
 

 

This is an author produced version of a paper published in 

Polyhedron. 

This paper has been peer-reviewed and is proof-corrected, but does not 

include the journal pagination. 

Citation for the published paper: 

Lage Pettersson, Dan-Göran Lyxell and Ingmar Persson. (2014) A structural 

study of D-mannitolatodimolybdate(VI) complexes in aqueous solution. 

Polyhedron. Volume: 81, pp 308-311. 

http://dx.doi.org/10.1016/j.poly.2014.06.035. 

Access to the published version may require journal subscription. 

Published with permission from: Elsevier Ltd.. 

Standard set statement from the publisher: 

“NOTICE: this is the author’s version of a work that was accepted for publication in 

<Polyhedron>. Changes resulting from the publishing process, such as peer review, 

editing, corrections, structural formatting, and other quality control mechanisms may not 

be reflected in this document. Changes may have been made to this work since it was 

submitted for publication. A definitive version was subsequently published in 

POLYHEDRON, [VOL81, (15 Oct 2014)] DOI#10.1016/j.poly.2014.06.035¨ 

 
Epsilon Open Archive http://epsilon.slu.se 



 1 

A structural study of D-mannitolatodimolybdate(VI) complexes in aqueous 

solution 
 

 

Lage Pettersson,
 a,†

 Dan-Göran Lyxell
a
 and Ingmar Persson

b,* 

 
 

a
 Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden,  

b
 Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, 

P.O. Box 7015, SE-750 07 Uppsala, Sweden. 

 

 

Abstract 

The structure of the D-mannitolatodimolybdate(VI) complex has been determined by means 

large angle X-ray scattering (LAXS) in aqueous solution at two pH values, 2.0 and 5.5. The 

two complexes have in principle the same structure in aqueous solution, two face-sharing 

molybdate(VI) octahedra connected to one D-mannitol ligand, as previously observed in the 

solid state. In the deprotonated form of the complex, pH=5.5, the D-mannitol ligand has lost a 

proton and as a result the Mo⋅⋅⋅Mo distance is 0.054 Å shorter than the protonated form, 

pH=2.0. This indicates that it is a proton on an oxygen shared by molybdate groups that leaves 

the complex at deprotonation and forces the molydate(VI) octahedra even closer to each other. 
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Introduction 

The molybdate(VI)-D-mannitol system in aqueous solution has been studied extensively as it 

has some very interesting properties. One is the high optical activity which increases by 

addition of strong acid [1-7]. This system has many similarities with pure anion hydrolysis 

systems and can be used as model system for these. A large number of potentiometric, 

polarimetric, conductometric and spectrophotometric investigations has been reported for this 

system [8]. The equilibria over the range 1 <  log[H
+
] < 10 can be written as 

pH
+
 + q MoO4

2
 + r C6H8(OH)6  ⇆  (H)p(MoO4)q(C6H8(OH)6)r

(p-2q)+
 

where C6H8(OH)6 is D-mannitol. It was found that complexes with the (p,q,r) compositions 

(0,1,0), (2,2,1), (3,2,1) are formed within well-defined regions of domination, Figure 1. The 

diagram was constructed using the equilibrium constants reported by Pettersson [8], 

determined at low molybdate(VI) concentrations in 3.0 M Na(ClO4) ionic medium. Attempts 

have been made to crystallize the predominating complexes using molar ratios of acid, 

molybdate(VI) ions and D-mannitol corresponding to the complex composition (p,2,1), with p 

= 2.0, 2.5, 3.0, 3.5, 4.0. However, the only crystalline phase obtained did correspond to the 

composition (3,2,1)
 
and contained discrete dimeric  [Mo2O5{O3(OH)C6H8(OH)2}]


 anions [9], 

Figure 2. A striking feature is that the two Mo-octahedra in the solid phase are face-shared 

which is very uncommon.  

 
 

Figure 1.  Complex distribution diagram of the dimolybdate(VI)-D-mannitol 

system in aqueous solution as function of acidity from reference 8 
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Figure 2. The structure of [Mo2O5{O3(OH)C6H8(OH)2}]

 from the crystal structure used 

in the model calculation of theoretical contribution to the LAXS function. 

 

The aim of this study is to determine whether the kind of structure reported in the solid state 

also is the dominating one in aqueous solution, and if the structure will change with degree of 

protonation. Large angle X-ray scattering (LAXS) experiments have been applied as this 

method gives information of all distances in the studied sample contrary to EXAFS where 

only the distances around the absorbing atom are observed. Furthermore, long and diffuse 

distances are detectable by LAXS, but not by EXAFS [10], which is of particular interest in 

the study of large complexes in solution as in this case.  Measurements were made on two 

solutions with CMo = 1.50 moldm
-3

 and CMannitol = 0.76 moldm
-3

 at pH = 2.0 and 5.5 to 

maximize the content of the individual complexes [Mo2O5{O3(OH)C6H8(OH)2}]
-
 and 

[Mo2O5{O3(OH)C6H8O(OH)}]
2-

 (vertical lines in the distribution diagram, Figure 1). To 

obtain the high concentration of the complexes needed for the LAXS measurements, lithium 

was used as counter cation. The compositions of the studied solutions are given in Table 1. 

