Home About Browse Search
Svenska


Utveckling av metod för att bedöma behovet av ogräsbekämpning i spår

Cederlund, Harald and Fogelberg, Fredrik and Hansson, David and Nyberg, Roger and Schroeder, Håkan (2014). Utveckling av metod för att bedöma behovet av ogräsbekämpning i spår. Alnarp: (LTJ, LTV) > Department of Biosystems and Technology (from 130101)
(VH) > Department of Biosystems and Technology (from 130101)

(LTJ, LTV) > Department of Landscape Architecture, Planning and Management (from 130101)
(NL, NJ) > Dept. of Microbiology (until 161231)
Other, Sveriges lantbruksuniversitet. Landskapsarkitektur, trädgård, växtproduktionsvetenskap ; 2014:7
[Report]

[img]
Preview
PDF
3MB

Abstract

En miljöanpassad och resurseffektiv hantering av ogräs i spår ställer krav på god kunskap om vegetationsförhållanden för att behovsanpassa bekämpningsinsatserna. En automatiserad registrering skulle kunna utgöra ett komplement till dagens manuella inspektioner och skulle över tiden helt eller delvis kunna ersätta dessa. En utmaning är att hitta en metod som ger en rimlig upplösning i informationen som samlas in, så att den kan hanteras rationellt av berörda aktörer och samtidigt utgöra ett beslutsunderlag med tillräcklig precision.

Projektet studerade två automatiserade metoder som kan vara aktuella för Trafikverket att använda i framtiden: 1) Machine vision metoden utnyttjar kamerasensorer för att känna av sin omgivning i det synliga respektive nära infraröda spektrumet. 2) N-sensorn sänder ut ljus inom det område som reflekteras av växternas klorofyll. Mängden klorofyll ger ett mätvärde som kan korreleras till biomassan. Valet av teknik beror på vad informationen ska användas till. Om syftet är att översiktligt kartlägga vegetationsförekomst i spår, för att planera åtgärder
för underhåll, kan N-sensortekniken vara lämplig. Om man över ytan och tiden vill övervaka och kartlägga aktuell och precis vegetationsstatus, för att kunna bekämpa utvald vegetation med rätt insats, är machine vision tekniken bättre lämpad. Såväl machine vision metoden som N-sensortekniken bygger på registrering av data tillsammans med en GPS-positionering. På sikt kan denna information läggas i databaser som är direkt åtkomliga för berörda organisationer och t o m online i fält under eller i samband med en bekämpningsåtgärd.

De två teknikerna jämfördes med manuella (visuella) skattningar av ogräsförekomsten. Den visuella skattningen av yttäckningsgrad av ogräs i fält skiljde sig statistiskt mellan olika bedömare. När det gäller att uppskatta frekvensen (antalet) vedartade växter (träd och buskar) inom provytorna så var observatörerna relativt överens. Samma person är ofta konsekvent i sitt bedömande, men att jämföra med andra personers bedömning kan ge missvisande resultat.

Systemet för användning av informationen om ogräsförekomst behöver utvecklas som helhet. Tröskelvärden för hur mycket ogräs som kan tolereras på olika typer av spår/driftsplatser är en viktig komponent i ett sådant system. Klassificeringssystemet ska kunna hantera de krav som ställs för att säkerställa banans kvalitet och olika förutsättningar som trafikförhållanden, platsgivna förutsättningar för banan och vegetationens egenskaper.

Projektet rekommenderar Trafikverket att:

diskutera hur tröskelvärden för vegetationsförekomst på spår kan fastställas

genomföra registrering av vegetationsförekomst över längre och fler sträckor med en eller flera av de metoder som studerats i projektet

inleda införande av system som effektivt kopplar informationen om vegetation till position

inkludera förekomst av vegetation i den registrering som idag sker av spårens (banans) tekniska kvalitet och ansluta datamaterialet till övriga underhållsrelaterade databaser

inrätta ett antal representativa ytor där ogräsfloran på spåren regelbundet inventeras och mäts för att få en bild av den långsiktiga utveckling som grund för säkrare prognoser för vegetationsutveckling

säkerställa att nödvändiga utbildningsinsatser genomförs

Authors/Creators:Cederlund, Harald and Fogelberg, Fredrik and Hansson, David and Nyberg, Roger and Schroeder, Håkan
Title:Utveckling av metod för att bedöma behovet av ogräsbekämpning i spår
Alternative abstract:
LanguageAbstract
English

A system for weed management on railway embankments that is both adapted to the environment and efficient in terms of resources requires knowledge and understanding about
the growing conditions of vegetation so that methods to control its growth can be adapted accordingly. Automated records could complement present-day manual inspections and over time come to replace these. One challenge is to devise a method that will result in a reasonable breakdown of gathered information that can be managed rationally by affected parties and, at the same time, serve as a basis for decisions with sufficient precision.

