

This pre-print manuscript *Degradation of two soluble proteins - casein and egg protein by a macro-in vitro method* was subsequently accepted by *Journal of Animal Physiology and Animal Nutrition*.

This version of the manuscript has not been peer-reviewed.

Published with permission from Blackwell Verlag GmbH.

Statement from the publisher: ""This is the pre-peer reviewed version of the following article: [Udén, P. (2012) Degradation of two soluble proteins – casein and egg protein by a macro-in-vitro method. *Journal of animal physiology and nutrition*, vol.97 (4), pp. 656-665.], which has been published in final form at [http://dx.doi.org/10.1111/j.1439-0396.2012.01306.x]."

Epsilon Open Archive http://epsilon.slu.se

Degradation of two soluble proteins - casein and egg protein by a macro-in vitro method

Journal:	Journal of Animal Physiology and Animal Nutrition
Manuscript ID:	JAPAN-Nov-11-431.R2
Manuscript Type:	Original Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Udén, Peter; Swedish University of Agricultural Sciences, Kungsängen Research Centre
Subject Area:	Feed, Nutrition, Ruminants

1	
2	Degradation of two soluble proteins - casein and egg protein by a macro-in vitro method
3	
4	P. Udén
5	Department of Animal Nutrition & Management, Kungsängen Research Centre, Swedish
6	University of Agricultural Sciences, S-753 23 Uppsala, Sweden
7	
8	
0	SUMMARY
9	SUMMARI
10	
11	Degradation of casein and egg protein were studied with whole rumen contents (RC) in a
12	macro-in vitro system to elucidate previous findings of initial rapid disappearance of soluble
13	proteins in vitro. Five to 7.5 kg of rumen contents from a dry and/or a lactating cow were
14	incubated with buffer and casein or egg protein for 180 min with frequent sampling.
15	Degradation was measured as loss of trichloroacetic acid precipitable N (TCA-N) from the
16	inocula. Normal (39°C) and low (2°C) temperature incubations were examined in Exp. 1,
17	using 1 g of TCA-N from casein. Four levels of casein (0-12 g TCA-N) in Exp. 2 and four
18	levels of egg albumin (0-24 g TCA-N) in Exp. 3, were fermented at 39°C. Initial recovery of
19	casein TCA-N was 106% at 2°C and 56% at 39°C (Exp. 1). Casein (TCA-N) recovered
20	initially increased in Exp. 2 from 21% at 3 g to 86% at 12 g TCA-N, while absolute loss
21	remained relatively constant at 358 mg TCA-N/kg RC (SD = 47). Fractional degradation rate
22	was highest (0.03/min) at the intermediate dosage level. In the absence of rumen fluid (Exp.
23	4), no casein was lost. Initial egg protein recovery was on average 103% (Exp. 3). Recovery

24	seemed unaffected by dosage level, absolute degradation rate was relatively constant over
25	time and increased with dosage level (P<0.001) from 1.48 to 2.95 mg TCA-N/(kg RC/ x min).
26	Maximum degradation rate (mg TCA-N/(kg RC x min)TCA-N/kg RC/min) and affinity
27	constant (mg TCA-N/kg RC-)were estimated at 261 and 1650, respectively. It is concluded
28	that a surprisingly constant amount of casein disappears immediately from warm rumen fluid
29	and that this does not occur either with chilled rumen contents, in the absence of rumen fluid
30	or when replaced with egg protein. The mechanisms for this disappearance are yet to be
31	discovered.
32	
33	Running head: Soluble protein degradation in vitro
34	Keywords: Macro in vitro; Protein degradation; Rumen; Casein; Egg albumin
35	Correspondence: P. Udén, Department of Animal Nutrition & Management, Kungsängen
36	Research Centre, Swedish University of Agricultural Sciences, S-753 23 Uppsala, Sweden.
37	Tel: +46 (0)18672058; Fax: +46(0)18672946; E-mail: peter.uden@slu.se
38	
39	
40	Introduction
41	Protein quality is an important variable in optimization of ruminant diets. Even though lack of
42	key amino acids may limit milk production, the proportion of feed protein degraded in the
43	rumen (effective protein degradation) and the availability of the feed protein passing from the
44	rumen are normally the major protein quality criteria in use. Degradability of protein can be

estimated in vivo, but these techniques are expensive, time-consuming and labour intensive.

45

46	There are also considerable problems inherent to these methods in separating feed and
47	microbial protein and in evaluating proteins from single feeds.
48	In most evaluation systems, the soluble fraction is considered to be completely degraded in
49	the rumen (e.g. Sniffen et al., 1992). Findings by Volden et al. (1998) showed, however, that
50	approximately 10% of infused free amino acids may escape the rumen. A soluble protein such
51	as casein with an assumed fermentation rate of 1/h and a liquid passage rate of 0.16-/h would
52	result in a rumen escape of approximately 15%, whereas with the slower fermentation rate of
53	soluble rapeseed cake protein (0.19 /h), the estimated escape would be 46% (Hedqvist and
54	Udén, 2006).
55	The method of Hedqvist and Udén (2006) is a relatively simple method, similar to that of
56	Broderick (1987) but without the use of bacterial growth inhibitors, to measure soluble
57	protein degradation. Remaining soluble protein is precipitated from the bacteria-free
58	supernatant to recover remaining feed proteins after fermentation. One major problem was
59	encountered in this study. The recoveries of soluble proteins from 11 sources at 20 or 30 min
60	were low and on the order of 25 to 36% and after 1 to 2 h of incubation, levels became
61	difficult to separate from background.
62	A novel macro-in vitro method was introduced by Udén (2011) in a study on volatile fatty
63	acid production. In this system, 5 to 10 kg of whole rumen contents can be used which
64	enables continuous sampling of fluids and ensures a more rumen-like environment as
65	compared to regular micro-systems using small amounts of strained rumen fluid.
66	The aim of this study was therefore to explore the macro-in vitro system for studying
67	degradation of two soluble proteins and to investigate the phenomenon of initial
68	disappearance of proteins from solution.
60	

