The Role of Nucleoside Diphosphate Kinase in Plant Mitochondria

MONIKA JOHANSSON
Faculty of Natural Resources and Agricultural Sciences
Department of Plant Biology and Forest Genetics
Uppsala

Doctoral thesis
Swedish University of Agricultural Sciences
Uppsala 2006
Cover: The first structure of plant NDPK3 from *Pisum sativum*. Ribbon representation of the trimer viewed down the 3-fold axis, showing three monomers.

ISSN 1652-6880
ISBN 91-576-7123-0
© 2006 Monika Johansson, Uppsala
Tryck: SLU Service/Repro, Uppsala 2006
Babičce Ilzičce, Dědovi Zdenkovi
Mamce a Tátovi
Today was good
Today was fun
Tomorrow is another one

Dr. Seuss
Abstract

ISSN: 1652-6880, ISBN 91-576-7123-0

Nucleoside Diphosphate Kinase (NDPK) catalyses the transfer of a phosphate from nucleoside triphosphates to a nucleoside diphosphate, is ubiquitously found in all organisms from bacteria to human. It was discovered that the genes nm23 and awd, which encode NDPKs are involved in tumour metastasis and Drosophila development, respectively. Thus, NDPK isoforms have been suggested to have specific regulatory functions in addition to their catalytic activity. Plant NDPKs are also involved in a number of intracellular signalling events such as phytochrome A response, UV-B light signalling and heat shock response. The main focus in this thesis concerns the role of the plant (Pisum sativum L. cv Oregon sugarpod) mitochondrial NDPK3 isoform.

The NDPK3 is localized to both the intermembrane space and to the mitochondrial inner membrane. The membrane bound NDPK3 is firmly attached to the membrane through the ATP/ADP translocase. The ATP/ADP translocase and NDPK3 complex may be a part of the contact sites for channelling metabolites from mitochondria to cytosol and vice versa.

NDPK3 was shown to be dually targeted to both mitochondria and chloroplasts where the major amount of the protein is found in mitochondria. The protein was crystallized and the first X-ray structure of a plant NDPK is reported. In agreement with other eukaryotic NDPKs, the plant enzyme is a hexamer. Two conserved serine residues, S119 and S69 involved in serine autophosphorylation and oligomerization, respectively, was identified. We show that the Ser autophosphorylation depends on enzyme activity. The mutation of S69 to Ala decreased the enzymatic activity dramatically. Changes in the oligomeric pattern of S69A were observed. Thus, the S69 residue is important for the stabilization of the oligomeric state of NDPK3.

Adenylate Kinase was identified as an interacting partner of the IMS located NDPK3. The interaction modulates the activity of the enzymes where Adenylate Kinase stimulates NDPK3 and NDPK3 inhibits Adenylate Kinase with unchanged ADP production as an outcome. Cyclic AMP (cAMP) and calcium inhibit the activity of both NDPK3 and Adenylate Kinase. This is a novel regulatory relationship between cAMP and calcium signalling and nucleotide metabolism mediated by NDPK3 and Adenylate Kinase and their interaction.

Key words: NDPK, plant mitochondria Adenylate Kinase, ATP/ADP translocase, X-ray structure, cAMP, calcium.

Author’s address: Monika Johansson, Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences. Box 7080, S-750 07 UPPSALA, Sweden.
Abbreviations

List of selected abbreviations used in the text:

AK  Adenylate Kinase
ADP  Adenosine diphosphate
AMP  Adenosine monophosphate
ANT  Adenine nucleotide translocator
Ap5A  Di(Adenosine)Pentaphosphate
ATP  Adenosine triphosphate
cAMP  Cyclic adenosine monophosphate
dTDP  Deoxythymidine 5’-diphosphate
EDTA  Ethylenediaminetetraacetic acid
EM  Electron microscopy
GA  Glutaraldehyde
GFP  Green fluorescent protein
IMP  Inner membrane protease
IMS  Inter membrane space
LDH  Lactate dehydrogenase
MPP  Mitochondrial processing peptidase
NADH  Nicotinamide adenine dinucleotide
NDPK  Nucleoside diphosphate kinase
NDPK:AK  Nucleoside diphosphate kinase:Adenylate Kinase complex
PEP  Phosphoenolpyruvate
Contents

Introduction, 7

Mitochondria, 8
  Mitochondrial structure, 9
Genome, 10
Nucleoside Diphosphate Kinase, 11
  The kinase activity of NDPK, 11
Phosphorylation of NDPK, 12
NDPK as a multifunctional enzyme, 12
  Sub-cellular localization of NDPK, 14
Structure of NDPK, 15
Targeting of NDPK, 15
ATP/ADP translocator and Adenylate Kinase, 16

Aims of the study, 19

Results and discussion, 19
Sub-mitochondrial localization of NDPK3 in P. sativum (I), 19
  NDPK3 is firmly attached to the inner membrane of mitochondria, 19
Mutational analyses, serine phosphorylation, structure and oligomerization of
NDPK3 (II, IV), 20
  Enzymatic activity is a prerequisite for Ser phosphorylation, 20
The first crystal structure of mitochondrial NDPK3 from P. sativum, 21
  S69 is important for the enzymatic activity and protein-protein interaction, 21
Evolutionary history, expression and targeting of the plant NDPK family (III), 22
  Separate evolution of NDPK3 in plants?, 22
  The expression of the NDPK family in A. thaliana, 22
  NDPK3 is dually targeted to mitochondria and chloroplasts, 23
Interacting partners of mitochondrial NDPK3 from P. sativum (I, IV), 23
  Interaction between NDPK3 and ATP/ADP translocator, 24
  Mitochondrial NDPK3 a part of the contact point complex?, 24
  Interaction between NDPK3 and Adenylate Kinase, 26
  Structure of Adenylate Kinase, 26
  NDPK3 and Adenylate Kinase as cooperating partners, 27
  Effects of cAMP and calcium on NDPK3 and NDPK:AK interaction, 27

Conclusions, 29
Future perspectives, 30
Paper I, 30
Paper II, 30
Paper III, 30
Paper IV, 31

References, 32
Acknowledgements, 40
Appendix

This thesis is based on the following papers, which will be referred to as their Roman numerals.


IV. Johansson, M., Uppsäll, E., Mackenzie, A. & Knorpp, C. 2006. The activity of Nucleoside Diphosphate Kinase and Adenylate Kinase are influenced by cAMP and calcium, as well as by their interaction. (Submitted).

Reprints were made with permission of the publishers.
Introduction

Mitochondria are energy providing organelles with two membranes, constantly fusing and dividing (Sesaki et al., 2003). Mitochondria are believed to have been free-living bacteria that merged with a primitive cell. The mitochondrion contains its own genome and its own transcription and translation machinery. The vast majority of the mitochondrial proteins are, however, encoded in the nucleus, produced as precursor proteins in the cytosol and subsequently imported to the organelle. One of these proteins is Nucleoside diphosphate kinase (NDPK).

