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Abstract 17 

Septic tanks with subsequent soil treatment systems (STS) are a common treatment technique 18 

for domestic wastewater in rural areas. Phosphorus (P) leakage from such systems may pose a 19 

risk to water quality (especially if they are located relatively close to surface waters). In this 20 

study, six STS in Sweden (11 to 28 years old) were examined. Samples taken from the 21 

unsaturated subsoil beneath the distribution pipes were investigated by means of batch and 22 

column experiments, and accumulated phosphorus were characterized through X-ray 23 

absorption near edge structure (XANES) analysis. At all sites the wastewater had clearly 24 

influenced the soil. This was observed through decreased pH, increased amounts of oxalate 25 

extractable metals and at some sites altered P sorption properties. The amount of accumulated 26 

P in the STS were found to be between 0.32 and 0.87 kg m-3, which in most cases was just a 27 

fraction of the estimated P load (< 30%). Column studies revealed that high P concentrations 28 

(up to 6 mg L-1) were leached from the material when deionized water was applied. However, 29 

the response to deionized water varied between the sites. As evidenced by XANES analysis, 30 

aluminium phosphates or P adsorbed to aluminium (hydr)oxides, as well as organically bound 31 

P, were important sinks for P. Generally soils with a high content of oxalate-extractable Al 32 

were also less vulnerable to P leakage. 33 

 34 

1 Introduction 35 

Phosphorus (P) discharge from anthropogenic sources is a crucial factor for eutrophication of 36 

many inland aquatic systems worldwide (Smith, 2003). In most areas, agricultural activities 37 

are believed to account for the majority of the P discharge on an annual basis (e. g. Smith et 38 

al., 2005; Brandt et al., 2009) . The contribution from onsite wastewater treatment systems 39 
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(OWTs) is smaller but they can still be a relevant P source, especially in areas such as the 40 

Baltic sea region where the reduction of P loads is of high priority (Boesch et al., 2006; Wulff 41 

et al., 2007)  42 

Among OWTs, the use of septic tanks with subsequent soil treatment systems (STS) is the 43 

most predominant treatment technique for domestic wastewater. The use of STS is extensive 44 

in rural parts of Australia, North America, Canada and parts of Europe in rural areas (Butler 45 

& Payne, 1995; USEPA, 2002; Beal et al., 2005; Weiss et al., 2008; Gill, 2011; Motz et al., 46 

2012). In STS, the unsaturated subsoil beneath the soil trench and above the water table can 47 

be defined as the overall treatment system (Gill et al., 2009). In clay soils (which are not 48 

suitable for infiltration) the STS can be constructed using imported sand. The wastewater then 49 

has to be drained out at the bottom of the system and piped to a surface recipient.  50 

Phosphorus removal in STS is attributed to chemical precipitation and sorption processes in 51 

the soil matrix. Formation of Al(III) and Fe(III)  (hydr)oxide surface complexes or 52 

precipitation of  Al(III), Fe(III)  and/or Ca phosphates are all possible attenuation mechanisms 53 

(Robertson, 2003; Eveborn et al., 2012). In addition Fe(II) precipitates may form at low redox 54 

potential (Zanini et al., 1998). 55 

From a recipient perspective it has been shown that OWT systems can be a significant factor 56 

for the P status of freshwaters under certain conditions (Macintosh et al., 2011; Withers et al., 57 

2011); these authors suggested that the observed impacts are attributed to poor design or 58 

insufficient maintenance of the treatment systems rather than general leakage. However, in 59 

the scientific literature there has been observations of both high, variable and low P removal 60 

(e.g. Carroll et al., 2006; Lowe & Siegrist, 2008; Robertson, 2008; Eveborn et al., 2012; 61 

Robertson, 2012).  62 
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As support within management of decentralized wastewater sources, knowledge regarding 63 

long term P removal in STS and the P immobilization/mobilization mechanisms involved is 64 

important. Eveborn et al. (2012) used a mass balance approach to assess the P removal 65 

capacity of the unsaturated subsoil in a Swedish STS. The study gave evidence for a very poor 66 

P removal (~12%), but was limited to four sites with comparably high P loads. The aim of this 67 

study was to explore the validity of the results by performing additional (simplified) mass 68 

balance calculations and investigate both accumulation and mobility of P in the unsaturated 69 

subsoil of old STS. Specific aims were to: 70 

1. Investigate the overall removal capacity in the unsaturated subsoil of the systems by 71 

calculating the amount of accumulated P. 72 

2. Study the P leaching and P removal potential of soil materials from STS through pilot 73 

scale column experiments with reconstructed bed profiles.  74 

3. Investigate the mechanisms behind the observed P retention and P release by 75 

evaluation of data from batch experiments and physical/chemical characterization 76 

(including X-ray absorption near edge structure (XANES) measurements). 77 

2 Materials and Methods 78 

2.1  Investigated sites 79 

Six STS located in various parts of Sweden were investigated: Tullingsås (Tu) near Östersund 80 

N 63° 49.17', E 15° 31.09', Biverud/Glanshammar (Gl) near Örebro N 59° 19.95', E 15° 81 

27.90', Knivingaryd (Kn) near Nybro N 56° 54.45', E 15° 57.44', Luvehult (Lu) near Nybro N 82 

56° 52.59', E 16° 6.95', Ringamåla (Ri) near Karlshamn N 56° 21.94', E 14° 44.26' and 83 