 

Experimental 

Chemicals. D-mannitol, C6H8(OH)2 (Difco Laboratories and Bakers, p.a.), molybdenum(VI) 

oxide, MoO3 (E. Merck, p.a.), lithium molybdate(VI), Li2MoO4 (Aldrich, 99 %) and 

hydrochloric acid (E. Merck, p.a.) were used as purchased. 

Preparation of solutions. Litium molybdate and freshly recrystallized D-mannitol were 

dissolved in water and hydrochloric acid was added to pre-decided concentrations and pH 

values, see Table 1. The selected concentrations were chosen to get as high concentrations of 
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the complexes as possible without any risk of precipitation during the measurements. The pH 

values during the addition of hydrochloric acid at the preparation of the solutions were 

followed by a pH meter with a standard glass electrode. The chosen pH values are based on 

measurements reported elsewhere [8], where the ionic strength, 3.0 moldm
-3

 (NaClO4) is 

slightly higher than in the studied solutions, 2.25 and 1.51 moldm
-3

 for solutions MoMa1 and 

MoMa2, respectively. This difference is relatively small and it is therefore assumed that the 

complex distribution as function of pH is similar in the solutions used in this study as in the 

potentiometric and spectrophotometric studies reported previously, Figure 1 [8].    

 

Table 1. Concentrations in moldm
-3

 of the dinuclear molybdate(VI)-D-mannitol complexes 

(H)p(MoO4)q(C6H8(OH)6)r
(p-2r)+

 in aqueous solution used in the LAXS studies at ambient room 

temperature; MoMa1 and MoMa2 correspond to the complexes with p,q,r values of 2,2,1 and 

3,2,1, respectively. 

 

Sample pH [Mo
VI

] [D-mannitol] [Li
+
] [H

+
] [Cl

-
] [H2O] /gcm

-3 /cm
-1

 

MoMa1 5.50 1.500 0.760 1.500 0 0 45.965 1.2042 10.047 

MoMa2 2.00 1.500 0.760 1.500 0.775 0.775 44.903 1.2000 10.184 

 

Large angle X-ray scattering measurements. A large-angle θ-θ diffractometer was used to 

measure the scattering of Ag-Kα radiation (λ = 0.5609 Å) from the free surface of aqueous 

solutions of D-mannitolatodimolybdate(VI) complexes. The solutions were contained in a 

Teflon cuvette inside a radiation shield with beryllium windows. After monochromatization of 

the scattered radiation by a focusing LiF crystal, the intensity was measured by means of a 

scintillation counter at 450 discrete -values in step scan mode with an interval of  of 0.10 
o
 

for 0.5 <  < 30 
o
 and 0.25 

o
 for 25 <  < 65 

o
 of the scattering angle 2, accumulating at least 

40,000 counts twice for angle, which corresponds to a statistical error of 0.5 %. The 

reflections from a gold plate were used to calibrate the scattering angle 2 of the goniometer. 

The experimental set-up and the theory of data treatment and modelling have been presented 

elsewhere [11]. All data treatment was carried out by means of the KURVLR program [12]. 

The experimental intensities were normalised to a stoichiometric unit of volume containing 

one molybdenum atom, using the scattering factors f for neutral atoms, including corrections 

for anomalous dispersion [13], f’ and f’’, and values for Compton scattering [14]. Least-
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squares refinements of the model parameters were carried out by means of the STEPLR 

program [15], where the expression U = w(s)[s.iexp(s) - s.icalc(s)]
2
 is minimised. The 

refinement of the model parameters was made for data in the high s-region where the intensity 

contribution from the long-range distances can be neglected [16]. In order to obtain a better 

alignment of the intensity function before the refinements, a Fourier back-transformation 

procedure was used to correct the iexp(s) functions by removing spurious non-physical peaks 

below 1.2 Å in the experimental radial distribution function (RDF) [17]. The estimated 

standard deviations (esd’s) given within parenthesis in Table 2 include only statistical errors, 

while in the text the esd’s include also the systematic errors. 