NDPKs have been characterized as a large family of conserved proteins that synthesize nucleoside triphosphates from nucleoside diphosphates (Lacombe et al., 2000). One of the main functions of NDPKs is the maintenance of the intracellular nucleoside triphosphate pools. It has become recognized that as well as having the kinase activity, NDPK proteins have additional or different roles. This study concerns an NDPK isoform located in plant mitochondria that supports the ever-surprising functions of the protein. There is increasing evidence that NDPK is an important multifunctional protein involved in cell signalling and coordination of other proteins.
Mitochondria

When mitochondria were first discovered in the end of the 1800s, many scientists were surprised by how much they resembled bacteria. First 160 years later it was realized that mitochondria and chloroplasts have genes of their own. Mitochondria use their DNA, similar to the DNA of prokaryotes, to make their own proteins, and they duplicate themselves independently of the cell. Yet scientists still lacked the tools for finding out exactly what sort of DNA mitochondria and chloroplasts carried. There was a hypothesis suggesting that the mitochondrial and chloroplast genes had originated inside the nucleus, and at some point during the evolution they had move into the organelles. But in the mid-1970s it was showed that this was not so. The scientists could prove that the genes inside the mitochondria and chloroplasts have little likeness to the genes in the nucleus. These findings were the base for one of the most accepted theories about the mitochondrial origin - the theory of endosymbiosis. According to this theory, an endosymbiont - a primitive prokaryote invaded a host cell, thereby establishing a symbiotic relationship that is an origin of the eukaryotic cell. In this model, the endosymbiont DNA from chloroplast and mitochondria, is believed to be related to cyanobacterial and proteobacterial DNA respectively (fig 1).

![Figure 1. Endosymbiosis. Schematic picture of the endosymbiosis theory. Redrawn by Madeleine Johansson from (Margulis, URL)](image)

Siv Andersson et al. (1998) sequenced the closest relative of mitochondria yet known: Rickettsia prowazekii, a bacterium that causes typhus. Some of the mitochondrial genes produce enzymes that build new mitochondrial DNA and RNA. However, those DNA and RNA building genes are not similar to the genes of related bacteria. They are virus-like genes (Filee & Forterre, 2005). This finding opened a new feature for the mitochondrial origin. The question of whether the mitochondria originated from a primitive bacterial event, or from a simultaneous event where also viruses were incorporated has thereby raced.
### Table 1. The history of mitochondrial physiology

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1774</td>
<td>Joseph Priestley and Antoine Lavoisier, discover oxygen and respiration</td>
</tr>
<tr>
<td>1857</td>
<td>Rudolph Kölliker, pioneer of light microscope, finds mitochondria in muscle</td>
</tr>
<tr>
<td>1890</td>
<td>Richard Altmann, develops mitochondrial stain, postulates genetic autonomy</td>
</tr>
<tr>
<td>1898</td>
<td>Carl Benda named mitochondria from Greek <em>mitos</em> &quot;thread&quot; and *khondrion&quot; little granule&quot;</td>
</tr>
<tr>
<td>1924</td>
<td>Crude mitochondrial isolation (Warburg et al., 1924)</td>
</tr>
<tr>
<td>1943</td>
<td>Isolation of intact liver mitochondria and microsomes (Claude, 1943)</td>
</tr>
<tr>
<td>1949</td>
<td>Localization of β-oxidation, TCA and oxphos (Kennedy &amp; Lehninger, 1949)</td>
</tr>
<tr>
<td>1952</td>
<td>Inner, outer membranes and cristae defined by EM (Palade, 1952)</td>
</tr>
<tr>
<td>1955</td>
<td>First mitochondrial NDK activity reported (Herbert et al., 1955)</td>
</tr>
<tr>
<td>1981</td>
<td>Human mtDNA sequenced (Anderson et al., 1981)</td>
</tr>
<tr>
<td>1986</td>
<td>First mtDNA diseases reported (Ikeda et al., 1986)</td>
</tr>
<tr>
<td>1997</td>
<td><em>Arabidopsis thaliana</em> genome sequenced (Unseld et al., 1997)</td>
</tr>
<tr>
<td>2000</td>
<td><em>Beta vulgaris</em> genome sequenced (Kubo et al., 2000)</td>
</tr>
<tr>
<td>2002</td>
<td><em>Oryza sativa</em> genome sequenced (Notsu et al., 2002)</td>
</tr>
<tr>
<td>2003</td>
<td><em>Brasica napus</em> genome sequenced (Handa, 2003)</td>
</tr>
<tr>
<td>2004</td>
<td><em>Zea mays</em> genome sequenced (Clifton et al., 2004)</td>
</tr>
</tbody>
</table>

### Mitochondrial structure

The mitochondrion has two membranes dividing the organelle into a narrow intermembrane space (IMS) and much larger internal matrix (fig 2) each of which contains highly specialized proteins. The outer membrane contains many channels which makes the membrane permeable to molecules smaller than 10 kDa. The inner membrane contains protein complexes responsible for respiration, ATP production and transport of substrates into the matrix. The inner membrane forms a large number of infoldings called cristae.

![Figure 2. Mitochondrial structure. A) Plant cell, leaf tissue from spinach (*Spinacia oleracea*). B) Mitochondrial compartments.](image-url)
In mitochondria there are contact points between the outer and inner membranes. The contact sites were first described in the late 1960s (Hackenbrock, 1968). To date, the knowledge about the exact function and composition of these points is still poor. They are multi-protein complexes required for specific mitochondrial functions such as transport of proteins, solutes and energy. (Brdiczka et al., 1998; Voisine et al., 1999). Four different types of contacts have been described: (1) morphological contacts visualized by electron microscopy. These include unknown stable complexes (Hackenbrock, 1968). (2) Contacts that are involved in the translocation of proteins, including the translocases of the outer membrane and the translocases of the inner membrane (Rapaport, 2002). (3) Contacts coordinating fusion and fission events of mitochondria, where very little is known about the protein complexes (4) and contacts for channelling metabolites from the matrix to the cytoplasm and vice versa. The latter contain multi-protein channels, the permeability transition pores, which include porin, ATP/ADP carrier, and kinases such as hexokinase and creatine kinase (Adams et al., 1989).

**Genome**

Mitochondrial genomes vary in size between organisms where the plant genomes are much bigger (180-2400 kb) than the animal ones (15-16 kb) (Wolstenholme & Fauron, 1995). Although mitochondria have their own genome, most of the mitochondrial proteins are nuclear encoded. After translation in the cytosol these proteins are imported into the organelle. One of these protein is the Nucleoside diphosphate kinase (NDPK).
**Nucleoside Diphosphate Kinase**

In the 1950s an enzyme activity was observed that transferred a phosphate onto another protein in a biological reaction called phosphorylation (Burnett & Kennedy, 1954). The protein responsible was a liver enzyme that catalyzed the phosphorylation of casein and became known as a protein kinase, the first of its kind to be observed.

Today it is known that the transfer of phosphates onto proteins is catalyzed by a variety of enzymes that share certain characteristics and fall into the class of protein kinases. Their similarities stem from the ability to take a phosphate from an energy-carrying molecule (ATP/GTP) and place it onto an amino acid side chain of a protein. The hydroxyl groups (-OH) of serine, threonine, histidine or tyrosine amino acid side chains are the most common targets (fig 3). A second class of enzymes is responsible for the reverse reaction where phosphates are removed from a protein. These are named protein phosphatases.