Halahult (Ha) near Karlshamn N 56° 14.05', E 14° 58.06'. Among these sites Lu and Gl were 84 
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traditional single-household systems whereas the other ones served between 40 and about 200 85 

persons each (Table 1). The age of the sites varied between 11 and 28 years, the hydraulic 86 

load was between 0.9 and 33 cm d-1 and the estimated P load was between 30 and 540 g m-2 87 

yr-1 (Table 1). At the Kn site a lined pond (open to the air) was used as a pre-treatment step 88 

for particle removal while at all other sites septic tanks or similar sludge removal devices 89 

were used. The Tu, Ri and Ha sites were all constructed using parallel beds, which were 90 

loaded periodically. The areas of the beds were between 30 and 196 m2 (Table 1) and the soils 91 

used were imported from local gravel pits. The pre-treated wastewater was distributed to the 92 

soil through conventional drainage distribution pipes. However, the Tu and Ha sites were 93 

constructed with infiltration surfaces open to the air (framed by an embankment). At these 94 

sites the wastewater was applied over the soil from a centred (Tu) or mobile (Ha) inflow 95 

device. The sites Tu, Gl and Lu were gravity-fed systems whereas the wastewater at the sites 96 

Kn, Ri and Ha was distributed through pumping. The wastewater was finally discharged to 97 

the groundwater (Gl, Kn and Lu sites) or to a nearby stream through a drainage collection and 98 

distribution system (Tu, Ri and Ha sites). None of the latter systems had any liners, and 99 

therefore the proportion of wastewater that is discharged through the drainage system is 100 

unclear.  101 

2.2  Soil sampling 102 

The STS were sampled at five different depths (where the filter bed was sufficiently deep) by 103 

collection of samples from the 0-5, 5-15, 15 – 30, 30 - 60 and 60 –100 cm layers by use of a 104 

spade (in total about 350 kg soil). Sample locations were selected as close to the wastewater 105 

source as possible. However, at the sites Ri and Lu limited accessibility prevented us to 106 

collect samples immediately adjacent to the inlet. Reference samples were also collected at 107 

each site, which represented filter bed material that had not been exposed to P-containing 108 
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wastewater. At sites where imported sand was used (Ha, Kn, Tu, Ri) one single reference 109 

sample from unused sand was used. However at the other sites, 2 (Lu) or 5 (Gl) reference 110 

samples were selected to be able to consider vertical heterogeneity in soil properties. 111 

Reference samples were collected above the distribution level. Where this was not possible 112 

(Lu 60-100, Gl 0-30, and Gl 30-100) offset samples were collected (offset >2 m). The dry 113 

bulk density was determined by collection of undisturbed soil cores (by use of metal 114 

cylinders) in four replicates. The cores were dried at 105oC before weighing. At all STS soil 115 

sampling was performed at one single location. After collection, all soil samples were placed 116 

in plastic bags and stored in an isolated room protected from freezing (T <12 °C) prior to 117 

further use. 118 

2.3  Soil analyses 119 

Samples larger than 15 kg (all samples excluding reference samples) were homogenized in a 120 

concrete mixer (for at least 15 minutes) before collection of subsamples of volumes relevant 121 

for soil analyses. The subsamples were then stored at 4°C. Field-moist samples from the 0-5 122 

and 5-15 cm depths as well as the reference samples were analyzed for pH in deionized water 123 

(using a liquid to solid ratio of 2) with a combination electrode and a PHM93 Reference pH 124 

Meter (Radiometer A/S, Brønshøj, Denmark). Total C was determined for all samples (dried 125 

at 105°C) using a LECO CNS-2000 Analyzer. Samples for total P analysis were delivered to 126 

the laboratory at ALS Scandinavia AB in Luleå, Sweden, and analysed according to EPA 127 

methods (modified) 200.7 (ICP-AES) and 200.8 (ICP-QMS). This method was also used for 128 

elemental analysis of reference samples and included the elements Al, Fe, Ca, Mg, Mn, K and 129 

Si. Briefly, the soil samples were dried at 105°C and subsequently 0.1 g dried sample was 130 

melted with 0.375 g LiBO2 and dissolved in HNO3. The loss of ignition was determined at 131 

1000 °C.  132 
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Reactive aluminium and iron (hydr)oxides, as well as phosphorus associated with these 133 

fractions, were determined by extraction with ammonium oxalate (0.2 M oxalate buffer, pH 3) 134 

(van Reeuwijk, 1995). However, apart from P associated with aluminium and iron 135 

(hydr)oxides, other P species that are unstable at low pH will also be dissolved by this extract 136 

(e.g. calcium phosphates). Field-moist samples (in duplicates) from the six sites were 137 

extracted using a liquid to solid ratio of 100:1, shaken for 4 hours in the dark in an end-over-138 

end shaker. Oxalate-extracted Fe, Al and P were determined with inductively coupled plasma 139 

emission spectrometry (ICP-OES) using a Perkin-Elmer Optima 3000 DV instrument.  140 

2.4  Batch experiments 141 

For the reference samples and for the 0-15 and 5-15 cm samples from the sites Lu, Kn, Ri and 142 

Tu, further analysis were made through batch experiments. These sites varied in terms of 143 

loading history as well as in basic chemical and physical properties and were selected also for 144 

the column experiment. Sorption properties were studied through equilibration (5 days 145 

shaking time at 21°C) of 4 g soil in 30 ml phosphate solutions (NaH2PO4) of the following 146 

initial P concentrations: 0, 0.02, 0.05, 0.1, 0.15, 0.2, 0.3 and 0.5 mM. 10 mM NaNO3 was 147 

used as a background electrolyte. Another batch experiment was performed to study the pH 148 

dependence of P desorption. This experiment was set up in an identical manner but with 149 

additions of NaOH (0.5 mM) or HNO3 (0.5, 1, 2, and 3 mM) instead of P.  150 

In both experiments the equilibrations were set up in duplicate. After the equilibration the 151 

samples were centrifuged and the pH value was determined on the unfiltered supernatant 152 

immediately after centrifugation. Subsequently the supernatant was filtered through a 0.2 μm 153 