69

70

71 Materials and methods

72	Three in vitro rumen experiments and one experiment without rumen fluid were made to
73	study the degradation of soluble proteins. Exp. 1 was a pilot study to confirm previous
74	findings of low recoveries of soluble proteins both in vitro and in vivo (Hedqvist and Udén,
75	2006) and to study the effect of normal and low temperature on initial disappearance. In Exp.
76	2, four levels of casein and in Exp. 3, four levels of egg albumin were studied at normal
77	rumen temperature. To test the possibility of attachment of casein to feed particles, casein was
78	incubated with silage at normal rumen temperature in Exp. 4.
79	
80	Proteins and inocula source
81	The casein used was bovine sodium caseinate (Sigma, CAS 9005-46-3; Sigma-Aldrich
82	Sweden AB, Stockholm, Sweden) and the egg albumin was 'Egg Protein 80' (Olimp Sport
83	Nutrition AB, Partille, Sweden). One dry and one lactating cow, fitted with rumen cannulas,
84	were used as donors of rumen contents (RC). The dry cow consumed daily 3.4 kg dry matter
85	(DM) grass hay with a crude protein content (CP) of 155 g/kg DM and 1.6 kg concentrates
86	(CP: 200 g/kg DM). The lactating cow consumed 15 to 16 kg DM from a grass dominated
87	silage (CP: 161 g/kg DM) and 7 kg DM of a concentrate mix (CP: 200 g/kg DM). All cows
88	had free access to water and salt licks.
89	
90	The <i>in vitro</i> system
91	A macro in vitro system was used for all incubations as described by Udén (2011), but with
92	the following modifications: i) eight instead of two tubes with the inner dimensions (cm)

93 76(height) x 18.8(diameter) made of 6 mm hard polyethylene, ii) the insulated heated box was

94	made from 5-cm Styrofoam TM with the inner dimensions (cm) 110(length) x 55(width) x
95	60(height), iii) the mixer consisted of a grain auger (cm) 50(length) and 10(diameter) with 8
96	turns/m and a 45-cm shaft extending through the centre hole of the lid, and iv) the whole
97	assembly including heater was mounted on a pallet for easy transport between in vitro room
98	and stable.
99	The following general protocol was used for the <i>in vitro</i> incubations:
100	1. Day before the experiment: prepare sufficient quantities of McDougall's buffer
101	(McDougall, 1948). Fill glass jars with 2-L of the buffer (blank) or the protein in question
102	dissolved in the same amount of buffer. Record tare weights of <i>in vitro</i> tubes and assemble the
103	<i>in vitro</i> unit. Add 2 L of pure McDougall's buffer to all tubes, gas with CO ₂ , seal the lids, and
104	heat over night with the thermostat set at 39°C. Bubble CO_2 in all solutions over night.
105	2. Experimental day: add more CO_2 and move <i>in vitro</i> assembly to the stable and plug in
106	heater. Record rumen pH and transfer whole RC from rumen fistulated cow(s) to each <i>in vitro</i>
107	tube with minimum exposure to air.
108	3. Move assembly back to the <i>in vitro</i> room and plug in heater again. Add more CO_2 and
109	pour the first solution (blank or protein solution) into in vitro tube no 1.
110	4. Start timer, mix the <i>in vitro</i> contents vigorously for 30 sec and take a 50-mL sample of
111	the liquid fraction by aspiration (see Udén, 2011). Record pH and cool sample rapidly in ice
112	bath. Continue with the tube no 2 and solution no 2, etc. Space samplings 2.5 min apart,
113	which will allow for a minimum time interval of 20 min for each tube when using a total of 8
114	tubes.
115	5. Sample again according to schedule and continue sampling for a maximum of 3 h.
116	6. Centrifuge samples at 1500 x g for 5 min and split the supernatant into one 30- and one
117	15-mL sample. Transfer supernatants to refrigerator (4°C) and analyze for total N, NH ₃ -N and

trichloroacetic acid precipitable N (TCA-N) following morning as specified under 'Sampleanalyses'.

120 7. Record weights of the *in vitro* tubes and determine DM concentrations of remaining121 ingesta.

122

123 Experiment 1

124 Two separate incubations with two tubes each were made. Rumen contents from the lactating 125 cow was removed and the amount adjusted to 5 kg (Table 1) for each *in vitro* tube in both incubations. In both incubations, 7.25 g dissolved casein (air dry weight) was added to one of 126 127 the tubes and only buffer to the other (blank). In the first incubation, the protocol described 128 above was followed, except that the amount of buffer used in Step 3 was only 1 L. Samples 129 were taken at 3, 30, 60, 90, 120 and 180 min during the incubation. In the second incubation, 130 the procedure differed on the following accounts. Rumen contents, buffer, casein solution and 131 *in vitro* assembly were chilled to 2°C before adding the casein or blank solutions to the RC. 132 These tubes were then kept in the insulated box with ice bags to maintain the 2°C temperature 133 during the entire measurement period. Samples were taken at 3, 60, 120 and 180 min.

134

135 Experiment 2 and 3

136 Casein was incubated at 0, 20, 40 or 80 g/tube in duplicate (a total of 8 tubes) in Exp. 2 and

egg powder was used in Exp. 3 at the levels of 1, 60, 120 and 240 g/tube (Table 1). The

higher levels used for egg protein were due to a suspicion that detection of any saturation

- 139 kinetics would require higher levels of this slow-degrading protein as opposed to casein.
- 140 Incubation times used were 2, 20, 40, 60, 80, 120 and 180 min in Exp. 2 and 1, 18.5, 38.5,

141 58.5, 91, 121 and 181 min in Exp. 3. Approximately 7 kg RC from the dry cow was used for

142	one of the replicates and RC from the lactating cow was used for the other. The amounts
143	actually incubated are shown in Table 1 and samples were handled as in the protocol above.
144	

145 Experiment 4

One-hundred grams of chopped silage with a dry matter content of 346 g/kg were placed in three Erlenmeyer flasks and heated in an oven at 60°C oven overnight to eliminate bacterial activity. On the following day, flasks were equilibrated to 39°C in a water bath, followed by the addition of 600 mL sterile 39°C McDougall's buffer containing either (two flasks) 1000

mg casein or no casein (one flask; blank). Sub-samples (35 mL) were taken after 3, 30, 90 and

151 180 min and handled as described above.