![Figure 3. Reversible phosphorylation.](image)

**The kinase activity of NDPK**

NDPKs are enzymes that in the presence of Mg\(^{2+}\) catalyze the transfer of phosphate groups between nucleoside phosphates. The reaction can be summarized as followed:

\[
\begin{align*}
N_1TP + E \leftrightarrow N_1DP + E-P \\
N_2DP + E-P \leftrightarrow N_2TP + E (N = G, A, T, C and U)
\end{align*}
\]

The active sites of NDPK bind the phosphate from nucleoside triphosphate. The nucleoside triphosphate, now diphosphate, is released, and a different nucleoside diphosphate binds to the same site. As result the phosphate that is bound to the enzyme is transferred to the new diphosphate, forming a new triphosphate. This catalytic reaction is called a ping-pong mechanism (Parks & Agarwal, 1973).
Phosphorylation of NDPK

Each NDPK monomer has a single nucleoside triphosphate binding site important for the phosphorylation of the enzyme (Parks & Agarwal, 1973). Phosphorylation of NDPK on its active histidine residue has been widely accepted as part of its catalytic mechanism (Morera et al., 1995). However, serine phosphorylation was also reported in NDPKs from various species including human NDPK nm23-H1 (MacDonald et al., 1993) and Myxococcus xanthus NDPK (Munoz-Dorado et al., 1993). In plants, serine and threonine phosphorylation of NDPK residues have been reported in B. vulgaris NDPK (Moisyadi et al., 1994), S. oleracea NDPK2 from chloroplast (Bovet & Siegenthaler, 1997) and P. sativum NDPK3 from mitochondria (Struglics & Häkansson, 1999). The Ser119 and Ser69 are completely conserved in human nm23-H1-H6 but also in the P. sativum sequence. The residue corresponding to Ser44 in human nm23-H1, which is the major serine phosphorylation site (MacDonald et al., 1993) is not conserved and is in the P. sativum sequence replaced by threonine. It has been suggested that the phosphorylation of Ser44 is involved in the suppression of tumour metastasis (MacDonald et al., 1993). The crystal structure of nm23-H2 shows that Ser44 is located on the top of a groove containing the catalytic His118 (Webb et al., 1995). Since the putative serine phosphorylation site is located closely to the active site histidine residue in the nucleotide binding pocket of NDPK, a phosphotransfer to the serine residue cannot be excluded (Shen et al., 2006). It is possible that the serine phosphorylation results in conformational changes of NDPK, resulting in opening of the groove to make phosphorylation of the conserved histidine possible. In paper II we describe the residues involved in serine phosphorylation of NDPK3 from P. sativum.

NDPK as a multifunctional enzyme

NDPKs are found in different species of vertebrates, bacteria and plants but have been mostly studied in mammals. In humans there are eight different isoforms (table 2) and in A. thaliana, there are five (table 3). NDPKs exhibit various regulatory functions that may be related to, or independent of, their catalytic activity (Agou et al., 1999; Postel et al., 2002; Postel et al., 2000). Many of these functions are mediated by protein-protein interactions between NDPKs and other proteins. These interactions can modulate the activity of other proteins such as the chaperon function of hsp70 (Leung & Hightower, 1997). In humans, NDPK was identified as a tumour metastasis suppressor (Steeg et al., 1988), transcriptional activator of c-myc (Agou et al., 1999; Postel et al., 1993) and supplier of GTP to G-proteins. Furthermore, both mammalian and bacterial NDPK can bind and cleave DNA (Levit et al., 2002; Postel et al., 2002).

The plant NDPKs are also multifunctional enzymes involved in hormone signalling (Nato et al., 1997; Novikova et al., 2003), UV-light light response (Zimmermann et al., 1999) and interaction with phytochromes (Choi et al., 1999; Shen et al., 2005). The pea mitochondrial NDPK3 is involved in response to heat stress via the interaction with an 86 kDa protein (Escobar Galvis et al., 2001) and is able to bind cAMP (Knorpp & Häkansson, 1998; Laukens et al., 2001).
Table 2. The human NDPK isoforms. The accession numbers for human NDPKs are: P15531 (nm23-H1), P22392 (nm23-H2), Q13232 (nm23-H3), O00746 (nm23-H4), P56597 (nm23-H5), O75414(nm23-H6), Q9Y5B8 (nm23-H7), O60361 (nm23-H8). 'Nd, not determined

<table>
<thead>
<tr>
<th>Isoform</th>
<th>Sub-cellular localization</th>
<th>Disease relevance / Function</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>nm23-H1</td>
<td>Cytosol</td>
<td>Tumour progression and metastasis</td>
<td>(Venturelli et al., 1995)</td>
</tr>
<tr>
<td>nm23-H2</td>
<td>Cytosol Nuclear</td>
<td>Tumour progression and metastasis, gene regulation and apoptosis</td>
<td>(Venturelli et al., 1995) (Lacombe et al., 2000)</td>
</tr>
<tr>
<td>nm23-H3</td>
<td>Cytosol</td>
<td>Chronic myelogenous leukaemia</td>
<td>(Lacombe et al., 2000) (Venturelli et al., 1995)</td>
</tr>
<tr>
<td>nm23-H4</td>
<td>Mitochondrial</td>
<td>Gastric and colon cancer</td>
<td>(Seifert et al., 2005)</td>
</tr>
<tr>
<td>nm23-H5</td>
<td>Nd1</td>
<td>Involved in early stages of spermatogenesis</td>
<td>(Munier et al., 1998)</td>
</tr>
<tr>
<td>nm23-H6</td>
<td>Cytosol Mitochondrial</td>
<td>Gastric and colon cancer</td>
<td>(Seifert et al., 2005) (Lacombe et al., 2000)</td>
</tr>
<tr>
<td>nm23-H7</td>
<td>Nd1</td>
<td>Gastric and colon cancer</td>
<td>(Seifert et al., 2005)</td>
</tr>
<tr>
<td>nm23-H8</td>
<td>Nd1</td>
<td>Nd1</td>
<td>(Lacombe et al., 2000)</td>
</tr>
</tbody>
</table>
Table 3. The Arabidopsis thaliana NDPK isoforms. The accession numbers for A. thaliana NDPKs are: P39207 (NDPK1), O64903 (NDPK2), AJ012758 (NDPK1a), O49203 (NDPK3a), Q8LAH8 (NDPK3b). "Nd, not determined

<table>
<thead>
<tr>
<th>Isoform</th>
<th>Sub-cellular localization</th>
<th>Function</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDPK1</td>
<td>Cytosol</td>
<td>Component of ROS signalling</td>
<td>(Fukamatsu et al., 2003)</td>
</tr>
<tr>
<td>NDPK2</td>
<td>Chloroplastic</td>
<td>Phytochrome response</td>
<td>(Choi et al., 1999)</td>
</tr>
<tr>
<td>NDPK1a</td>
<td>Cytosol</td>
<td>H₂O₂ mediated MAPK signalling</td>
<td>(Moon et al., 2003)</td>
</tr>
<tr>
<td></td>
<td>Nuclear</td>
<td>UV-light signalling</td>
<td>(Zimmermann et al., 1999)</td>
</tr>
<tr>
<td>NDPK3a</td>
<td>Mitochondrial</td>
<td>Heat shock response</td>
<td>(Escobar Galvis et al., 2001)</td>
</tr>
<tr>
<td></td>
<td>Chloroplastic</td>
<td></td>
<td>(Spetea et al., 2004)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Paper III)</td>
</tr>
<tr>
<td>NDPK3b</td>
<td>Mitochondrial</td>
<td>N̄d¹</td>
<td>(Hasunuma et al., 2003)</td>
</tr>
<tr>
<td></td>
<td>Putative</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>chloroplastic</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sub-cellular localization of NDPK

In eukaryotic cells NDPKs are located in the cytosol (Troll et al., 1993) microsomes, (Lambeth et al., 1997) plasma membrane (Kimura, 1993), nucleus, (Nosaka et al., 1998) chloroplasts (Yang & Lamppa, 1996) and mitochondria (Lambeth et al., 1997).

Plants have been found to contain three groups of NDPKs (Escobar Galvis et al., 1999). NDPK1 in the cytosol (Tanaka et al., 1998; Zimmermann et al., 1999), NDPK2 in the cytoplasm, nucleus and chloroplast stroma (Choi et al., 1999; Yang & Lamppa, 1996) and NDPK3 in the lumen of the chloroplast and mitochondrial intermembrane space (Spetea et al., 2004; Struglics & Håkansson, 1999; Sweetlove et al., 2001; Yang & Lamppa, 1996). Most studies have concerned the cytosolic isoforms of NDPK but also the mitochondrial enzymes. NDPK3 in plant mitochondria exists both as a soluble form in the IMS and membrane-bound form attached to the inner membrane (Struglics & Håkansson, 1999), (Paper I).