Acrodisc® PF filter and the inorganic PO4–P concentration was determined colorimetrically 154 
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with the acid molybdate method using flow injection analysis (Aquatec-Tecator autoanalyser, 155 

Foss Analytical, Copenhagen).  156 

2.5  Column experiments 157 

To investigate the P discharge from old or decommissioned STS (at 1 m depth) a column 158 

experiment was set up with reconstructed bed profiles. In the experiments, columns were 159 

loaded either with a reference material (silica sand, SiO2 content 99,8 %) or with wastewater-160 

loaded soils from four sites (Tu, Lu, Kn and Ri). The columns were 0.3 m in diameter, the 161 

experiment was reproduced in duplicate and soil columns prepared so that they reached a final 162 

depth of the subsoil equivalent to 1 m (Fig. 1). For the Ri columns where the depth of the real 163 

STS was less than 1 m, additional soil sampled from the bottom layer was added to reach a 164 

depth of 1 m soil in the column. Distribution and draining layers (height ~0.15 m) of 165 

macadam (16-32 mm) were put at the top and at the bottom of the columns, and a piece of 166 

geotextile was used to separate the subsoil from the drainage layer (Fig. 1 (a)). The leachate 167 

was collected in polyethylene containers (40 L) which were arranged so that they could be 168 

weighed in situ. 169 

During the first 12 weeks of the experiment, the columns were fed with domestic wastewater 170 

(from a community with about 2500 inhabitants). A mechanical treatment (2 mm drum 171 

screen) was applied before transfer to a 1 m3 buffer tank. The columns were fed from the 172 

buffer tank (Fig. 1 (b)), which was completely refilled with fresh wastewater once a week. 173 

The hydraulic loading rate was adapted to the design hydraulic loading rates given in the 174 

Swedish guidelines (Swedish EPA, 2003), which implies a value between 3 and 6 cm d-1 175 

depending on the grain size distribution of the soil (Fig. 1 (b)). The columns were fed 176 

intermittently with 3 hours interval. Detailed characterisation of the influent wastewater 177 
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quality was performed at weeks 1, 5 and 9 through spot-checks directly from the buffer tank. 178 

The samples were analysed at the laboratory at Uppsala Vatten och Avfall AB, Uppsala, 179 

Sweden, according to standardised methods (Table S1, supporting information). In short, the 180 

concentration of BOD, NH4-N and alkalinity varied between 120 and 160, 42 and 50 and 517 181 

and 569 mgL-1 respectively (Table S1). Effluent water from each sample container (including 182 

untreated wastewater, see Fig. 1 (b)) was weighed (in order to follow mass flows) and 183 

sampled regularly (typically once a week) for analysis of pH and total P. At week 5 and 9 (24 184 

hours after characterization of the influent wastewater) also BOD7, PO4-P, NH4-N, NO3+NO2-185 

N and NO2-N were determined in the leachate. The pH value was determined instantly after 186 

collection with a combination electrode and a PHM93 Reference pH Meter (Radiometer A/S, 187 

Brønshøj, Denmark). Samples for BOD7 analysis were instantly delivered and analysed at the 188 

laboratory at Uppsala Vatten och Avfall AB according to international standards (ISO 189 

5815:1989). An additional sample volume was frozen (-18°C) for later analysis of remaining 190 

parameters. Inorganic forms of nitrogen were analysed using flow injection analysis (FIA, 191 

Aquatec-Tecator autoanalyser, Foss Analytical, Copenhagen, Denmark). PO4-P was 192 

determined as for the batch experiments and for total P unfiltered samples were first digested 193 

in acid potassium persulfate solution before subsequent analysis. 194 

After the end of the first column experiment, the buffer tank was cleaned and filled with 195 

deionized water. An identical column experiment (but with deionized water instead of 196 

wastewater) was then started. This experiment was carried out for a period of 9 weeks. The 197 

buffer tank was recharged with fresh deionized water every third week. The hydraulic loading 198 

scheme, as well as the sampling scheme, was identical to that of the first experiment with 199 

wastewater (Fig. 1 (b)). However, characterization of effluent water was performed at week 5 200 

and 9 and included (in addition to total P and pH) only PO4-P. Analyses were conducted as 201 
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above. As a consequence of hydraulic failure (clogging) in the reference columns at the 202 

beginning of the deionized water experiment, the ref 1 and ref 2 columns had to be run with a 203 

decreased loading rate. The ref 2 column even had to be closed for most part of the 204 

experiment. However there was always sufficient leachate available for sampling. 205 

2.6  XANES analysis 206 

Soil samples from the 5-15 cm layer of the Lu, Ha and Tu site (dried at 105°C and ground in a 207 

mineral grinder) were mounted on caption tape and analysed using P K-edge XANES 208 

spectroscopy on beamline BL8 of the Synchrotron Light Research Institute, Thailand 209 

(Klysubun et al., 2012). The beamline were operated in fluorescence mode and the 210 

fluorescence signal was measured using an solid state Ge detector. The scans ranged from 211 