152

153 Sample analysis

In vitro tube RCs remaining after the incubations were dried at 55°C and weighed to estimate
liquid volume in each tube. Total liquid volumes were calculated after adjustment for volumes
removed during sampling.

157 *In vitro* supernatants were analyzed for NH₃-N in Exp. 2 and 3 (only for the 0, 60, 120 and

158 180 min samples), and in all samples for total soluble N and for TCA-N (except for Exp. 4).

Liquid samples from the previous day (Exp. 1-3) were first centrifuged at $25000 \times g$ for 15

160 min at 4°C. From the 15-mL supernatant, 3 mL was-were taken for NH₃-N analysis and 7 mL

161 wasere frozen and saved. Ammonia-N was analyzed by the phenol-hypochlorite assay using

162 flow-injection analysis (FIAstar[™] 5012, Foss Analytical, Hillerød, Denmark).

163 The 30-mL sample was split into 12.5 and 10 mL sub-samples. To the 12.5-mL sample, 1.5

164 mL TCA (1000 g/L) was added and the mixture was put on ice for 1 h. This was followed by

165 centrifugation at 25000 x g for 15 min at 4°C. Both the supernatant after precipitation with

166	TCA and the untreated su	pernatant (10 mL) were transferred to	glass test tubes for N analysis

- by the Kjeldahl procedure (Foss Tecator 2020 Digester and 2400 Kjeltec Analyzer unit,
- 168 Hillerød, Denmark), using copper as a catalyst. Amounts of TCA-precipitable N (TCA-N)
- 169 were calculated by difference.

170

171 Biometric analysis

- 172 All NH₃- and TCA-N values were blank corrected after adjustments for volume differences
- among the *in vitro* blank and treatment tubes. Soluble N values were only recorded in Exp. 4
- and were blank corrected before calculating recoveries.
- 175 As exponential degradation was assumed used for the disappearance of casein TCA-N (Exp.
- 176 2), a single exponential function was fitted to the individual data from all 6 treatment tubes by
- 177 TableCurveTMTD (Jandel Scientific, San Rafael, CA, USA), using standard least-squares
- 178 minimization:
- 179 $Y = a + bxe^{(-c^*t)}$ where,

'Y' = recovery of TCA-N, 'a' = curve asymptote, 'b' = y-axis intercept, 'c' = degradation rate
(/min) and 't' = time (min).

- Both egg protein disappearance (Exp. 3) and NH₃-N appearance (Exp. 2 and 3) were linear in fashion during the 3-h measurement periods and did not fit the exponential equation that was used for casein results. Therefore, only linear regressions were fitted to the 6 treatment data sets using Minitab® v. 15 (Minitab Inc., State College, PA, USA) and tested for similarities among slopes.
- 187 To test if saturation kinetics prevailed, the Michaelis-Menten equation was fitted to both
- 188 protein sources, combining data from the two cows and three protein levels. Degradation
- 189 velocity for egg protein was calculated as the slope of the TCA-N concentration (mg N/kg

190	RC) versus dosage (mg TCA-N/kg RC; n=6). Casein degradation was calculated as the
191	change in TCA-N concentration (mg N/kg RC) between each measurement versus remaining
192	casein concentration (mg TCA-N/kg RC; n=42) at the beginning of each sampling period.
193	Maximum degradation rate (V_{max} ; mg TCA-N/(kg RC x min)TCA-N/kg RC/min) and the
194	affinity constant (k_m ; mg TCA-N/kg RC) were estimated using the Solver function in
195	Microsoft Excel® to minimize Σ (estimated – measured rate)^2.
196	Data of degradation rate as affected by initial protein level was analyzed by simple regression
197	analysis using Minitab®. Significant polynomial effects were considered at probabilities less
198	than 0.05.
199	
200	Results
201	The casein contained 148 mg and the egg powder 103 mg TCA-N/g air dry matter. Data on
202	achieved dosage levels, weights of RC collected and total fluid volumes in the <i>in vitro</i> vessels
203	are shown in Table 1.
203 204	are shown in Table 1.
	are shown in Table 1. Experiment 1
204	
204 205	Experiment 1
204 205 206	Experiment 1 The recovery of a low dosage of casein TCA-N at two temperatures is shown in Fig. 1. There
204 205 206 207	Experiment 1 The recovery of a low dosage of casein TCA-N at two temperatures is shown in Fig. 1. There was a marked difference in the recovery at 2 and 39°C at the first sampling time (3 min) with
204 205 206 207 208	Experiment 1 The recovery of a low dosage of casein TCA-N at two temperatures is shown in Fig. 1. There was a marked difference in the recovery at 2 and 39°C at the first sampling time (3 min) with a value of 106% at 2°C and 56% at 39°C. Corresponding recoveries at 30 min were 88 and
204 205 206 207 208 209	Experiment 1 The recovery of a low dosage of casein TCA-N at two temperatures is shown in Fig. 1. There was a marked difference in the recovery at 2 and 39°C at the first sampling time (3 min) with a value of 106% at 2°C and 56% at 39°C. Corresponding recoveries at 30 min were 88 and