In A. thaliana, a similar nomenclature (NDPK1 and NDPK1a) is used for two isoforms of NDPK (table 3). However, NDPK1 and NDPK1a show no more than 57% identity, whereas NDPK1a and NDPK2 differ in only two amino acids. The high similarity of NDPK1a to NDPK2 may reflect that these genes were cloned from two different ecotypes (Landsberger erecta versus Columbia). Nowadays, NDPK1a is obsolete and classified as an NDPK2 gene (Hasunuma et al., 2003; Tair-homepage).
Structure of NDPK

Most of the NDPK genes code for small proteins (14 – 19 kDa). The sequences of NDPK genes from various organisms have revealed that most of these proteins consist of approximately 150 amino acids extensively conserved from bacteria to human. NDPKs share primary, secondary and tertiary structure but differ in the quaternary structure. Based on the crystal structures, NDPKs are tetramers in prokaryotes (Giatrosio et al., 1996) and hexamers in eukaryotes (Webb et al., 1995). All have very similar three-dimensional structures, and their subunits retain a characteristic fold with [-] helices packed on four antiparallel β-sheets (Dumas et al., 1992). Three dimers associate to generate the hexamer whereas two dimers associate to generate the tetramer. The residues associated with hexamer formation have been remarkably conserved during evolution. The main difference between the hexameric and tetrameric NDP kinases is the C-terminal part of the molecule. In the hexameric NDPKs, the amino acids at the C-terminus interact with the neighbouring dimer, contributing to hexamer stability. In tetramers, the corresponding C-terminal is shorter and interacts with the neighbouring subunit of the same dimer (Lascu et al., 2000). The quaternary structure is important for the stability of the protein. In Drosophila melanogaster, NDPK is the product of the awd (abnormal wing discs) gene, which is essential for development as mutations lead to larval lethality (Dearolf et al., 1988). A natural point mutation in awd at residue P67 is called K-pn (Killer of prune). The K-pn substitutes a serine for a proline on a surface loop, named for this reason the K-pn loop. The conserved proline is found at position 95 in the pea mitochondrial NDPK3 (Paper II; fig 4). The hexameric structure is necessary for full enzyme activity (Mesnildrey et al., 1998). In mammals, the K-pn loops are in the area of contact between the subunits and play an important part in the stability of hexamers (Karlsson et al., 1996; Lascu et al., 1992). Also in plants the trimmer interactions are mediated through interactions of helix A5 with the Killer of prune loop (Paper II). The proline residue is conserved in most NDP kinases, but it is a serine in nm23-H4 (Milon et al., 2000; Milon et al., 1997), (fig 4). Mutation of the serine to a proline considerably increased protein stability (Milon et al., 2000). In paper II we present the first plant mitochondrial X-ray structure of plant mitochondrial NDPK3.

Targeting of NDPK3

NDPKs and most of the mitochondrial and chloroplast proteins are nuclear encoded. After translation in the cytoplasm, transport to the organelle is carried out by selective import mechanisms (Glaser et al., 1998). The targeting signals are usually present in the N-terminal extensions of the protein. The mitochondrial targeting extension called pre-sequence, and chloroplastic named transit peptides, direct the respective protein to the given organelle (Bruce, 2001). When the precursor protein is transported to the organelle, its pre-sequence is removed by a peptidase, resulting in the mature protein form. It is believed that the secondary structure rather than the primary sequence of the pre-sequence determines targeting.

Because mitochondria and chloroplasts share some overlapping functions, such as DNA replication, transcription, translation, energy production and protection from oxidative stress (Akashi et al., 1998), some enzymes are found in both organelles. There are two possible mechanisms by which dual targeting can be achieved: through either twin targeting sequence or an ambiguous targeting sequence. Twin targeting signals may be the result of alternative transcription or
transcription initiation, alternative splicing, or a posttranslational modification that results in the formation of two proteins with distinct targeting peptides (Peeters & Small, 2001). The precursors carrying an ambiguous targeting signal exist as a single polypeptide form but can be recognized and transported to more than one organelle (Akashi et al., 1998).

Figure 4. Sequence alignment of eight NDPK isofoms. The conserved amino acids Ser69, Ser119, and the active His117 are highlighted in red and the conserved Killer of prune Pro is bold. The sequences are trimmed and numbered according to the mature pea mitochondrial NDPK3 sequence, starting with the Alanine. Accession codes for the sequences are: AAF8037, mitochondrial pea NDPK3; O49203, mitochondrial Arabidopsis NDPK3a; Q8LAH8, mitochondrial Arabidopsis NDPK3b; P23292, cytosolic human nm23-H2; CA50511,1, cytosolic pea NDPK1; P47923, chloroplastic pea NDPK2; 000746, mitochondrial human nm23-H4; P0A763, Escherichia coli NDPK.

ATP/ADP translocator and adenylate Kinase

The ATP/ADP translocator, also named the ATP/ADP carrier or adenine nucleotide translocator (ANT) is a member of the mitochondrial carrier family that transports ATP/ADP over inner mitochondrial membrane. The ATP/ADP translocator catalyses the exchange of cytosolic ATP for ADP synthesised in the matrix and thereby supports the cell with energy (Pfaff & Klingenberg, 1968).

Adenylate Kinase catalyses reversible phosphotransfer between adenine nucleotides: ATP + AMP → 2 ADP (Noda, 1973) The enzyme is an important component of the energy charge concept and maintains equilibrium of adenine nucleotides in the cell (Atkinson, 1968). At present, six isofoms with different subcellular localization have been described in mammalian tissues: AK1 and AK5 in the cytosol (Collavin et al., 1999; Van Rompay et al., 1999), AK2 in the mitochondrial IMS (Kohler et al., 1999), AK3 and AK4 exclusively in the mitochondrial matrix (Noma et al., 2001) and AK6 in nucleus (Ren et al., 2005).

In plants, Adenylate Kinase has been identified in the stroma of chloroplasts (Hampp et al., 1982), as well as in the cytosol and mitochondria (Stitt et al., 1982). There are seven predicted Adenylate Kinases in A. thaliana genome named AK1 –7 (fig 5). Three of those, AK2, AK6 and AK7 are predicted to be located in
the mitochondria (Tair-homepage). AK4 that is predicted to have a chloroplast location is 250 amino acids longer than the other isoforms in *A. thaliana* (fig 5). Sequences producing significant alignments with these 250 amino acids were ATP binding nucleotide kinase from *A. thaliana* and a putative Adenylate Kinase, from rice chloroplast. However, no similarities with any of the *A. thaliana* Adenylate Kinase isoforms were found.
Figure 5. Sequence alignment of seven Adenylate Kinases from A. thaliana. The asterisks and dots represent residues that are identical or conserved in a majority of the sequences, respectively. The range of the binding and LID domains are defined according to the alignment by Ginger et al. (Ginger et al., 2005). The highly conserved ATP-binding loop is boxed, and the length of the LID domain is underlined. Other residues known to be important either in substrate binding or catalysis are highlighted by red and green, respectively. The blue shading reveals two conserved hydrophobic residues that form part of the essential C-terminal alpha helix, which makes hydrophobic contact with the purine ring of ATP. AK7, (bold), is the mitochondrial isoform identified as an interacting partner of the soluble NDPK3 (Paper IV). Similarities in amino acids between the peptides from A. thaliana and P. sativum (pink, bold), from MS-sequencing are indicated. The accession numbers for A. thaliana Adenylate Kinases were: Q9ZUU1 (AK1), 21928121 (AK2), 4454016 (AK3), 17979434 (AK4), Q9FU7 (AK5), Q9FK5 (AK6), 082514 (AK7).