2100 to 2320 eV with a smaller energy step near the absorption edge (down to 0.2 eV 212 

between 2144-2153eV). The counting time was constantly 3 s. Between 3 and 9 scans per 213 

each sample were collected depending on the level of noise in the data, and subsequently 214 

merged.  215 

The XANES data processing was performed by means of the Athena program in the Demeter 216 

Software Package (v 0.9.18) (Ravel & Newville, 2005). All samples and standards were 217 

calibrated to a common energy scale by setting the maximum of the first derivative of the 218 

spectrum of variscite to 2149.0 eV. Correction of any shifts on energy scale caused by 219 

monochromator drift could be performed since validation data for variscite periodically were 220 

collected. Merged spectra were normalized using a consistent procedure. In brief, a linear 221 

baseline function was subtracted from the spectral region below the edge (typically between -222 

45 to -6 eV relative to E0), and spectra were normalized to unit edge step and quadrature 223 

10 



removed across the post-white-line region (typically between 26 to 170 eV relative to E0) to 224 

obtain normalized XANES spectra. 225 

By means of a linear combination fitting (LCF) approach (Tannazi & Bunker, 2005) a set of 226 

spectra of known standards were combined and fitted to the sample spectra. All standards 227 

used in the evaluation have been characterized by XRD (Eriksson et.al., manuscript in 228 

preparation), and XANES data were collected at the same beamline as the samples. The 229 

standard compounds included amorphous calcium phosphate, octacalcium phosphate, 230 

hydroxyapatite, brushite, monetite, amorphous aluminium phosphate, phosphorus adsorbed to 231 

aluminium hydroxide, variscite, amorphous iron phosphate, phosphorus adsorbed to 232 

ferrihydrite, strengite,  struvite, potassium tarankite, lecithin and phytate. In the fitting 233 

procedure no energy shifts were permitted and the sum of the weighting factors were not 234 

forced to one. With support from earlier studies (Eveborn et al., 2009), the first derivative was 235 

chosen as the fitting space. At most three standards were accepted in each fit and the fitting 236 

range was constrained to between -5 to 30 eV relative to E0.  237 

3 Results 238 

3.1  Characterization of reference soils  239 

According to element analyses there were no dramatic differences in the elemental 240 

composition of the soil between the six sites (Table S2). The somewhat higher Ca content at 241 

the sites Ri and Ha (17 and 30 mg g-1 dw-1 compared to around 10 mg g-1 for the other sites) 242 

coincides with a higher pH value (around 8.9 for Ri and Ha compared to between 5.9 and 6.8 243 

for the other sites). This may be caused by the presence of calcite (CaCO3) at the Ri and Ha 244 

sites. The initial P content ranged from 0.15 to 0.31 mg g-1. Between 6 and 100 % of the total 245 
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P was oxalate-extractable (Table S2). According to the grain size distribution analysis the 246 

GD50 values for the soils ranged from 0.21 to 3.93 mm. 247 

3.2  Phosphorus accumulation and correlation to soil properties 248 

The amount of accumulated P (calculated as the difference between total P in a sample and 249 

total P in the corresponding reference sample) typically varied between 0.15 and 0.6 mg g-1 250 

(Fig. 2 and Fig. S1). However, the Lu site showed evidence for stronger (up to 1.2 mg g-1) P 251 

accumulation (Fig. 2). An even stronger P accumulation (2.28 mg g-1) was observed for the 252 

Tu 0-5 sample. However, this result was associated with an extreme (and abnormal) amount 253 

of organic content (Fig. S1) and this particular layer visually resembled sewage sludge. 254 

A distinct relationship between oxalate-extractable P and oxalate-extractable Al was observed 255 

for wastewater loaded samples (r2 = 0.92, p < 0.001), whereas the correlation between 256 

oxalate-extractable P and oxalate-extractable Fe was much weaker (r2 = 0.6).  257 

As evidenced by the pH-dependence experiment, the solubility of the bound P was generally 258 

lowest at pH values ranging from 4 to 6 (for the Kn, Lu, Ri and Tu soils, see Fig. S2). All 259 

sites showed an increasing P solubility when the pH value was decreased further (pH < 4). 260 

Except for the Tu site (for which no high-pH data were available), an increased P solubility 261 

was observed at higher pH starting at pH 5.5 for Lu and at around 6 for the sites Kn and Ri. 262 

If the layer thickness and the density of the soil are considered, the total P accumulation on a 263 

volume basis in each bed can be summed up to 0.32, 0.32, 0.46, 0.66, 0.73 and 0.87 kg m-3 for 264 

the Gl, Ri, Ha, Kn, Tu and Lu sites respectively (Fig. 3). Among the studied sites no 265 

relationship could be established between the estimated P load and the amount of accumulated 266 

P (Fig. 3).  267 
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3.3  XANES Analysis 268 

Of the 15 standard compounds included in the evaluation, 8 standards (Fig. 4 (a)) were 269 

represented in any of the ten best fits at weights above 10 % (Table 2). In both the Ha, Lu and 270 

Tu samples the XANES analysis indicated significant amounts of P bound as amorphous 271 

aluminium phosphates or as P adsorbed onto aluminium (hydr)oxide surfaces. The best fits 272 

resulted in weights between 24 and 62% of these phases (Table 2, Fig. 4 (b)). Organically 273 

bound phosphates were also well represented in all analyses (weights between 35 and 43%). 274 

Evidence for the importance of calcium phosphates was found only in the Ha sample where 275 

calcium phosphates predominated with 43% weight in the best fit (Table 2, Fig. 4 (b)). 276 

For the best fits (Fig. 4 (b)) the Athena software reported R factors between 0.022 and 0.045. 277 

In general the distribution of P between Al, Ca and organically bound P was stable among the 278 