213	Recoveries of casein TCA-N at the first sampling time (2 min) increased dramatically with
214	increasing dosage from 16 and 27% at approximately 500 mg/kg RC (Treatment 3) to 84 and
215	87% at approximately 1700 mg TCA-N/kg RC (Treatment 12) with RC from the dry and
216	lactating cow, respectively (Fig. 2). In absolute terms, this recovery equaled a mean loss of
217	358 TCA-N mg/kg fresh weight RC after one minute of incubation and was relatively
218	constant for all dosage levels (SD = 47; $n = 6$). Egg protein TCA-N recovery after 1 min was
219	on average 103% and seemed unaffected by dosage level (Fig. 2).
220	Degradation of TCA-N
221	Curves for net TCA-N are shown in Fig. 3 and 4. Casein disappeared in a curvilinear fashion
222	and fractional disappearance rates ('c') changed with dosage level. Rate vs. dose level was
223	explained by a polynomial regression ($R^2=0.977$) where the quadratic term of the regression
224	equation differed from zero (P=0.002).
225	Egg protein degradation was relatively constant over time for both inocula. Degradation
226	increased linearly with dosage level (linear term: P<0.001) from an average of 1.48 for the
227	
/	lowest level to 2.95 mg TCA-N/(kg RC x min) TCA N/kg RC/min for the highest dosage
228	lowest level to 2.95 mg <u>TCA-N/(kg RC x min)</u> <u>TCA-N/kg RC/min</u> for the highest dosage level (Table 3). The increase appeared to be curvilinearly related to dosage level, suggesting
228	level (Table 3). The increase appeared to be curvilinearly related to dosage level, suggesting
228 229	level (Table 3). The increase appeared to be curvilinearly related to dosage level, suggesting saturation kinetics. Applying the Michaelis-Menten equation to the egg protein data, resulted
228 229 230	level (Table 3). The increase appeared to be curvilinearly related to dosage level, suggesting saturation kinetics. Applying the Michaelis-Menten equation to the egg protein data, resulted in a V_{max} estimate of 261mg <u>TCA-N/(kg RC x min)</u> TCA-N/kg RC/min and a k _m of 1650 mg
228 229 230 231	level (Table 3). The increase appeared to be curvilinearly related to dosage level, suggesting saturation kinetics. Applying the Michaelis-Menten equation to the egg protein data, resulted in a V_{max} estimate of 261mg <u>TCA-N/(kg RC x min)TCA-N/kg RC/min</u> and a k _m of 1650 mg TCA-N/kg RC as shown in Fig. 5. The casein data did not fit the Michaelis-Menten equation.
228 229 230 231 232	level (Table 3). The increase appeared to be curvilinearly related to dosage level, suggesting saturation kinetics. Applying the Michaelis-Menten equation to the egg protein data, resulted in a V_{max} estimate of 261mg <u>TCA-N/(kg RC x min)TCA-N/kg RC/min</u> and a k _m of 1650 mg TCA-N/kg RC as shown in Fig. 5. The casein data did not fit the Michaelis-Menten equation. Initial rates differed markedly from subsequent rates and even after removal of all first

the differences in TCA-N disappearance of the two proteins. The increases in concentrations

237	over time were similar for all dosage levels and approximately linear for both proteins, with
238	the exception for the lowest casein dose (Treatment 3), which seemed to level off after 60
239	min. Removing casein values for Treatment 3 at time > 60 min and regressing ammonia levels
240	against fermentation time, gave slopes of 1.44±0.061 and 0.52±0.023 mg NH ₃ -N/(kg RC/ <u>x</u>)
241	min) ($R^2 > 0.95$) for casein and egg protein, respectively.
242	
243	Experiment 4
244	The incubation of casein without rumen fluid showed that recovery of soluble N did not
245	change over time and was on average 99% with a range of 95 to 104%.
246	
247	Discussion
248	Measuring protein degradation has been a great challenge over the past decades and no
249	method has yet received wide acceptance by the scientific community. The in sacco technique
250	(e.g. Mehrez and Ørskov, 1977) is the dominating method for estimating rumen protein
251	degradability. The method is labour intensive, cannot be applied to soluble proteins and has
252	inherent problems with microbial N contamination and feed particle loss of undegraded N
253	from the bags (Lopez, 2005).
254	Various in vitro systems have been introduced over the past decades. Some of their major
255	shortcomings are listed in Table 4. In the Cornell Net Carbohydrate and Protein System,
256	Sniffen et al. (1992) separated crude protein into five fractions based on their buffer and
257	detergent solubility and linked these with estimated in vitro enzyme degradation rates
258	(Krishnamoorthy et al., 1983). The method is attractive for reasons of low cost and simplicity
259	but doubt exists as to the similarity of fungal enzyme and bacterial protein degradation. The
260	inhibitor in vitro (IIV) system of Broderick (1987) measures appearance of amino acids and

261 ammonia in the presence of inhibitors of bacterial protein synthesis. The method is suitable 262 for incubations of approximately 3 to 4 h and can give sufficient data for meaningful rate 263 estimates, provided that protein degradation rates are high. The gas *in vitro* method of Raab et 264 al. (1983) estimates protein degradation from ammonia evolution at graded levels of carbohydrate additions but is both expensive, complex and time consuming in its original 265 266 form. The authors have presented mainly 24-h incubations and short incubation times were 267 not investigated to any degree. Some improvements to this method were made recently by 268 Karlsson et al. (2009) and Lorenz et al. (2011) to estimate degradation continuously up to 30 h in the same flask. However, the method has not yet been developed as a reliable routine 269 method for protein rate estimations. 270 Soluble proteins have generally been regarded as being instantly degraded in the rumen 271 272 (Krishnamoorthy, 1983) even though Volden et al. (1998) demonstrated that even amino acids 273 could escape rumen fermentation at a level of 10%. These proteins can be separated from 274 bacterial protein by high-speed centrifugation and measured as loss of proteins from solution (Hedgvist and Udén, 2006) without the need of inhibitors of protein synthesis, which should 275 276 be an advantage in terms of maintaining bacterial activity over a longer time compared to the 277 IIV method.

In the present study, the normal size *in vitro* system of approximately 50 mL was abandoned 278 279 in favor of a macro system with whole rumen contents. This was done in order to create an 280 environment in vitro as close to in vivo conditions as possible. The major drawbacks are a 281 limited fermentation time of approximately 3 h, only applicable to soluble proteins and a reduced number of vessels/run. The large proportions of soluble proteins disappearing before 282 30 min (1st sampling) of fermentation in the study of Hedqvist and Udén (2006) were also 283 confirmed for casein in the present study. Disappearance occurred before 3 min of incubation 284 285 but at 2°C, recovery was approximately complete (Fig. 1) and recovery was also