AK4 – in the C-terminus 250 aa removed
Aims of the study

The general aim of the project was to study the functions and interacting partners of mitochondrial localized NDPK3, as one of the components of intracellular signalling in plants. Specific aims were to:

- Study whether NDPK3 in mitochondria of P. sativum exists in other sub-mitochondrial compartments than the IMS;
- Identify the residues involved in serine phosphorylation;
- Analyse the oligomeric state and structure of NDPK3;
- Provide mutational analyzes of enzymatically important conserved residues of NDPK3 and study the effects of the mutations on the enzyme activity and oligomerization;
- Characterize the evolutionary history, expression and targeting of NDPK3;
- Investigate the potential involvement of NDPK3 in contact sites of plant mitochondria;
- Identify interacting partners of NDPK3 in plant mitochondria and characterize the effects of the protein interaction.

Results and discussion

Sub-mitochondrial localization of NDPK3 in P. sativum (I)

Struglics and Håkansson (1999) purified the first plant mitochondrial NDPK3 isoform from pea and suggested localization to the IMS (Struglics & Håkansson, 1999). The IMS localization was later confirmed using a proteomics approach for mitochondrial NDPK from potato and A. thaliana by Sweetlove et al. (2001).

Sub-mitochondrial fractionation was used in order to investigate the presence of NDPK3 in other sub-mitochondrial compartments. The mitochondria were fractionated into membrane and soluble fractions by sonication and ultracentrifugation. Western blot with antibodies directed against the C-terminal of NDPK3 (Escobar Galvis et al., 2001) was used determining the distribution. This experiment showed that in pea mitochondria there is as much NDPK3 in the membrane as in the soluble fraction (Paper I, fig 1A).

NDPK3 is firmly attached to the inner membrane of mitochondria

Mitoplasts were used in order to investigate the strength of the membrane association of NDPK3. Mitoplasts are mitochondria treated by osmotic shock so that the outer membrane ruptures, leaving the outside of the mitochondrial inner membrane exposed. The mitoplasts were washed with NaCO₃ and Triton X-100. Those chemicals generally remove the basic membrane proteins and hydrophobic proteins respectively. The results showed that the washes that abolished the membrane association of the peripheral inner membrane protein cytochrome c (Paper I, fig 2B) but only removed a small fraction of the membrane bound
protein (Paper I, fig 2A) inferring that NDPK3 is strongly attached to the inner membrane of mitochondria. This result was conformed by a proteinase K treatment of the mitoplasts. Also here just a minor fraction of NDPK3 was removed whereas the membrane association of cytochrome c was fully abolished (Hammargren, personal communication).

Due to the strong interaction of NDPK3 to the outer part of the inner membrane we were not able to investigate if the protein is also located in the matrix or not. It is also very difficult to isolate a pure soluble matrix fraction as this soluble fraction is easily contaminated by IMS. However, it cannot be excluded that NDPK3 is also attached to inner side of the inner membrane, facing the matrix.

Mutational analyses, serine phosphorylation, structure and oligomerization of NDPK3 (II, IV)

The signal transduction function of NDPK has been suggested to involve phosphorylation, not only on the active site histidine residue but also on a serine or threonine residue (MacDonald et al., 1993). The aim of our study was to identify functionally important residues involved in the observed Ser phosphorylation (Struglics & Håkansson, 1999). We utilized the classic approach where EDTA, a chelator of divalent cations, was used in the phosphorylation assay (Francis et al., 1989). Divalent cations such as Mg\(^{2+}\) are necessary for the NDPK activity and in their absence only autophosphorylation can occur as the phosphotransfer will stop on the enzyme residue(s) involved in the autophosphorylation (for more details see page 11; The kinase activity of NDPK). His117 (red in fig 4) was selected for site-directed mutagenesis in order to examine the phosphorylation of the conserved residues Ser69 and Ser119 and the active site histidine. Ser69 and Ser119 were replaced by Ala in order to maintain size without the potential to be phosphorylated. The active site His was muted to Asp in order to maintain a similar size but inhibit all activity.

Enzymatic activity is a prerequisite for Ser phosphorylation

The recombinant purified mitochondrial NDPK3 proteins were assayed for alkalitestable His autophosphorylation and acid stable Ser autophosphorylation after incubation with \(^{32}\)P]ATP in the presence of EDTA. The Ser autophosphorylation in the S119A mutant was 44% of the Ser autophosphorylation in wild type. This indicates that S119 is responsible for approximately one half of the phosphorylation but is not the only Ser to be phosphorylated. S119 is close to the nucleotide binding cleft and lies within 5Å of the active site H117. Thus the autophosphorylation of this residue is most likely a direct transfer via the phosphohistidine intermediate (Williams et al., 1993). The level of S119A and S69A His phosphorylation was 120% and 6% respectively of the wild type. This was in agreement with the catalytic activities where S119A does not show a large change in specific activity compared to wild type whereas the S69A mutation resulted in a dramatic loss of enzymatic activity. This observation is in contrast to the human isoform nm23-H2, where the mutation of the corresponding Ser residue, Ser70, was found not to affect the catalytic properties of the protein (Postel et al., 2002). No His or Ser autophosphorylation was detected for the enzymatically inactive H117D mutant. These results indicate that enzymatic activity is a prerequisite for autophosphorylation of serine.
The first crystal structure of plant NDPK3 from *P. sativum*

The first and so far only crystal structure of plant mitochondrial NDPK3 (Paper II) showed a structure similar to those of previously reported NDPKs (Lascu *et al.*, 2000). The crystal diffracts X-rays to 2.8 Å resolution where the asymmetric unit contains one hexamer. The six monomers of NDPK3 from *P. sativum* are arranged as trimers of dimers or dimers of trimers (Paper II, fig 1). The structure consists of a central core of a four stranded antiparallel β-sheet surrounded by six α helices. The dimers interact through β-sheet 2 and through the hydrogen bonding between helix A2. The trimer interactions are mediated through interactions of helix A5 with the Killer of prune loop (bold in fig 4) which is strictly conserved in most NDPKs (Lascu *et al.*, 1992).

*S69 is important for the enzymatic activity and protein-protein interaction*

It is known that there are correlations between function and structure of the NDPKs in mammals (Mesnildrey *et al.*, 1997). Escobar Galvis *et al.* (2001) showed that after gel filtration and immunodetection, NDPK3 was found in complexes of number of various sizes. We have observed similar results using size exclusion chromatography of the recombinant protein (not shown). The detected sizes of hexamers, tetramers and dimers indicate flexibility in oligomerization. The balance between the complexes is changed in the S69A where the mutation destabilizes NDPK3. In this mutant the dimer and tetramer is increased at the expense of the hexamer with a reduction of the enzymatic activity as a consequence.

In the pea mitochondrial NDPK3, similar to the human nm23-H2 structure, the S69 residue is exposed on the surface of the hexamer (Webb *et al.*, 1995). The S69 in the NDPK3 has only non-polar contact with Trp148 located in a bordering monomer and to the Phe66 in the same monomer. This interaction may by stabilizing the hexameric state of the enzyme. The destabilization of the hexameric structure with a more flexible loop caused by the Ser to Ala mutation may lead to changed ability of NDPK3 to bind substrate.