10 best fits (Table 2). The differences between the fitting results from the Lu site was caused 279 

by a small amount (weight less than 10%) of a third component, the identity of which differed 280 

in the fits. The weight of iron phosphates never exceeded 16% at any site.  281 

3.4  Soil properties as affected by wastewater 282 

When comparing reference samples and wastewater-loaded samples, several differences in 283 

soil properties were observed. In the wastewater-loaded samples, the pH of the top layer was 284 

typically between 1 and 2 pH units lower than in the reference samples. Further, oxalate-285 

extractable metals had increased considerably in the deeper layers at many sites (Fig. 2, Fig. 286 

S1). However, there were no distinct patterns in the depth distributions of oxalate extractable-287 

metals (Fig. S1). The sorption experiment revealed that for the Lu site, the sorption capacity 288 

was higher in reference samples than in wastewater loaded samples (Fig. S3). In fact, the 289 

opposite was true for the Tu site while no significant differences were observed at the Kn and 290 
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Ri sites. According to the sorption data of the reference samples, the soils at the Tu and Lu 291 

sites were superior to the Kn and Ri sites in terms of the P removal capacity (Fig. S3). At an 292 

equilibrium concentration of 1 mg P L-1 the Lu and Tu reference samples both removed more 293 

than 50 mg P kg-1 whereas the Kn and Ri sites removed less than 30 mg kg-1. However, as 294 

evidenced from the mass balance calculations, the Tu, Lu, Kn and Ri sites had removed 295 

between 213 and 680 mg P kg-1. Thus, the laboratory-established P removal capacities were 296 

about an order of magnitude lower than those obtained through mass balances. 297 

3.5  Phosphorus leaching in the column experiment with wastewater 298 

After five weeks of wastewater load biological processes in the columns were active and 299 

performed well in terms of nitrification and organic degradation. More than 97 % of the N 300 

(NO3-N+ NO2+NH4-N) was present as NO3 and the BOD concentrations were below the 301 

detection limit of 3 mg L-1 (data not shown). In week 9 the results indicated 100% nitrification 302 

and the reduction of BOD was still complete. The fraction of total P that was inorganic PO4-P 303 

(as evidenced by the acid molybdate method), varied between 13 and 80 % with a mean value 304 

of 50 % (data not shown). 305 

The total P concentrations were generally low in the effluent waters during wastewater load 306 

(Fig. 5). The Kn and Ri sites had relatively weak P removal (the effluent P concentrations 307 

ranged from 0.8 to 3 mg L-1, which corresponded to between 74 and 85 % P removal on mass 308 

basis). By contrast the Lu and Tu sites had very strong P removal, with effluent P 309 

concentrations always being <0.3 mg L-1, corresponding to 97 % P removal (Fig. 5). For the 310 

silica reference a small and relatively constant P removal (18 % on mass basis) was observed 311 

and the effluent concentrations varied between 3 and 5 mg L-1 (Fig. 5). The amount of P 312 
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accumulated during the loading period was around 8.3 mg P kg-1 for the Lu and Ri sites and 313 

around 9.6 mg P kg-1 for the Kn and Tu sites. 314 

The pH value in the effluent was variable (Fig. S4). The Ri and Silica reference columns were 315 

following the pH of the influent wastewater closely (around pH 8), whereas the other sites 316 

generally had a lower and more variable pH (5.7- 7.7). The Kn site had a rising pH trend 317 

(from about pH 7 to pH 7.7) during the experiment and was approaching the pH value of the 318 

influent wastewater. However, the Lu and Tu sites did not follow any distinct pattern and the 319 

pH varied between 5.7 and 7.7. 320 

3.6  Phosphorus leaching in the column experiment with deionized water 321 

When the influent to the columns was shifted from wastewater to deionized water a dramatic 322 

colour shift occurred in the effluent, i.e. from transparent and clear to yellowish or brownish 323 

with high turbidity. However, this observation did not bring about a consistently different PO4 324 

: total P ratio. The concentration of dissolved PO4-P in the effluent was in the range from 20 325 

to 80 % of the total P with a mean value of around 50 %, i.e. similar as in the first column 326 

experiment with wastewater. The P concentration in the effluent varied between the different 327 

sites, but effluent P concentrations were consistently higher than during wastewater load (Fig. 328 

5). The Kn columns generally had the highest effluent P concentrations which were initially 329 

up to 6 mg L-1 (Fig. 4). After week 4 the Kn column effluent concentrations stabilized at 330 

around 3 mg L-1. The silica reference columns and the Ri site columns followed a similar 331 

pattern with initially high effluent P concentrations (up to 4 and 3 mg L-1 respectively) and 332 

then the P concentrations decreased to about 2 mg L-1 at the end of the experiment (Fig. 4). 333 

The P leaching patterns for the Ri and Lu site columns were different and the P discharge 334 

from these columns were significantly lower. In the latter two columns the dissolved P 335 
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concentration was quite stable from week 6 onwards, with dissolved P ranging from about 1 336 

to 1.5 mg L-1 (Fig. 4). 337 

The shift from wastewater to deionized water generally resulted in a pH increase in the 338 

effluent waters except for the Ri site columns and the silica reference columns, for which pH 339 

value decreased a little (Fig. S5). At the end of the experiment the pH value in all columns 340 

ranged from 6.7 to 7.7. 341 

4 Discussion 342 

The decrease in soil pH and the increase in oxalate-extractable metals that we observed (Fig. 343 