286	approximately 100% when no rumen fluid was present. Similar casein levels were used in
287	Exp. 1 (approximately 250 mg N/L rumen fluid) as in the study of Hedqvist and Udén (2006)
288	where levels ranged from 100 to 200 mg N/L strained rumen fluid. When casein levels were
289	further increased in Exp. 2, initial recoveries improved asymptotically (Fig. 2) and from these
290	data, a loss of approximately 358 mg TCA-N /kg fresh weight of RC was evident. Adsorption
291	of soluble protein was reported to occur also at low temperatures when proteolytic activity is
292	at a minimum (Nugent and Mangan, 1981; Wallace, 1985). Wallace (1985) reported a
293	maximum binding capacity of 10 µg casein/mg bacterial protein. However, in the study of
294	Hedqvist and Udén (2006), this level was estimated to account only for an initial binding of
295	6% and could not explain the large initial casein loss. Casein structure is unique and caseins
296	are highly surface active forming both micelles and gels under certain conditions (Horne,
297	2002). The drastic reduction in initial disappearance when cooling the RC in the present study
298	can presently only be explained by attachment. It is unlikely that regular precipitation would
299	have been higher at 39 than at 2°C.
300	Protein degradation involves a number of steps before the protein has been completely
301	metabolized. Casein <i>in vitro</i> data from Broderick and Craig (1989) was used by Udén (2000)
302	to formulate a model consisting of three extracellular (protein, peptides and amino acids), one
303	intracellular (amino acids) and one total ammonia N-pool. Parameter estimations of the model
304	revealed that degradation of casein to peptides and the uptake of peptides had similar rates. It
305	was therefore concluded that estimating ruminal protein degradation from the appearance of
306	N in the form of fermentation end-products (ammonia and amino acids) may not be correct
307	using a one-pool model.
308	As protein degradation is defined according to method employed, rate estimates may differ
200	respective engineering according to memory engine year, rate commutes muy anter

309 irrespective of proteolytic activity. Appearance of amino acids and/or ammonia is used in

both the IIV system of Broderick (1987) and in the gas-*in vitro* system of Raab et al (1983).

311 Loss of TCA-precipitable N was used in the method of Hedqvist and Udén (2006) and in the 312 present study. In electrophoretic studies, loss of specific proteins are defined as degradation 313 (e.g. McNabb, 1994; Messman and Weiss, 1994). Using appearance of *e.g.* ammonia by the 314 gas-*in vitro* method includes both the degradation of protein to peptides and amino acids, 315 absorption and catabolism. Disappearance measurements by *in vitro* or electrophoretic 316 methods assume that degradation has occurred when the protein has been sufficiently reduced 317 in size to resist precipitation, or is too small for electrophoretic detection. As an important 318 goal of protein degradation measurements is the prediction of feed amino acid delivery to the 319 small intestine, it seems logical that residual feed N in all forms from amino acids to intact 320 proteins should be the ideal target. All present *in vitro* methods based on protein loss, ignore degradation beyond the lowest size detection limit which is particularly serious for the 321 322 electrophoretic methods.

323 Fractional disappearance of casein (TCA-N) was rapid (0.91 to 1.75 /h) in the present study 324 and highest at the intermediate level (Table 2). The reason for a higher fractional degradation 325 at the intermediate level is not easily understood. Levels used were approximately equivalent 326 to 270 to 1020 g of soluble protein to a cow with 100 kg of rumen contents. Within this range 327 of casein levels, no evidence could be found for any saturation phenomena. Broderick and 328 Clayton (1992), however, found evidence of saturation kinetics for casein degradation with 329 similar levels as in Exp. 2 using the inhibitor *in vitro* method. When they estimated rate as V_{max}/k_m from this experiment, casein degradation rate approached 1.0 /h. This rate estimate 330 331 should be the theoretical rate at an infinitesimal substrate level. Conventional rate estimations 332 have shown considerably lower rates, normally less than 0.4 /h (Broderick and Clayton, 1992; 333 Broderick et al., 2004a, b).

Both inoculas displayed similar degradation rates. The lactating cow consumed 4.5 times (22
to 23 kg DM) as much feed as the cow at maintenance but, as the comparison was restricted to

336 two cows, it cannot be regarded as a final proof of no difference. In the study of Broderick et 337 al. (2004a) using casein, solvent soybean meal and expeller soybean meal, two feeding levels 338 (1X and 3X maintenance) and three inocula sampling times (0, 2 and 4 h after feeding), there 339 was an overall effect of feeding level (P<0.001) as well as a time and a time x level effect of the inocula on all individual feeds (0.001<P<0.032). 340 341 Egg protein initial recoveries seemed unaffected by levels above 800 mg N/kg RC, but the 342 choice of protein levels prohibited detection of any minor protein losses. Ovalbumin is found 343 mainly in egg white and its structure belongs to the serpin family. The proteins in this family 344 are known for binding to enzymes and immobilizing them, but ovalbumin itself does not 345 possess any protease inhibitory effects (Huntington and Stein, 2001). In spite of this, 346 degradation of ovalbumin is very slow (McNabb et al., 1994) which was confirmed in the 347 present study. McNabb et al. (1994) found a discrete lag phase of 16 h and a rate of 0.08 /h for 348 the intact protein bands in their *in vitro* study. In the present study, no obvious lag phase was 349 seen and degradation proceeded linearly within the 3-h incubation. The fact that egg protein 350 rate seemed to display saturation kinetics (Fig. 5) in contrast to case in (Fig. 6) may suggest 351 limited microbial enzyme capacity for this protein. 352

353 Conclusions

Casein behaved totally different from egg protein by displaying an immediate disappearance from the precipitable fraction of the *in vitro* supernatant at a level of 358 TCA-N mg/kg fresh weight of RC. For egg protein and for casein incubated at 2°C, initial recovery was nearly complete. Increasing casein dosages made estimates of recovery more reliable, but the estimated rate differed with dosage and was highest at the intermediate level (6 g N/tube). Egg protein degraded linearly and displayed evidence of saturation kinetics, whereas this could not be demonstrated for casein. The macro-*in vitro* system appears to be a promising in

- terms of ease of handling and operates under more rumen-like conditions. The drawbacks are
- 362 reduced number of vessels and that only short incubation times with soluble substrates are
- 363 presently possible
- 364

365 Acknowledgments

- 366 The author gratefully acknowledges support from The Swedish Farmers' Foundation for
- 367 Agricultural Research for the project V0530019.
- 368