The project examined two automated methods that may be useful for the Swedish Transport Administration in the future: 1) A machine vision method, which makes use of camera sensors as a way of sensing the environment in the visible and near infrared spectrum; and 2) An N-Sensor method, which transmits light within an area that is reflected by the chlorophyll in the plants. The amount of chlorophyll provides a value that can be correlated with the
biomass. The choice of technique depends on how the information is to be used. If the purpose is to form a general picture of the growth of vegetation on railway embankments as a way to plan for maintenance measures, then the N-Sensor technique may be the right choice. If the plan is to form a general picture as well as monitor and survey current and exact vegetation status on the surface over time as a way to fight specific vegetation with the correct means, then the machine vision method is the better of the two. Both techniques involve registering data using GPS positioning. In the future, it will be possible to store this information in databases that are directly accessible to stakeholders online during or in conjunction with measures to deal with the vegetation.

The two techniques were compared with manual (visual) estimations as to the levels of vegetation growth. The observers (raters) visual estimation of weed coverage (%) differed statistically from person to person. In terms of estimating the frequency (number) of woody plants (trees and bushes) in the test areas, the observers were generally in agreement. The same person is often consistent in his or her estimation: it is the comparison with the estimations of others that can lead to misleading results.

The system for using the information about vegetation growth requires development. The threshold for the amount of weeds that can be tolerated in different track types is an important component in such a system. The classification system must be capable of dealing with the demands placed on it so as to ensure the quality of the track and other pre-conditions such as traffic levels, conditions pertaining to track location, and the characteristics of the vegetation.

The project recommends that the Swedish Transport Administration:

Discusses how threshold values for the growth of vegetation on railway embankments can be determined

Carries out registration of the growth of vegetation over longer and a larger number of railway sections using one or more of the methods studied in the project

Introduces a system that effectively matches the information about vegetation to its position

Includes information about the growth of vegetation in the records that are currently maintained of the track’s technical quality, and link the data material to other maintenance-related databases

Establishes a number of representative surfaces in which weed inventories (by measuring) are regularly conducted, as a means of developing an overview of the long-term development that can serve as a basis for more precise prognoses in terms of vegetation growth

Ensures that necessary opportunities for education are put in place

Series/Journal:Landskapsarkitektur, trädgård, växtproduktionsvetenskap (BIB14858805)
Year of publishing :2014
Number:2014:7
Number of Pages:62
Place of Publication:Alnarp
Publisher:Fakulteten för landskapsarkitektur, trädgårds- och växtproduktionsvetenskap, Sveriges lantbruksuniversitet
ISBN for electronic version:978-91-87117-68-8
Language:Swedish
Additional Information:Fredrik Fogelberg hör till Institutet för jordbruks- och miljöteknik(JTI), och Roger Nyberg hör till Högskolan Dalarna
Publication Type:Report
Full Text Status:Public
Agris subject categories.:H Protection of plants and stored products > H60 Weeds and weed control
Subjects:(A) Swedish standard research categories 2011 > 2 Engineering and Technology > 211 Other Engineering and Technologies > Other Engineering and Technologies not elsewhere specified
Agrovoc terms:weed control, railways, sensors, image analysis
Keywords:ogräsbekämpning , spår, banvallar, Machine vision , N-sensor, bildanalys
URN:NBN:urn:nbn:se:slu:epsilon-e-1818
Permanent URL:
http://urn.kb.se/resolve?urn=urn:nbn:se:slu:epsilon-e-1818
ID Code:11065
Faculty:LTV - Fakulteten för landskapsarkitektur, trädgårds- och växtproduktionsvetenskap
Department:(LTJ, LTV) > Department of Biosystems and Technology (from 130101)
(VH) > Department of Biosystems and Technology (from 130101)

(LTJ, LTV) > Department of Landscape Architecture, Planning and Management (from 130101)
(NL, NJ) > Dept. of Microbiology (until 161231)
Other
External funders:Trafikverket
Deposited By: Christina Johansson
Deposited On:20 Mar 2014 08:35
Metadata Last Modified:15 Dec 2015 07:14

Repository Staff Only: item control page

Downloads

Downloads per year (since September 2012)

View more statistics

Downloads
Hits