2, Fig. S1) is consistent with other studies (Robertson, 2003; Eveborn et al., 2012). In most 344 

cases (neutral to strongly acid soils) a pH decrease will probably favour the P removal, as 345 

sorption and precipitation processes that involve iron and aluminium (hydr)oxides are usually 346 

more efficient at low pH. According to the pH-dependence results (Fig. S2), the lower pH 347 

limit (below which P solubility rapidly increases) are between pH 3.5 and 4. In calcareous 348 

soils the pH decrease might prevent the formation of calcium phosphates as these 349 

precipitation processes is most effective at pH >9 (Eveborn et al., 2009). 350 

The increasing levels of oxalate extractable aluminium and iron over time (Fig. 2, Fig. S1) 351 

may enhance the P removal. It is likely that both precipitation of aluminium phosphates and 352 

surface complexation reactions occur. As concluded earlier (Eveborn et al., 2012), the P to Al 353 

ratio in the oxalate extract is larger (0.73 according to linear regression of oxalate-P vs. 354 

oxalate-Al) than would be expected if surface complexation reactions alone would be 355 

responsible for the P removal. The XANES analysis confirms the importance of aluminium 356 

chemistry (Table 2) but the spectral differences between amorphous aluminium phosphates 357 

and phosphorus adsorbed to aluminium (hydr)oxides is small (Fig. 4 (a)). Thus, it is not 358 
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evident that any of these two mechanisms predominates at any of the sites. Aluminium-rich P 359 

phases have been identified as important sinks for P in similar environments (Zanini et al., 360 

1998; Arai & Livi, 2013). According to the XANES analysis (Table 2), even organic P may 361 

play an important role in the P accumulation. However, the long term stability of this P pool is 362 

unclear. Degradation of the organic substances will result in the release of mineralized P. 363 

Several mechanisms have been proposed that may cause the transfer of surface-bound P into 364 

stable P pools (Robertson, 2008), which may in the long run increase the P sorption capacity 365 

of soils. In this study we observed clear discrepancies (up to over tenfold) between laboratory 366 

sorption data on reference samples and the long term P accumulation in the field (based on 367 

mass balances). Changes in pH and in oxalate-extractable metals during the wastewater load 368 

can partly explain these discrepancies and therefore the results do not necessarily imply that 369 

any P will be immobilized into inactive, “insoluble” forms. In fact Lookman et al. (1995) 370 

found that all oxalate- extractable P was reversibly fixed in a selection of acid sandy soils 371 

(3.9< pHKCL <5.7). 372 

It is clear from our P load estimates and P accumulation calculations that the P removal 373 

capacity in the subsoil can be easily exceeded. From this we can conclude that the long term 374 

performance of STS are much dependent on the wastewater load. Let us assume that the 375 

phosphate concentration in a septic tank effluent is on average 10 mg L-1, that the long term 376 

hydraulic loading rate is 0.6 cm d-1 and that the available soil volume for treatment in the 377 

unsaturated subsoil is 1 m3 per meter of drainage tube. In such a scenario (close to that of 378 

Robertson (2012)), the STS studied here will theoretically (as estimated from mass balance) 379 

be able to accumulate P during 15 to 40 years of wastewater load, the exact value depending 380 

on the soil properties (Fig. 3). However, if the hydraulic loading rate is increased to 3 cm d-1 381 

(close to the maximum load according to USEPA guidelines, but still common with Swedish 382 
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design specifications) the time it takes to saturate the system will decrease to between 3 and 8 383 

years. Accordingly, the hydraulic loading rate is crucial for the P mass balance calculations. 384 

 We expected poor P removal when the already overloaded soil (according to P mass 385 

balances) was subject to further wastewater application but the results were contradictory 386 

(Fig. 5). The P discharge during the experiment was even lower than that reported from 387 

several short-term field studies (Nilsson & Stuanes, 1987; Aaltonen & Andersson, 1996; 388 

Nilsson et al., 1998). Accordingly, the results obtained do not seem to reflect the actual P 389 

leakage from old and heavily loaded STS. One possible explanation to the contradictory 390 

behavior could be that the collected soil layers were mixed (separately) during the setup of 391 

column replicates. This homogenization procedure may eventually expose new or hidden 392 

sorption or precipitation agents in the soil and eliminate macro pore pathways that might be 393 

present in an undisturbed soil profile.  394 

The release pattern observed during the deionized water load is not fully understood. It is 395 

surprising that much higher concentrations of P were found in the leachate during deionized 396 

water load than during wastewater load (Fig. 5). Zurawsky et al. (2004) partly explained 397 

similar observations (leachate concentrations up to 9 mg L-1) from subsoils of STS by 398 

reductive dissolution of Fe-P phases. However, according to the XANES analysis, iron 399 

phosphates were not present to any considerable extent in the studied soils and the Fe 400 

concentrations in the leachate during wastewater load were usually very low (< 0.25 mg L-1; 401 

data not shown). The evidence for substantial amounts of aluminium phosphates in the soil 402 

(Table 2) indicates that dissolution of these compounds is a possible P release mechanism. 403 

However, the P concentrations in the leachate were unreasonably high to be explained only 404 

through this mechanism. We hypothesize that the dramatic shift in ionic strength might 405 

destabilize particulate material and increase the mobilization of non-reactive P. A substantial 406 
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part of the P is organically bound (Table 2) and may be a source for such mobile forms of P. 407 

Destabilization mechanisms has been proved to be important elsewhere (Laegdsmand et al., 408 