Adenylate Kinase was identified as an interacting partner of the soluble NDPK3 from the inter membrane space of mitochondria (Paper IV). The interaction modulates the activity of the enzymes where NDPK3 inhibits Adenylate Kinase. However the activity of Adenylate Kinase is unchanged when it interacts with S69A NDPK. This may indicate that the mutation affected the ability of NDPK:Adenylate Kinase interaction. Thus, the oligomeric state of NDPK3 is not just important for the activity of NDPK3 but also for the interaction with Adenylate Kinase.
Evolutionary history, expression and targeting of the plant NDPK family (III)

The plant NDPK gene family consists of three groups whose gene products end up in different sub-cellular locations. In *A. thaliana* cv. Colombia 0 there are four different NDPK isoforms named NDPK1-3 (table 3) where NDPK3a and NDPK3b are very similar. These isoforms differ by only 12 amino acids in the mature part of the proteins, none of which are in the active site (fig 6).

Separate evolution of NDPK3 in plants?

An earlier study of plant and vertebrate NDPKs showed that the plant isoforms are evolutionary more closely related to the vertebrate cytosolic form than to the vertebrate mitochondrial or to *Drosophila* nm23 (Escobar Galvis et al., 1999). The amino acid sequences from 23 different *NDPK* including monocots, dicots and moss were used in order to investigate the phylogeny of the *NDPK* gene family in plants. The *NDPK* grouped in three major clades, *NDPK1*, *NDPK2* and *NDPK3* respectively. This grouping indicates that the function of NDPKs in the different subcellular compartments is well conserved. According to the evolutionary analysis, the NDPK3 proteins may have a somewhat more specific and conserved function as compared to the other NDPKs as it diverged earlier from the common ancestor (Paper III, fig 1).

The expression of the NDPK family in *A. thaliana*

The cytosolic *NDPK1* genes have been cloned from a variety of plant species. In tomato, *NDPK1* is highly expressed in both leaf and stem tissue (Harris et al., 1994). Rice *NDPK1* expression changes during seed germination and in the early stages of seedling growth (Yano et al., 1995). *NDPK1* represents more than half of the total NDPK transcript pool in leaves, roots and inflorescence tissues (Paper III).

Previous studies have shown that the mitochondrial *NDPK3* protein from *P. sativum* is more abundant in reproductive and young tissues than in vegetative and mature tissues (Escobar Galvis et al., 1999). The expression pattern of *NDPK3* in buds of *P. sativum* (Escobar Galvis et al., 2001) is in agreement with the gene expression of *NDPK3a/b* homologues in *A. thaliana* (Paper III, fig 2A, 2B).
NDPK3b, however, showed much weaker but distinct signal in tapetal, ovary and petal tissue (Paper III, fig 2B). Probably, NDPK3b can function as a complement to NDPK3a in tissues with high mitochondrial activity.

**NDPK3 is dually targeted to mitochondria and chloroplasts**

Protein targeting is usually highly specific. Nevertheless, a certain number of proteins are recognized by both mitochondria and chloroplasts. In plants, mitochondrial targeting sequences are generally longer than in other organisms, 40 amino acids on average (Glaser et al., 1998). The mitochondrial *P. sativum* pre-sequence is 80 amino acids, containing an intramitochondrial targeting part (Escobar Galvis et al., 1999). The mitochondrial pre-sequence is commonly rich in arginine and poor in acidic amino acids and contain alphatic residues (leucine and alanine). The structure of the pre-sequence is usually an amphphilic helix (von Heijne et al., 1989). The C-terminus of the *P. sativum* pre-sequence is predicted to form a helix-kink-helix motif (Paper III). A helix close to the processing site has in some cases been shown to be important for recognition by the mitochondrial processing peptides (MPP) (Tanudji et al., 1999) where the arginine at the -2 or -8 position from the cleavage site is critical.

The chloroplast targeting sequences are generally about 50 amino acids long, rich in serine and poor in leucine residues and in contrast to mitochondria, they do not contain many positive charged residues in the first ten amino acids (von Heijne & Nishikawa, 1991). The way to obtain dual targeting is to have a targeting sequence that is recognized as an import signal by both mitochondria and chloroplasts.

As the NDPK3 protein has been found in both the lumen of the chloroplasts and in the IMS of mitochondria (Spetea et al., 2004; Struglics & Håkansson, 1999; Sweetlove et al., 2001; Yang & Lamppa, 1996), we wanted to study if the protein is dual targeted or not. A NDPK-GFP construct was transformed into *A. thaliana* protoplasts. As shown in Paper III (fig 3), the NDPK3 is able to direct the GFP to both mitochondria and chloroplasts. Western blot analyses of pea subcellular fractions confirmed the dual localization of NDPK3, using NDPK3 antibodies produced against the C-terminus of the protein. The enzyme was not detected in the stroma but in the chloroplast thylakoid fraction. Even so, the majority of the enzyme was detected in the mitochondrial fraction (Paper III, fig 4).

**Interacting partners of mitochondrial NDPK3 from *P. sativum* (I, IV)**

Many of the regulatory functions of NDPK are mediated by protein-protein interactions (Leung & Hightower, 1997). For the interaction studies it is important to know that the proteins are located in the same compartment. We showed that the NDPK3 in plant mitochondria exists both attached to the inner membrane, where it interacts with the ATP/ADP translocator (Paper I), and soluble in the IMS, where Adenylate Kinase is an interacting partner (Paper IV).
Interaction between NDPK3 and ATP/ADP translocator

Mitochondrial membrane fraction from *P. sativum* was used in a co-immunoprecipitation experiment in order to identify the membrane proteins that NDPK3 interacts with. The interacting protein was in gel digested followed by QTOF-MS analysis. Five peptide sequences from the protein were obtained. The sequences were most similar to *A. thaliana* ATP/ADP translocators with accession number P31167. The sequences covered 17% of the Arabidopsis protein and were found to be 87% identical. The antibodies directed against ATP/ADP translocators were used in order to confirm the interaction of this protein with NDPK by cross-immunoprecipitation (Paper I, fig 4). Based on these results we conclude that the ATP/ADP translocator is an interacting partner of the membrane bound NDPK3.

Mitochondrial NDPK3 - a part of the contact point complex?

It has been shown that fractions containing the metabolite transport contact sites include various proteins and marker enzymes such as porins, creatine kinases and ATP/ADP translocators (Uribe et al., 2003). NDPK3 from pea mitochondria is strongly attached to the inner membrane (Paper I). This could indicate that NDPK3 together with the interaction partner, ATP/ADP translocator, are localized to the contact points for channelling metabolites from the matrix to the cytoplasm and vice versa.