369

370 **References**

- 371 Broderick, G. A., 1987: Determination of protein degradation rates using a rumen in vitro
- 372 system containing inhibitors of microbial nitrogen metabolism. *British Journal of Nutrition*
- **58**, 463-475.
- 374 Broderick, G.A.; Clayton, M.K., 1992: Rumen protein degradation rates estimated by non-
- 375 linear regression analysis of Michaelis-Menten *in vitro* data. *British Journal of Nutrition* 67,
- 376 27-42.
- 377 Broderick, G. A.; Craig, W. M., 1989: Metabolism of peptides and amino acids during in vitro
- protein degradation by mixed rumen organisms. *Journal of Dairy Science* **72**, 2540-2548.
- 379 Broderick, G.A.; Murphy, M.L, Udén, P., 2004a: Effect of inhibitor concentration and end-
- product accumulation on estimates of ruminal *in vitro* protein degradation. *Journal of Dairy*
- 381 *Science* **87**, 1360-1371.
- 382 Broderick, G.A.; Udén, P.; Murphy, M.L.; Lapins, A., 2004b: Sources of variation in rates of
- in vitro ruminal protein degradation. Journal of Dairy Science 87, 1345-1359.

- Hedqvist, H.; Udén, P., 2006: Measurement of soluble protein degradation in the rumen.
- 385 Animal Feed Science and Technology **126**, 1-21.
- Horne, D.S., 2002: Casein structure, self-assembly and gelation. *Current Opinion in Colloid*
- *and Interface Science* **7**, 456-461.
- Huntington, J.A.; Stein, P.E., 2001: Structure and properties of ovalbumin. *Journal of*
- 389 *Chromatography B* **756**, 189-198.
- 390 Karlsson, L.; Hetta, M.; Udén, P.; Martinsson, K., 2009: New methodology for estimating
- rumen protein degradation using the *in vitro* gas production technique. *Animal Feed Science*
- *and Technology* **153**, 193–202.
- 393 Krishnamoorthy, U.; Sniffen, C.J.; Stern, M.D.; Van Soest, P.J., 1983: Evaluation of a
- 394 mathematical model of rumen digestion and an *in vitro* simulation of rumen proteolysis to
- estimate the rumen-undegraded nitrogen content of feedstuffs. *British Journal of Nutrition* **50**,
- **396 555-568**.
- 397 Lopez, S., 2005: In vitro and in situ techniques for estimating digestibility. In: Dijkstra, J.;
- 398 Forbes, J.M.; France, J. (eds.), *Quantitative Aspects of Ruminant Digestion and Metabolism*.
- 399 CABI Publishing, Wallingford, UK.
- 400 Lorenz, M.M., Karlsson, L., Hetta, M., Udén, P., 2011. Recycling of microbial N and
- 401 estimation of protein degradation by in vitro gas production. Animal Feed Science and
- 402 *Technology* **170**, 111–116.
- 403 McDougall, E. I., 1948: Studies on ruminant saliva. I. The composition and output of sheep's
- 404 saliva. *Biochemical Journal* **43**, 99–109.
- 405 McNabb, W.C.; Spencer, D.; Higgins T.J.; Barry, T.N., 1994: In vitro rates of rumen
- 406 proteolysis of ribulose-1,5-bisphosphate carboxylase (Rubisco) from lucerne leaves, and of

- 407 ovalbumin, vicilin and sunflower albumin 8 storage proteins. *Journal of the Science of Food*
- 408 *and Agriculture* **64**, 53-61.
- 409 Mehrez, A.Z.; Ørskov, E.R., 1977: A study of the artificial fibre bag technique for
- 410 determining the digestibility of feeds in the rumen. Journal of Agricultural Science
- 411 (*Cambridge*) **88**, 645–650.
- 412 Messman, M.A.; Weiss, W.P., 1994. Use of electrophoresis to quantify ruminal degradability
- 413 of protein from concentrate feeds. *Animal Feed Science and Technology* **49**, 25-35.
- 414 Nugent ,J.H.A.; Jones, W.T.; Jordan, D.J.; Mangan, J.L., 1983: Rates of proteolysis in the
- rumen of the soluble proteins casein, fraction 1 leaf protein, bovine serum albumin and bovine
- submaxillary mucoprotein. *British Journal of Nutrition* **50**, 357-368.
- 417 Nugent, J.H.A.; Mangan, J.L., 1981: Characteristics of the rumen proteolysis of fraction 1
- (18S) leaf protein from lucerne (Medicago sativa L.). *British Journal of Nutrition* **46**, 39–58.
- 419 Raab, L.; Cafantaris, B.; Jilg, T.; Menke, K.H., 1983: Rumen protein degradation and
- 420 biosynthesis 1. A new method for determination of protein degradation in rumen fluid *in*
- 421 *vitro. British Journal of Nutrition* **50**, 569-582.
- 422 Sniffen, C.J.; O'Connor, J.D.; Van Soest, P.J.; Fox, D.G.; Russel, J.B., 1992: A net
- 423 carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein
- 424 availability. *Journal of Animal Science* **70**, 3562-3577.
- 425 Spencer, D.; Higgins, T.J.V.; Freer, M.; Dove, H.; Coombe, J.B., 1988: Monitoring the fate of
- dietary proteins in rumen fluid using gel electrophoresis. British Journal of Nutrition 60, 241-
- 427 247.
- 428 Udén, P., 2000: Ruminal metabolism of buffer soluble proteins, peptides and amino acids *in*
- 429 *vitro*. In: McNamara, J.; France, J.; Beever, D. (eds.). Modelling Nutrient Utilization in Farm
- 430 Animals, CABI Publ., Wallingford, UK, pp. 63-72.