2005). Although no significant changes in the ratio of PO4-P:total P could be observed in the 409 

experiments (when comparing data from the periods of deionized water load and wastewater 410 

load) this hypothesis might still be possible.  411 

The result from the column study using deionized water load,  indicates that certain STS bed 412 

material cause substantial wash-out of P. The P wash-out could be caused by e.g. ground 413 

water inflow, diluted wastewater application or long-term drainage after decommissioning. 414 

However, the sites Lu and Tu, which had the highest oxalate extractable aluminium contents 415 

(Fig. 2 and Fig. S1), showed much less P discharge during both wastewater application and 416 

deionized water application (Fig. 4) in comparison to the other sites. These observations 417 

emphasize the role of aluminium chemistry for efficient P removal and are supported by other 418 

desorption studies on acid sandy soils (Lookman et al., 1995). The findings also show that 419 

despite favourable conditions for strong P fixation, significant amounts of P can be released. 420 

In terms of groundwater quality even a discharge of 1 mg P L-1 is substantial. Hinsby et al. 421 

(2008) suggested 0.08 mg P L-1 as threshold value for P in Danish ground water systems (for 422 

the protection of dependent ecosystems). 423 

5 Conclusion 424 

• Phosphorus removal in the unsaturated subsoil of STS is limited, and the risk for P 425 

leakage will be dependent on the long term magnitude of the P load. Thus, STS in 426 

close proximity to water bodies will pose a risk for significant P leakage.  427 
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• It is not safe to assume that P accumulated in STS is immobilized irreversibly. The 428 

vulnerability to wash-out of P through groundwater through-flow or atmospheric 429 

precipitation could be high. 430 

• In the investigated sandy soils both the P accumulation and the vulnerability to wash-431 

out are correlated to the amount of oxalate-extractable Al. In the most P-retaining STS 432 

P is accumulated mainly as aluminium phosphates or as P associated with aluminium 433 

oxyhydroxide surfaces, although organically bound P was also an important phase 434 

according to the XANES analysis.  435 
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a b 

Figure 1. Layout of columns and sample containers (a) and schematic view over 

the column experiment including soils and loading rates (b). 
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a) Ri site    

    

b) Lu site    

Figure 2. Depth distribution of different soil properties for samples and reference samples at a) site Ri and b) 

site Lu. 
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Figure 3. P accumulation at the studied sites in relation to the estimated P load. P load 557 

estimations and the basis for these are given in Table 1. 558 
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a b 

Figure 4. Spectra for standards represented (with weights>10%) in the 10 best linear 560 

combination fits for the samples (a) and overlaid plots of sample data and the best (lowest R-561 

factor)  linear combination fits (b). 562 
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 564 

Figure 5. Total P concentrations in inflowing water and leachates from the Tu site column 565 

replicates (Tu 1, Tu 2), Lu sites column replicates (Lu 1, Lu 2), Kn site column replicates (Kn 566 

1, Kn 2), Ri sites column replicates (Ri 1, Ri 2) and silica reference replicates (Ref 1, Ref 2) 567 

during 12 weeks of wastewater water load (W1-W12) and 9 weeks of deionized water load 568 

(D1-D9). 569 
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  572 

Table 1. Description of studied soil treatment systems 

 Tu Gl Lu Kn Ri Ha 
Design base (pe) 225 5 5 75 150 100 

Connected (pe) n.a. 6 4 40 n.a. n.a. 

Surface  
area(s) (m2) 

2x196 30 50 80 2x160 2x50 

Hydraulic loada 
(cm d-1) 

33 2.2 0.9 25 n.a. 30 

P load (g m-2 yr-1) 370 c 80b 30b 200b n.a. 540 c 

Age (year) 18 20 23 11 28 24 

Pre treatment Septic tank Septic tank Septic tank Lined pond Septic tank Septic tank 

Wastewater 
distribution 

Gravity fed, 
open surface 
distribution 

Gravity 
fed, drain 
field 

Gravity 
fed, drain 
field 

Pump fed, 
drain field 

Pump fed, 
drain field 

Pump fed, 
open surface 
distribution 

Thickness of  
soil bed (m) 

>1 >1 >1 0.9 0.8 0.9 

Discharge Drained to 
surface 
water 

Ground-
water 

Ground-
water 

Ground-
water 

Drained to 
surface 
water 

Drained to 
surface water 

a Based on annual mean flows and active infiltration areas (where several beds are shifted). Mean flows for the 
sites Gl, Lu and Kn have been calculated based on a water usage equivalent to 180 L person-1 d-1 and 60 % 
home attendance. Mean flows at other sites taken from Bylund (2003). 

b An estimation based on mean flows (as described above), total infiltration area and a 
10 mg L-1 P concentration in the wastewater (Jönsson et al., 2005).  

c Calculated from a dataset of ~50 inflow and P concentration measurements (Bylund, 2003) and total 
infiltration area. 
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Table 2. Fitting results for linear combination fit performed in first derivative 

space with an energy range between -5 and 30 eV. Standards represented with 

weights<10% not reported. 