We isolated four fractions of mitochondrial membranes by osmotic shock treatment followed by sucrose gradient ultracentrifugation (fig 7A). In order to examine whether NDPK3 co-localizes with the markers of the metabolite contact points or not, the fractions were investigated by western blots where specific antibodies against ATP/ADP translocator, porin, F1 and NDPK3 were used (fig 7B). The different fractions were further investigated by partial detergent solubilization and size exclusion chromatography. ATP/ADP translocator, porin, F1 and NDPK3 were found to overlap (fig 7C). This overlap may suggest that NDPK3 is related to the contact sites with porin and ATP/ADP translocator as the marker enzymes. This interaction may have effect on ATP concentration on the IMS side of the inner membrane and thereby facilitating a higher rate of ADP/ATP exchange. However, the specific link with the contact site components needs to be further isolated and analysed in order to define the specific role of NDPK3, the interaction with the ATP/ADP translocator (Paper I) and other interacting proteins.
Figure 7. Fractionation of mitochondrial membranes from P. sativum. A) Separation of mitoplast fraction. Sonicated mitoplasts were separated by ultracentrifugation at 20h on 55:40% sucrose gradients. B) Western blot analyses. Four different fractions were analyzed by western blot with antibodies directed against NDPK3, Porin, F1 and ANT. Equal protein amount was loaded. In fraction four, marked by asterix, all the enzymes were detected. C) FPLC analyses. Fraction four was partially solubilized by 1% Triton X-100 for 15 min and separated on a Superose 6 column in the presence of 0.1% Triton X-100. Fraction Nr 14 and 15 contains all four enzymes; F1, ANT, Porin and NDPK3.
Interaction between NDPK3 and Adenylate Kinase

In order to find putative mitochondrial interaction partners for soluble mitochondrial NDPK3 we used affinity chromatography. The mitochondrial IMS fraction was passed through an affinity column with covalently bound recombinant NDPK3. The interacting proteins were eluted by salt gradient and identified by MS-QTOF sequencing. The peptide sequence (fig 5) was most similar to A. thaliana Adenylate Kinase with a sequence similarity of 90% between the P. sativum peptide sequences and A. thaliana gene At5g63400.

Structure of Adenylate Kinase

Several Adenylate Kinase isoforms have been crystallised as monomers with an exception for one reported trimer in Sulfolobus bacteria (Bonisch et al., 1996). The monomer is composed of three sub-domains (Schulz et al., 1990): the AMP binding domain, the lid domain and the core domain that is unaffected by substrate binding (Vonrhein et al., 1995). The active site is located at the end of a channel, deep in the structure which closes around AMP and ATP, shielding the reaction from water (Bergman, 1999). The movement of the AMP binding site LID domain induced by substrates leads to two conformations called closed and open states (Schulz, 1992). There are size variations among the Adenylate Kinases called long and short isoforms. The long and short types of Adenylate Kinases differ in the LID domain. LID is an eleven residue segment in short type, whereas it is longer in the long type (Fukami-Kobayashi et al., 1996). The LID domain is predicted to be 80 amino acids in A. thaliana family (fig 5), which indicates that these isoforms belong to the long type Adenylate Kinases. In plants, there is only one structure of Adenylate Kinase available (Wild et al., 1997). This isoform is a monomer. In order to investigate the oligomeric state of Adenylate Kinase from A. thaliana, chemical cross-linking with glutaraldehyde (GA) was performed. Surprisingly, the recombinant His-tagged enzyme gave four distinct bands, showing a cross-linking pattern corresponding to a tetrameric structure (fig 8). It would be the first known tetramer not just in plants but also in the Adenylate Kinase family. However, this result needs to be further analyzed by e.g. size exclusion chromatography or native gels in order to confirm the unusual oligomeric state of the enzyme.
**NDPK3 and Adenylate Kinase as cooperating partners**

In paper IV we show that the interaction of NDPK3 and Adenylate Kinase modulates the activity of the enzymes and their responses to cAMP and calcium. In mammalian systems there is cooperation between NDPK and Adenylate Kinase activities in the mitochondria needed for facilitation of e.g. protein import into the nucleus (Dzeja & Terzic, 2003). A direct interaction between the viral Adenylate Kinase and *E. coli* NDPK was recently shown after T4 infection. Both enzymes were a part of T4 dNTP synthetase, a multienzyme complex which facilitates the synthesis of dNTPs and their flow into DNA (Kim *et al.*, 2005). This may indicate that the interaction between NDPK3 and Adenylate Kinase is a general feature and not specific to plants.

![Figure 8. Cross-linking of Adenylate Kinase with glutaraldehyde (GA). GA amount in lanes 2 - 0.02% and 3 - 0.007%. Equal protein amount was loaded. The protein size marker, lane 1, and the relevant molecular mass (kDa) are indicated on the left.](image)

**Effects of cAMP and calcium on NDPK3 and NDPK:AK interaction**

The coupled pyruvate kinase-lactate dehydrogenase assay (fig 9) was used in order to investigate the enzyme activity of NDPK3, Adenylate Kinase and the NDPK:Adenylate Kinase (NDPK:AK) interaction. The ADP production of the enzymes is indirect measured via the decrease of NADH where dTDP - the substrate for NDPK3 and/or AMP - the substrate for Adenylate Kinase are included.

The NDPK:AK interaction was measured in two different ways. First, in the absence of AMP or in the presence of the Adenylate Kinase specific inhibitor Ap5A, *e.g.* measuring the NDPK3 activity in the interacting complex. Second, in the absence of dTDP or in the present of enzymatically inactive NDPK3 mutant H117D (Paper II) *e.g.* measuring the Adenylate Kinase activity in the complex.

Second messengers such as cAMP and calcium are intracellular molecules which transmit signals in cells. cAMP is derived in a reaction where ATP can be broken down into non-toxic products as inorganic phosphate and AMP. The synthesis and degradation of cAMP is controlled by the enzymes named adenylate cyclase and
cyclic nucleotide phosphodiesterase, respectively (Abel et al., 2000; Hanoune & Defer, 2001; Hetman et al., 2000; Ichikawa et al., 1997).

It has been shown that in tobacco two NDPK isoforms bind to cAMP where one of those is an orthologue of the NDPK from P. sativum (Laukens et al., 2001). In Dictyostelium, the NDPK associated with the membrane was stimulated by cAMP, where the GTP produced by NDPK activated the G-proteins (Bominaar et al., 1993). We observed that cAMP in the coupled pyruvate kinase-lactate dehydrogenase assay inhibited the activity of NDPK3 by itself and in the interaction with Adenylate Kinase (Paper IV; fig 1a, 4a).

\[ \text{Figure 9. Summary of the coupled assay using pyruvate kinase and lactate dehydrogenase. ADP formed in the first step is phosphorylated to ATP by pyruvate kinase in the presence of phosphoenolpyruvate (PEP). Pyruvate is reduced in the presence of NADH by lactate dehydrogenase (LDH). A) Enzymatic assay for NDPK3. B) Enzymatic assay for Adenylate Kinase.} \]

Calcium is a second messenger in many signalling pathways such as those activated by pathogen attack (Blume et al., 2000), salt stress (Epstein, 1998), cold shock (Xiong et al., 2002) and during pollen tube growth and root nodulation (Evans et al., 2001). cAMP metabolism in higher plants is often connected to calcium levels where both the synthesis and degradation of the nucleotides are
controlled by concentrations of this ion (Kurosaki et al., 1993). We observed that calcium inhibited NDK3 activity itself and in the complex with Adenylate Kinase at concentrations under 0.5 μM. Higher concentrations of calcium showed no inhibitory effects (fig 1b, 4b). These inhibitions have direct effects on the GTP/ADP production in the IMS of mitochondria. As we show the inhibition of the enzymes and thereby the regulation of GTP/ADP amount occurs in two steps. First, low concentrations of the messenger results in low GTP/ADP production. Second, the enzyme activity and the GTP/ADP production is restored when higher concentrations are present (Paper IV, fig 1b, 3a, 4b). ADP formed in these reactions may be further consumed during oxidative phosphorylation with stimulation of respiration as a consequence (Jacobus & Evans, 1977). Adenylate Kinase stimulated the activity of NDK3 and the activity of Adenylate Kinase was inhibited by NDK3. However, the inhibition of Adenylate Kinase and the stimulation of NDK3 in the interacting complexes occur at the same rate and thereby resulted in the same amount of ADP produced (Paper IV).

Conclusions

The main conclusions from the results presented in this thesis follow.