- 431 Udén, P., 2011: Using a novel macro in vitro technique to estimate differences in absorption
- 432 rates of volatile fatty acids in the rumen. Journal of Animal Physiology and Animal Nutrition **95**, 27–33 433
- 434 Volden, H.; Velle, W.; Harstad, O.M.; Aulie, A.; Sjaastad, V., 1998: Apparent ruminal
- 435 degradation and rumen escape of lysine, methionine, threonine administered intraruminally in
- mixtures to high yielding cows. Journal of Animal Science 76, 1232-1240. 436
- 437 Wallace, R.J., 1985: Adsorption of soluble proteins to rumen bacteria and the role of
- nal of N. 438 adsorption in proteolysis. British Journal of Nutrition 53, 399-408.
- 439

	De	osage			Dry cov	W		Lactating	cow
Treatment	Air dry weight	Soluble N	TCA-N	RC	Liquids [*]	TCA-N†	RC	Liquids [*]	TCA-N†
	g	g	g	kg	L	mg/kg RC	kg	L	mg/kg RC
Exp. 1 - casein									
0	0	0	0				5.00	7.21	0
1	7.25	1.09	1.07				5.00	7.28	214
Exp. 2 - casein									
0	0	0	0	6.80	10.05	0	6.53	9.67	0
3	20	3.02	2.96	6.92	10.19	428	6.35	9.56	466
6	40	6.04	5.92	6.94	10.22	853	6.51	9.75	909
12	80	12.08	11.84	7.31	10.47	1620	6.46	9.65	1830
Exp. 3 - egg prote	ein								
0	-0	0	0	7.65	10.79	0	7.48	10.59	0
6	60	7.14	6.42	7.75	10.60	828	7.34	10.40	875
12	120	14.28	12.84	7.66	10.62	1680	7.46	10.46	1720
24	240	28.56	25.68	7.01	9.90	3660	7.56	10.40	3400

Table 1 Dosage levels of casein and egg protein, amounts of fresh rumen contents (RC) and liquid volumes obtained from a dry and/or lactating cow in Exp. 1 to 3. Treatment numbers refer to approximate TCA-N dosages in g/tube

*Total liquid volumes after addition of 3 (Exp. 1) or 4 (Exp. 2 and 3) litres of McDougall's buffer

†Trichloroacetic acid

Table 2 Exp2: Parameters obtained from fitting an exponential function* to the recovery data of casein TCA-N (Fig. 3) from in vitro incubation with rumen contents from a dry and a lactating cow and three levels of casein (3, 6 and 12 g of TCA-N/tube)

	Dry cow			Lacta	ting cow		P ^B =		R ²
Treatment level:	3	6	12	3	6	12	L	Q	
a	-0.029	0.013	0.022	0.017	0.024	0.048			
b	0.211	0.614	0.817	0.292	0.582	0.829			
c (/min)	0.0212	0.0292	0.0152	0.0205	0.0276	0.0172	0.269	0.002	0.977
c (/h)	1.27	1.75	0.91	1.23	1.66	1.03			
R ²	0.940	0.990	0.998	0.997	0.996	0.999			

*Y = a + bxe^(c*time); ^BP = probability for linear (L) and quadratic (Q) treatment effects.

for .

Table 3 Exp 3: Linear regression of TCA-N (mg/kg rumen contents) upon time (min) from in vitro incubation of egg protein (Fig. 4) with rumen contents from a dry and a lactating cow and three levels of egg protein (6, 12 and 24 g of TCA-N/tube)

	Dry co	W		Lactat	ing cow		P*=	R^2
Treatment:	6	12	24	6	12	24	Linear	
Intercept	732	1556	3569	829	1679	3418		
Slope	-1.59	-2.19	-2.89	-1.37	-2.03	-3.01	< 0.001	0.969
Slope R ²	0.89	0.88	0.88	0.97	0.94	0.68		

*P = probability for linear treatment effects.

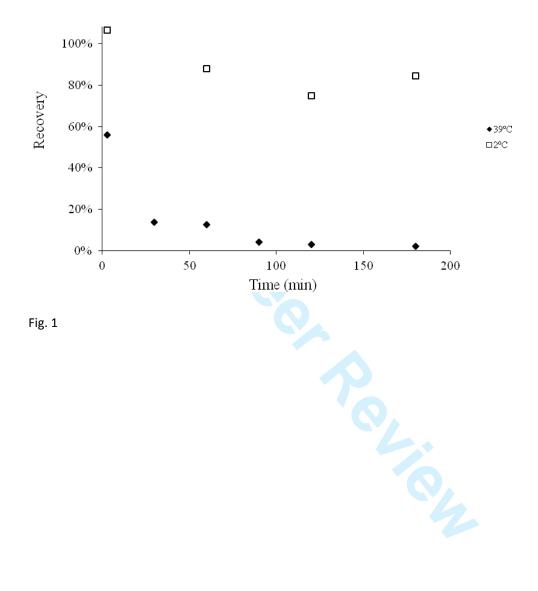
me.

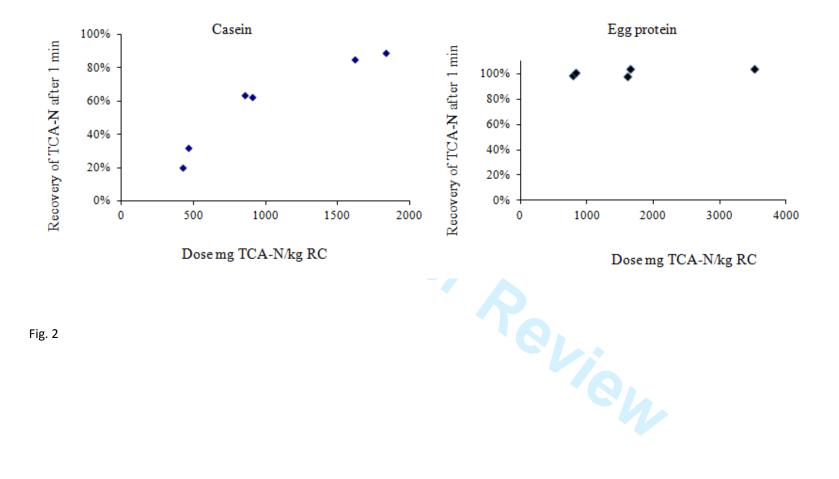
Table 4 In vitro methods and detection techniques used for estimating protein degradation

Method	Degradation criteria	Analyte/method	Major problems	Reference	
Enzymes	Protein precipitation	N	Fungal enzyme degradation may differ from bacterial	Krishnamoorthy et al. (1983) Sniffen et al. (1992)	
Rumen fluid:					
Conventional	Protein precipitation	Ν	Soluble proteins only	Hedqvist and Udén (2006)	
	Protein precipitation	Gel electrophoresis	Laborious, measures only loss of intact proteins	Nugent et al. (1983) Messman and Weiss (1994) Spencer et al. (1988) McNabb et al. (1994)	
	End-product formation	Ammonia and gas	Laborious	Raab et al (1983)	
Inhibited	End-product formation	Amino acids and ammonia	Dying culture	Broderick (1987)	
Whole rumen contents	Protein precipitation	N	Soluble proteins only Limited no of vessels	This paper	
			ie,		

Figure titles:

Figure 1 Exp. 1: Recovery of TCA-precipitable N (TCA-N) after *in vitro* incubation of casein at 2 and 39°C.


