
Studies on plant-microbe interaction to
improve stress tolerance in plants for
sustainable agriculture 

Shashidar Yadav Asari 
Faculty of Natural Resources and Agricultural Sciences 

Department of Plant Biology 
Uppsala 

Doctoral Thesis
Swedish University of Agricultural Sciences

Uppsala 2015



Acta Universitatis agriculturae Sueciae 
2015:76

ISSN 1652-6880 
ISBN (print version) 978-91-576-8350-2 
ISBN (electronic version) 978-91-576-8351-9 
© 2015 Shashidar Yadav Asari, Uppsala 
Print: SLU Service/Repro, Uppsala 2015

Cover: Bacillus amyloliquefaciens UCMB5113 colonizing Arabidopsis thaliana roots.

(photo: Shashidar Yadav Asari)



Studies on plant-microbe interaction to improve stress tolerance in 
plants for sustainable agriculture 

Abstract 
Biotic and abiotic stress factors have a major impact on plants and cause extensive 
losses to crop production. Bacteria that provide growth promotion and prime stress 
tolerance of plants have great potential to improve crop production and support durable 
and environmental friendly resource management. Priming refers here to when plants 
upon appropriate stimulation develop an enhanced capacity to express defense responses 
to a later stimulus.  

In this study strains of the beneficial bacterium Bacillus amyloliquefaciens were 
analysed for their effects on plants. Direct antagonistic effect of B. amyloliquefaciens on 
several Brassica phytopathogens (Botrytis cinerea, Alternaria brassicae, Alternaria 
brassicicola, Verticillium longisporum, and Sclerotinia sclerotiorum) was demonstrated 
by bacteria and exudates in vitro. A bacterial exudate fraction containing lipopeptide 
antibiotics was analysed and the strongest antagonistic activity was connected with a 
novel linear form of fengycin identified using mass spectrometry. 

Growth promotion of Arabidopsis thaliana Col-0, coi1-16, jar1 and npr1 but not in 
myb72 plants by B. amyloliquefaciens UCMB5113 was demonstrated with increased 
shoot and root biomass and increased number of lateral roots and root hairs while the 
primary root growth decreased. Bacillus inoculation resulted in profound effects on 
various plant hormones that will affect a variety of plant functions. Growth promotion 
was also demonstrated in split dish experiments where Bacillus strains were sequestered 
from Arabidopsis plants indicating a role for volatile organic compounds (VOCs). 
Bacillus VOCs also caused growth suppression of several phytopathogens. GC-MS 
analysis identified a large number of compounds in the VOC blend and the composition 
of VOCs was dependent on the medium used for cultivation and the effects on the plant 
also varied. 

Thus these Bacillus strains promote growth of plants and improve the survivability of 
plants exposed to biotic stress challenges by priming of stress tolerance. These findings 
can be extended to different crops to improve crop productivity under various 
environmental conditions. 
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1 Introduction  
Agriculture is essential to provide mankind with an adequate basic source 

of food supply. The rapid increase of the world population and the reduction in 
arable land available for crop cultivation as a consequence of urbanization are 
rising challenges to future food security (Nellemann et al., 2009). Increasing 
crop losses may also be expected due to increased stress factors (biotic - e.g. 
pathogens and insects, and abiotic - e.g. drought, heat and cold) due to changes 
in trade, agricultural practices, climate and other factors. The current main 
approach for plant protection from pathogens and insect pests is based on the 
use of chemical pesticides, but these cause environmental pollution and health 
hazards to humans beyond their intended use. An increase in agricultural 
productivity is needed for the future and that should be based on sustainable 
practices that minimize the environmental impact but at the same time support 
food safety and food security. 

1.1 Brassica crops 

 The family Brassicaceae contains many plants important for food and 
fodder production. Common commercial Brassica crops are oilseed rape, 
mustard, cauliflower, cabbages, broccoli, Brussels sprouts, collard greens, kale, 
radish and turnip. Oilseed rape (Brassica napus) is an important source of 
vegetable oil and presently the major oil crop within the EU and the third 
worldwide next to soybean and sunflower. The seed oil is rich in omega-
6/omega-3 fatty acids and the vegetative parts contain secondary metabolites 
known as glucosinolates. The enzyme myrosinase hydrolyzes glucosinolates 
into isothiocyanates, thiocyanates, nitriles and other toxic products to defend 
plants under attack but these products also serve in biofumigation (Ahuja, 
2010; Szczyglowska et al., 2011; Hu et al., 2015). The production of oilseed 
rape is increasing because of its nutritional and health benefits. Glucosinolate 
products can prevent cancer and have other health promoting effects (Talalay 
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and Fahey, 2001; Kapusta-Duch et al., 2012). In addition to being used for 
human consumption, oilseed rape is also used in fodder and production of 
biodiesel. 

1.2 Stress factors on plants (biotic and abiotic) 

Plant exposure to both biotic and abiotic stress factors cause major losses to 
crop production worldwide (Boyer, 1982; Bray et al., 2000; Suzuki et al., 
2014). Biotic stress factors, resulting from interaction with other organisms, 
include infection by pathogens or damage by insect pests. Abiotic stress factors 
include extreme temperature, drought, water logging and salinity as major 
parameters that affect plant growth. Different strategies are used to control 
stress in plants including, 1) chemical pesticides: that however create health 
hazards and environmental pollution and according to EU REACH/CAP 
programs should be reduced in coming years, 2) conventional plant breeding: 
which is time consuming and requires availability of resistant varieties, and 3) 
genetically modified organisms (GMO): that are not favoured in EU. 