 

Results and Discussion 

The LAXS data on two aqueous solutions of 0.750 mol·dm
-3

 D-mannitolatodimolybda-

te(VI) display very similar radial distribution functions with a mean Mo-O bond distances of 

1.8 Å, and Mo-O/C distances and intramolecular distances within the D-mannitolatodimolyb-

date(VI) complex at 2.6, 3.1, 4.3 and 5.4 Å, Figures 1, 2 and S1. The applied coordinates in 

the model of the D-mannitolatodimolybdate(VI) complex were derived from the crystal 

structure of the protonated D-mannitolatodimolybdate(VI) complex [9], the Cartesian 

coordinates are given in Table S1, and all intramolecular distances in this complex were 

calculated by the KURVLR and STEPLR programs. The Mo···Mo distance in the two 

complexes is slightly different, Figure S1, and was determined by letting the z coordinate for 

the atom Mo2 be refined, Table S1. The Mo···Mo distance was determined to 3.075(6) and 

3.129(6) Å for the (2,2,1) and (3,2,1) solutions, respectively. The large peak at 3.0 Å in the 

radial distribution function (RDF) contains also the O···O distance from the aqueous bulk, 

refined to 2.864(6) and 2.860(6) Å, respectively, which is in the expected range for such 

distances [18]. It has not been possible to determine the structure of the hydrated lithium ion. 

However, the Li-O bond distance has been set 1.945 Å, which is the mean distance of four-

coordinate lithium ion with oxygen donor ligands [19]. The applied Li-O bond distance 

affects the determination of the structure of the studied D-mannitolitodimolybdate(VI) 

complex very little as the dominating distances do not coincide. The main contribution to the 

3.1 Å peak originates from Mo⋅⋅⋅Mo interactions, and this short distance strongly supports the 

existence of a dimolybdate group with face-sharing octahedra in both solutions.  

In the (2,2,1) solution, containing the non-protonated species, the Mo⋅⋅⋅Mo distance is 

3.075(6) Å and l = 0.13(1) Å, where l is the atomic displacement factor. In the (3,2,1) solution 
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the Mo⋅⋅⋅Mo distance is 3.129(6) Å and l = 0.15(1) Å. The latter distance is in close 

agreement with the one in the solid state, 3.1435(3) Å. The present study has shown that the 

structural feature of the solid face structure prevails in aqueous solution and the Mo⋅⋅⋅Mo 

distance increases when a proton is attached to a face sharing oxygen (Fig. 2). 

The fits of the RDFs and intensity functions of the (2,2,1) and (3,2,1) solutions are given 

in Figures 3a and 3b, respectively, and the final structure parameters, besides those of the of 

D-mannitolitodimolybdate(VI) complex in Table S1. The experimental curves (Fig. 3a and 

3b) show two distinct peaks at 3.1 and 4.2 Å in perfect agreement with the calculated intensity 

curve and radial distribution function, using the atomic coordinates from the X-ray structure. 

 

Table 2. Mean bond distances, d/Å, number of distances, N, and temperature coefficients, 

b/Å
2
, in the LAXS studies of the D-mannitolatodimolybdate(VI) complex in in aqueous 

solution at room temperature. The estimated standard deviations given within parenthesis 

include only statistical errors. 

Species Interaction N d b  

2,2,1   Mo···Mo 1 3.075(3) 0.0032(3)  

Water bulk O···O 2 2.863(4) 0.0217(4) 

Li(H2O)4
+ 

Li-O 4 1.945 0.0075 

 

3,2,1   Mo···Mo 1 3.129(3) 0.0039(3)  

Water bulk O···O 2 2.860(4) 0.0200(4) 

Li(H2O)4
+ 

Li-O 4 1.945 0.0075 

 

 

 

 

 

 

 

 

 

 



 7 

Figure 3a.  
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Figure 3b. 
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Figure 3. Experimental and theoretical plots for the solutions. Top panel, upper part, offset 

20, shows the separate model contributions: a/ (2,2,1) and b/ (3,2,1) D-mannitolatodimolyb-

date(VI) complexes – purple line, bulk water < 3.5 Å - orange line, Li(OH2)4
+
 - green line, and 

hydrated chloride ion – light blue line. Top panel, lower part, shows the experimental radial 

distribution functions, D(r)  4r
2
o - red line, sum of the calculated peak shapes - black line, 

and the difference between the experimental and model functions – blue line. Bottom panel 

shows the reduced LAXS intensity functions, si(s) (black line), and calculated model 

contributions (red line). 

 

Conclusion 

The D-mannitolatodimolybdate(VI) complex has an unusual structure with two face-sharing 

molybdate(VI) octahedra connected to one D-mannitol ligand in solid state [9]. This study has 

proven that the structure remains also in aqueous solution. This complex loses a proton when 

increasing pH from 2.0 to 5.5, Figure 1. As the already very short Mo⋅⋅⋅Mo distance, 2.129(6) 

Å in the H3(MoO4)2(C6H8(OH)6)
-
 complex at pH 2.0 decreases to 3.075(6) Å in the 

deprotonated complexes at pH 5.5, H2(MoO4)2(C6H8(OH)6)
2- 

it strongly indicates that that 

proton on a D-mannitol ligand oxygen binding to both molybdenum atoms.  
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