Category Standard component 
Weight, 
best fit Presence in 10 best fits 

Mean 
weight 

 
 

Ha 5-15 

Al-P Amorphous aluminium phosphate 
   

x x x x 
    

0.29 
P adsorbed to Al(OH)3 0.24 x x 

     
x x x 0.21 

Ca-P Apatite 
  

x 
 

x 
   

x 
  

0.41 
Amorphous calcium phosphate 0.43 x 

 
x 

 
x x x 

 
x x 0.47 

Organic P Phytic Na 0.35 x x 
   

x x 
   

0.32 
Lecithin 

   
x x 

   
x 

 
x 0.27 

Fe-P P adsorbed to ferrihydrite 
     

x 
 

x 
 

x 
 

0.13 

 
             

 
 

Lu 5-15 

Al-P 
Amorphous aluminium phosphate 0.3 x 

         
0.3 

P adsorbed to Al(OH)3 0.32 x x x x x x x x x x 0.45 
Organic P Phytic Na 0.36 x x x x x x x x x x 0.4 

Ca-P Monetite 
   

x 
       

0.11 

 
             

 
 

Tu 5-15 

Al-P Amorphous aluminium phosphate 0.28 x x x x 
  

x 
 

x 
 

0.37 
P adsorbed to Al(OH)3 0.2 x 

   
x x 

 
x 

 
x 0.27 

Ca-P Monetite 
        

x x 
 

0.23 
Amorphous calcium phosphate 

    
x 

 
x x 

   
0.19 

Organic P Phytic Na 0.43 x x x 
 

x x x x x x 0.4 

Fe-P P adsorbed to ferrihydrite 
  

x 
 

x x 
     

0.11 
Strengite 

   
x 

      
x 0.26 
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Table S1. Characteristics of wastewater used in the column study and analytical methods 

utilized. All values in mg L
-1

(except pH). 

  Week 1 Week 5 Week 9 Analytical method 

BOD7 120 140 160 ISO 5815:1989 

CODCr 280 280 370 Kuvette test (Dr Lange LCK814) 

SS 110 90 140 EN 872:2005 

Tot-N 56.1 59.5 75.3 ex- SS 028131-1 oxidation with peroxodisulphate 

NH4-N 41.8 40.5 49.8 ISO 11732, flow analysis and spectrometric detection 

NO2-N 0.25 0.22 0.47 ISO 6777:1984, molecular absorption spectrometric method. 

NO3-N+ 
NO2-N 

0.70 0.62 0.35 SS 028133-2 appendix A, reduction of nitrate with copperized cadmium 
followed by spectrophotometric detection 

Tot-P 6.2 5.9 7.8 SS-EN 15681-2:2005 

PO4-P 4.1 4.4 4.9 SS-EN 15681-2:2005 

Fe 0.14 0.28 0.19 ISO 17294-2, ICP-MS 

Al 0.62 0.60 0.72 ISO 17294-2, ICP-MS 

Ca 81 89.4 132 ISO 17294-2, ICP-MS 

Alk 537 517 569 ISO 9963-1:1994, acidimetric titration 

TOC 85.4 61.3 84.6 SS-EN 1484 ed. 1. High temperature catalytic oxidation 

pH 8.3 8.1 8.1 SS 028122-2 



Table S2. Characteristics of unused soils (reference samples) at the studied sites  

  

Gl 0-30 Gl 30-100 Lu 0-60 Lu 60-100 Ri Ha Kn Tu 
El

e
m

e
n

ta
n

al
ys

 (
m

g/
g 

d
w

-1
) 

Si 418 425 378 364 395 383 367 371 

Al 57 60 78 77 55 61 81 73 

Ca 10 9 8 11 17 30 10 10 

Fe 31 37 26 43 23 24 29 44 

K 22 31 41 37 30 37 41 37 

Mg 4 3 4 5 2 3 5 7 

Mn 0.44 0.49 0.50 0.67 0.35 0.37 0.57 0.65 

P 0.20 0.15 0.16 0.19 0.22 0.16 0.19 0.31 

pH (in H20) 5.89 - 6.25 - 8.89 8.94 6.84 6.45 

d
Pox  (mg/g dw

-1
) 0.20 - 0.07 - 0.06 0.01 0.05 0.15 

GD50 (mm) 0.044a     0.21b 0.26a    1.64b 1.50 3.93 1.45 1.02 

cK sat
 
(m/d) 0.21 24.53 20.93 90.23 25.30 7.44 

Dry bulk density (kg/m
3
) 1700 1300 1500 1400 1500 1600 

a) Fine grained layers in the bed  

b) Coarse grained layers in the bed  

c) Measured at 55 cm depth 

d) Pox = Oxalate extractable P 

 

 

 

  



    

a) site Ha 

    

b) site Gl 

    

c) site Kn 

    

d) site Tu 

Figure S1. Depth distribution of different soil properties for samples and reference samples at a site Ri , b site 

Gl, c site Kn and d site Tu. 
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Figure S2. Solubility of PO4-P as a function of the pH obtained in solution after 

equilibration with acid (HNO3) and base (NaOH) additions.   

  



  

  

Figure S3. Sorbed (removed) P (mg P /kg soil) as a function of the equilibrium 

concentration of PO4-P (mg PO4-P/l) for layers 0-5, 5-15 and reference samples at 

the sites Ri, Tu, Kn and Lu. Values for the layer 0-5 at the Tu site are excluded 

because of its extremely large concentration of organic matter. 

 

  



 

 

Figure S4. pH in influent wastewater and leachates from the Tu site column replicates 

(Tu 1, Tu 2), Lu sites column replicates (Lu 1, Lu 2), Kn site column replicates (Kn 1, 

Kn 2), Ri sites column replicates (Ri 1, Ri 2) and silica reference replicates (Ref 1, Ref 

2) during 9 of 12 weeks of wastewater load. 

 

  



 

 

Figure S5. pH in leachates from the Tu site column replicates (Tu 1, Tu 2), Lu sites 

column replicates (Lu 1, Lu 2), Kn site column replicates (Kn 1, Kn2), Ri sites column 

replicates (Ri 1, Ri 2) and silica reference replicates (Ref 1, Ref 2) during 9 weeks of 

deionized water load. 
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