analyses currently being pursued in order to complete papers II, III, and IV for publication.

- Determine the amount and identity of terpenes emitted by $35S:TPS23/27$ and $TPS23/27$-amiRNA transgenic plants.
- Determine the $V. longisporum$ phenotype and colonization of $ndr1TPS23/27$-amiRNA double-mutant plants.
- Study microsclerotial germination in the presence of $35S:TPS23/27$ and $TPS23/27$-amiRNA transgenic plants. Also for $V. dahliae$ and $F. oxysporum$.
- More detailed studies on the role of NPF5.12 and NPFP1 in the uptake and interaction with peptide substrates and potential fungal effectors.
- Determine the response of $NPF5.12$ and $NPFBP1$ to treatment with plant hormones.
- Identification of fungal effectors among the predicted secreted proteins in $V. longisporum$.
- Comparison of the $V. longisporum$ $V. dahliae$ and $V. albo-atrum$ genomes to study their evolutionary history.
- Compare the secreted proteins and effectors from $V. longisporum$ $V. dahliae$ and $V. albo-atrum$ to help identify differences in host preference.
- Select $V. longisporum$ effector to be studied in more detail.
References

Cherif, J. and Zehnoufi, M. (2013) Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol. Rev. 93, 269–309.

Acknowledgements

Many people have been involved in helping me complete this thesis. Some obvious, some less obvious. But those I would like to especially mention, in a completely randomized order, are the following:

My main supervisor Christina Dixelius, for accepting that naive but yet enthusiastic guy from Skåne who had the crazy idea that he could make a significant contribution to science. Fortunately, I had a supervisor who knew more than I what it really meant, and how much hard work one really has to put into it. And who had the skills to guide me in to the right direction whenever I wandered off to pursue sidetracks that would have been completely impossible to interpret or publish. Without your supervision, guidance and help Christina, this thesis would have been a very poor one indeed!

My Assistant supervisor Sofia Berlin-Kolm, for highly valuable discussions on both science and on life in general. But perhaps mostly for supporting and advising me all of those times when everything about science felt so darn miserable.

My partner in crime Sarosh Bejai, for your endless patience and enthusiasm. I do not know where this thesis had been were it not for your assistance. Not in print at least, that much I know for sure.

All of the past and present members of the Dixan group. Tom Martin, for your kind and friendly spirit both inside and outside of the lab, and for always keeping the rest of us in a good mood (except of course when you bully me for my dialect or my fascination for over-priced technology). Mattias Persson, for friendship, lab gossip, and for helping me survive among the hostile Swedes here in the cold north. Ramesh Vetukuri, for always having the time to help,
even when you don’t have the time. Vera Montiel, for your friendly spirit and your advice in the lab. Mattias Myrenäs, for sharing with me the horrors of working with *Verticillium*. Tina Olsson, for invaluable help with Gateway cloning. Maria Kaliff, for helping me taking care of my (always dying) plants, and for teaching me the values of to-do lists and reference software. Na Guan, for always being so cheerful, even when the boss is asking you why you have no results. Anna Åsman, for assistance with tricky RNA extractions, and for always letting me take some of your secret Rifampicin stock. Hanneke Péele, for sharing with me the perils of watering and infecting those damn plants. Sultana Jahan, for putting up with my despotism in the Plant Breeding course. Arne Schwelm, for always reminding us Swedish people how strange we really are. Johan Fogelqvist and Tim Kamber, for valuable guidance and support in that mysterious swamp of mathematics referred to as bioinformatics. Shinichi Oide for great work and contributions on the RabGAP project.

All of the past and present PhD students at the department. There are quite a few of you, and though I am thankful to everyone, I would also like to especially mention: Daniel Uddenberg, for irreplaceable advice on computers and cameras, and for sharing with me the bitterness over all of those irresponsible people who linger in the lab when no one is around to see them. Daniel Vestman, for always providing the perfect Sci-Fi reference or music whenever they are needed. Malin Abrahamsson, for friendship, advice, gossip and numerous chats in some random corner at GC/BioC. Emma Larsson, for never being too shy to bring up those forbidden topics at the lunch table, it made those lunches so much more enjoyable. Izabela, for mental support and encouraging words, especially during these last few dreadful weeks of thesis writing. Ulrike, for being the cheerful, happy and friendly person you are, always offering a kind word or a smile.

The absolutely irreplaceable technical staff, especially: Björn Nicander, for putting up with my frequent visits and geeky questions. Gunilla Swärdh, for teaching me how to deal with that tricky plant Arabidopsis, and for supportive talks when I most needed them. Mona Munther, for always being so cheerful and for helping me with whatever strange chemicals I needed. Urban Pettersson, I have lost count of how many times you have saved my plants from utter disaster and annihilation. Per Linden, for keeping the growth chambers happy. Lotta Olsson, for help with various topics that I never could have handled myself. Birgitta Eriksson, for help with dealing with all those tricky SLU rules and regulations. Monica Beergrehn, for keeping track of my
scholarships, and guiding me through the maze of dealing with reports to the funding agencies.

Many more of the GC and BioC people have been of assistance in one way or another and of course deserve to be mentioned. So, in desperate hopes that I have not forgotten anyone (if so, please accept my deepest apologies) I also want to thank Alyona, Anders K, Andrea, Andreas H, Anki, Anna W, Annelie, Cecilia, David C, Duarte, Elke, Eric, Eugene, Eva S, Folke, Gunnar, Henrik, Iva, Jenny C, Jens Su, Jens St, Jesper, Jim, Joel, Johan M, Jordi, Kanita, Katarina, Laura, Magnus, Marie, Mattias T, Naeem, Nicole, Nurun, P-O, Panos, Pascal, Peter, Philip, Pia, Qing, Rafael, Randi, Sara, Selcuk, Shashi, Sridevy, Sun, and Veronika for all your support and friendship during these years.

My extended family, Christina, Charlotta, Pelle, Nina and Hannes. For being there and taking care of me for as long as I can remember, and for supporting me in whatever steps I have taken. Without having you to return to back in Skåne, there is now way I would have made it this far!

Varpu, Nils-Gunnar and Peter, for welcoming me in such a kind and warm way into your family from the very first time we met – I look forward to spending and enjoying many more days in your friendly company!

Carolina, for being the person I thought I would never meet, but then all of a sudden did. That day my love, I began to live and enjoy life in a way I never before thought was possible. You truly are the love of my life and words cannot describe how much I look forward to spending the rest of my life with you!