Figure 2 Exp. 2 and 3: Recovery of TCA-precipitable N (TCA-N) from the first sampling time (1 min) after *in vitro* incubation at three different dosage levels of casein and egg protein with rumen contents (RC) from either a dry or a lactating cow.


Figure 3 Exp. 2: Recovery of TCA-precipitable N (TCA-N) and NH3-N concentrations at different incubation times *in vitro* at three dosage levels of casein with rumen contents (RC) from either a dry or a lactating cow.

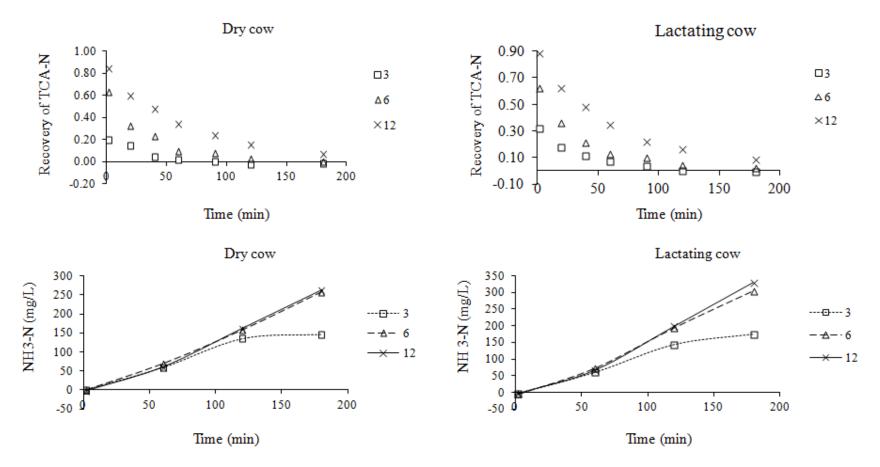

Figure 4 Exp. 3: Recovery of TCA-precipitable N (TCA-N) and NH3-N concentrations at different incubation times *in vitro* at three dosage levels of egg protein with rumen contents (RC) from either a dry or a lactating cow.

Figure 5 Exp. 3: Disappearance of egg protein (mg TCA-N/kg rumen contents/min) *versus* dosage level (mg TCA-N/kg rumen contents) using rumen contents (RC) from either a dry or a lactating cow (n = 6) with estimates of Michaelis-Menten kinetic parameters (V_{max} =maximum rate; K_m =affinity constant).

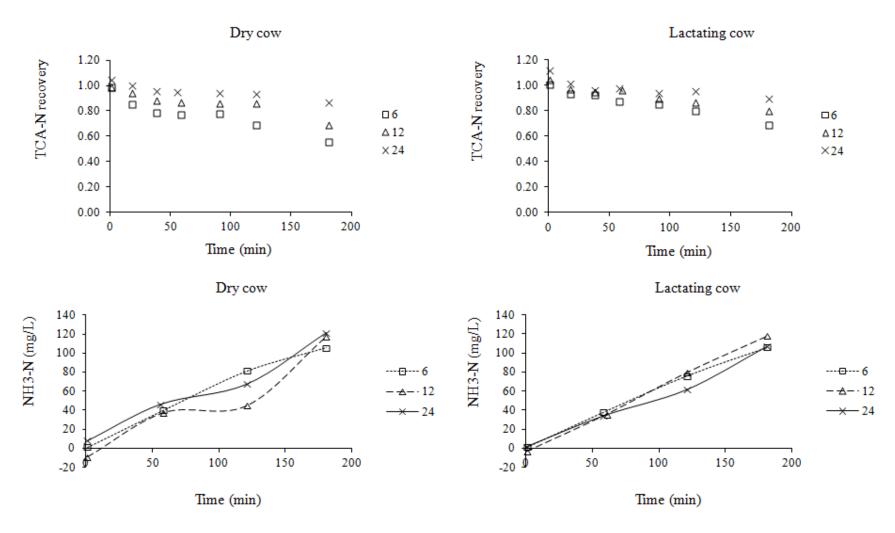
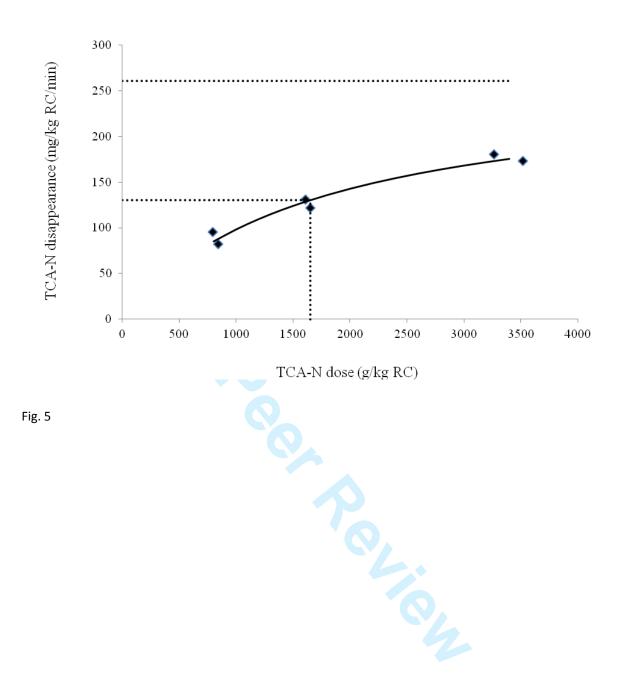



Fig. 4