- The plant NDK3 localizes to both the intermembrane space and to the mitochondrial inner membrane where it is firmly attached.
- The first crystal structure of a plant NDK3 confirmed a hexameric oligomeric state of the enzyme.
- The Ser autophosphorylation depends on the enzyme activity.
- The mutation of the conserved Ser119 to Ala reduced the Ser phosphorylation to about one-half compared to wild type with only modest change of enzyme activity.
- Mutation of S69 to Ala reduced the enzymatic activity radically. This residue is also important for the oligomerization of NDK3 and for the interaction of NDK3 with Adenylate Kinase.
- NDK1, NDK2 and NDK3 were present already in the last common ancestors of vascular plants and mosses.
- NDK3a has the second highest expression in inflorescences, leaves and roots after NDK1.
- NDK3b expression is elevated in later stages of flower development in tapetum, ovules and petals.
- NDK3 is dually targeted to mitochondria and chloroplasts where the major amount of the protein is found in the mitochondria.
- The enzymatic activity of NDK3 is regulated by cAMP and calcium.
- The membrane associated NDK3 interacts with ATP/ADP translocator.
- The IMS located NDK3 interacts with Adenylate Kinase.
- The interaction of NDK3 and Adenylate Kinase modulates the activity of the enzymes and their response to cAMP and calcium.
Future perspectives

Here we show increasing evidence that NDPK3 is an important multifunctional protein involved in cell signalling and coordination of other proteins. The study was performed to generate information about this mitochondrial isoform in plants, its biochemical characterisation and interacting partners. Additionally, the first structure of the enzyme provides possibilities for further studies of the protein folding. Furthermore, the discovered interacting proteins, ATP/ADP translocator and Adenylate Kinase may be an important link to more complex systems in the cell. I suggest the following research as examples of how to develop the material for further investigation.

Paper I

The resistance of NDPK3 to the washes could indicate localization to the contact points between the outer and inner mitochondrial membrane. It would be interesting to know if the ATP/ADP translocator that binds NDPK is the ATP/ADP translocator in the contact points or if it is an ATP/ADP translocator:NDPK complex by itself. The optimization of the assay with FPLC technique (fig 7) and use of different detergents could be utilized in order to separate the proteins in the contact points.

Paper II

The S69A mutation affects the oligomerization state of NDPK3. Increased flexibility of the head region could alter the trimer/hexamer interactions, thus forcing the equilibrium toward a dimer/tetramer structure. The mutation affected the enzymatic activity of NDPK3 and the interaction with Adenylate Kinase. Structural studies of the S69A mutant would confirm and clarify the oligomeric changes affecting the activity and the ability to interact with Adenylate Kinase.

Paper III

The translocation system of the NDPK3 over the chloroplast and mitochondrial membrane is most likely different. The C-terminal of the presequence contains a thylakoid processing peptidase like motif. The pea mitochondrial NDPK3 pre-sequence lacks the MPP cleavage residues, an arginine at the -2 or -8 position from the cleavage site. Escobar Galvis et al. (1999) suggested that the pea mitochondrial NDPK3 isoform might be processed by an inner membrane protease (IMP), in analogy to the one described by Nunnari et al (1993). The specificity of the IMP is such that it cleaves at -3 and -1 residue where an alanine at position -1 from the first amino acid of the mature protein is essential (Thompson et al., 1999). Since the mitochondrial pea NDPK3 contains such an alanine, this pre-sequence may be a good candidate substrate for a putative plant mitochondrial signal peptidase. Processing studies where the cleavage residues would be mutated would clarify this subject.
Paper IV

The protein interaction of NDPK3 and Adenylate Kinase is an important link to the cross-talk between these kinases, cAMP and calcium. This interaction is probably a part of a multi-enzyme complex. It would be interesting to know if there are other members in the system or if it is just the AK:NDPK complex by itself. It would be important to start immunochemistry studies with antibodies directed against Adenylate Kinase. One other option would be to bind the Adenylate Kinase covalently to the NHS activated HP column in order to find the interacting partners from mitochondrial IMS. Putative interacting enzymes could be enzymes of the multi complex including Adenylate Kinase and NDPK.

Knowledge of the oligomeric state of Adenylate Kinase and the nature of NDPK:AK interaction is of crucial relevance to the potential study of the protein complex. The crystallization of the enzyme(s) would lead to the identification of residues important for the protein interaction. Size exclusion chromatography or blue native gels could confirm the unusual oligomeric state of Adenylate Kinase (fig 8).

It would also be interesting to know more details about Adenylate Kinase isoform AK4 (fig 5) as this predicted chloroplastic enzyme is 250 amino acids longer than the six other members of Adenylate Kinases in the A. thaliana family. It would be interesting to investigate the enzyme structure and the function of the C-terminal part, which has no similarities with A. thaliana Adenylate Kinase isoforms.
References


Leung, S. M. & Hightower, L. E. 1997. A 16-kDa protein functions as a new regulatory protein for Hsc70 molecular chaperone and is identified as a member of the Nm23/nucleoside diphosphate kinase family. Journal of Biological Chemistry 272, 2607-2614.


Vonrhein, von Voisine, Van Uribe, Unseld, Troll, Thompson, Tanaka, Sweetlove, Struglics, Stitt, 3 changes during a catalytic cycle of nucleoside monophosphate kinases. Biochemistry


Acknowledgements

This work has been carried out at the Department pf Plant Biology and Forest genetics at the Swedish University of Agricultural Sciences, Sweden and have been financially supported by the Magnus Bergvall Foundation, the Swedish Science Research Council and Graduate Research School in Genomics and Bioinformatics, all whose support are gratefully acknowledged.

First and foremost I would like to thank to my supervisor Carina Knorpp, for always challenging me to achieve more than I thought possible. Thank you for all help, support and encouragement, both professionally and in the non-scientific field.

I would also like thank Jenni Hammargren, for your help and support in our parallel race against the clock and for keeping my spirit up and for always being there.

Jenny Penny Carlsson, for always knowing answers to my questions, for all your nice small letters, for your shining smile and for your Muffin bags.

Thanks to past and present members of VBSG for all kinds of scientific and social events. Ingrid Schenning, for all your help with the wonderful protein named NDPK, Ingrid Eriksson, for all the advice in technical matters and for always knowing “where the stuff is”. Gun Rönnqvist, for showing me more than 1.000 times how to sterilize Arabidopsis seeds. Gun, thank you also for your very special care about me. Ulf Ståhl, thank you for all the enzymatic activity debates and for other funny discussions. Janne Fahleson, for computer support and for “kidding time”. Jens Sundström for bringing me nice flowers in order to encourage me to keep our office clean.

I would also like to thank my friends, Mor och Far Tuta, för alla +/- listor och för att Ni berättade för mig att “när man sträcker sig på tå kan man nå stjärnorna”. Inger Holgersson, för att Du alltid under alla år helt kravlöst ställt upp. Peter, för all Din kärlek och stöd. Chad, for being close despite the distance. Markét, Keltákovi a Danielovi, za to, že jste četli moje maily a za to, že jste na ně odpovírali.

I would also like to thank Lars Erik, for your never-ending support and for remind me That it comes a new day tomorrow.

Děkuji mé rodině za veškerou podporu a lásku – babičce Ilz čce, za to, že na mě v těžkých chvílích myslíš. Mamce a tátovi, za volnost a svobodu rozhodování, která mi Vámí, během mé cesty životem, byla vždy dáná. Bráchovi, za to, že jsi mi tehdá v autě řekl: Dodělej to!

Till slut ett varmt tack till mina två barn Madeleine och Michael för allt tålamod med mig och för alla våra ickle-vetenskapliga exkursioner på skidor, skridskor, ”bladsen” och till fots. De kommer alltid att vara fina minnen hos mig.
Jag älskar er!