Alternative solutions aim to develop environment-friendly strategies using 
biological agents that provide biotic/abiotic stress tolerance by strengthening 
plants natural defense (“resistance inducers”) often based on so called priming 
(Conrath et al., 2015). 

1.3 Plant roots and exudates 

The root is a vital organ of plants and is the first to arise as the radicle from 
the germinating seed. The root system consists of embryo derived primary root, 
post-embryonically derived secondary roots and root hairs. This root system 
plays a vital role in uptake of water and nutrients, mechanical support 
providing anchorage to the ground, and for food and nutrient storage. The root 
can modify its geometry according to the environment (Ditengou et al., 2008; 
Pacheco-Villalobos et al., 2012; Smith and De Smet, 2012).  

Roots can continuously synthesize, accumulate and secrete a wide range of 
compounds into the soil (Bais et al., 2001; Baetz and Martinoia, 2014). These 
compounds are first accumulated, then transported across the cellular 
membrane and excreted into the rhizosphere. The rhizosphere can be described 
as a narrow region of soil around the root area that is associated with soil 
microbial communities, mostly bacteria, that is influenced by root secretions 
(Haghighi et al., 2011; Berendsen et al., 2012). The root exudate contains H+ 
ions, water, enzymes, mucilage and carbon containing primary and secondary 
compounds (Uren, 2000; Wen et al., 2007; Faure et al., 2009). Based on the 
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active processes of root exudation, the compounds are classified into two 
groups, the first class consists of “waste” materials with unknown function and 
the second class contains lubrication and defense compounds with known 
function (Uren, 2000; Bianciotto et al., 2001; Dennis et al., 2010; Baetz and 
Martinoia, 2014). Further, compounds in root exudates are classified based on 
the size as low or high molecular weight compounds. These compounds vary 
depending on the type of soil profile, plant age, environmental conditions and 
nutrient availability (Brady and Weil, 1999; Neumann et al., 2014). The root 
exudates may act in signaling to direct positive and negative interactions 
between plants and microorganisms in the rhizosphere (Fig. 1). 

 
Figure 1. Some possible outcomes of plant-microbe interactions with Arabidopsis thaliana Col-0 
plants and different microorganisms. Control (A), negative effect on plant (disease) (B), and 
positive effect on plant (growth promotion) (C). 

1.4 Biocontrol agents  

Biological control is defined as the reduction of pest and pathogen effects 
by natural enemies. Biological control agents (BCA) include predators, 
parasitoid insects and microorganisms (bacteria, fungi and viruses) that are 
used to control biotic and abiotic stress factors and are considered eco-friendly 
strategies to produce more healthy crops and improve crop yield. Certain 
beneficial microorganisms are known for their ability to enhance plant growth 
and serve as biopesticides (here defined as an agent based on a living 
microorganism or a natural product used for the control of plant pests) 
(Chandler et al., 2011; Melo et al., 2014). Many studies have demonstrated the 
ability of plant growth promoting rhizobacteria (PGPR), plant growth 
promoting bacteria (PGPB) and plant growth promoting fungi to stimulate 
plant growth (Hamayun et al., 2010; Masunaka et al., 2011; Amaresan et al., 
2013; Ahmed and Hasnain, 2014; Gutjahr, 2014; Kakoi et al., 2014; 
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Pankievicz et al., 2015), improve protection against biotic stress (Barriuso et 
al., 2008; Hammami et al., 2013; Kojima et al., 2013; Park et al., 2013; 
Shimizu et al., 2013; Hossain et al., 2014), and improve tolerance to abiotic 
stress (Marasco et al., 2013; Caporale et al., 2014; Nadeem et al., 2014; Ullah 
and Bano, 2015; Sukweenandhi et al., 2015). Therefore, since a few years 
researchers have been focusing on improving plant growth and yields using 
effective BCA to support more sustainable agriculture. This study is focused 
on systemic analysis of plant responses to interactions with a PGPB, Bacillus 
amyloliquefaciens. B. amyloliquefaciens strains are Gram-positive spore 
forming bacteria common in soil that may stimulate plant growth and control 
negative effectors. 

1.4.1 Plant-microbe interaction  

Many studies have enabled and improved our understanding of some of the 
physiological processes connected with roots in the soil, chemical compounds 
secreted by roots, communication between microbes and root system dynamics 
(Fujishige et al., 2006; Rudrappa et al., 2008a; Rinaudi and Giordano, 2010; 
Pangesti et al., 2013; Gutjahr, 2014; Kakoi et al., 2014) and possible defense 
mechanisms. A number of symbiotic associations between many plants and 
microorganisms have evolved where special attention has been given to root 
associations. Mycorrhiza is distinguished by fungal colonization intracellularly 
or extracellularly that support nutrient acquisition (Field et al., 2015). Rhizobia 
is established when certain bacteria form root nodules of legumes and can fix 
nitrogen and make it available to the plant (Gourion et al., 2015). These 
associations have provided information about some of the barriers that exist 
and need to be overcome to establish a mutualistic relationship since plants 
have developed constitutive and inducible defense systems to avoid detrimental 
interactions.  

 
1.4.2 PAMPs/MAMPs 

Plants fulfil particular needs to many microorganisms. Plants and microbes 
communicate with each other by use of different signaling molecules during 
their interaction. Many microbes can be harmful to plants affecting growth and 
survival. Plants are capable of recognizing certain compounds released by 
microbes and mount inducible defense. The interaction between plants and 
microbes leads to the activation of local and systemic defenses under control 
by plant signaling hormones such as salicylic acid (SA), jasmonic acid (JA) 
and ethylene (ET) and depend upon the nature of the microbe (Koornneef and 
Pieterse, 2008; Yi et al., 2014). Plants recognize pathogens directly or 
indirectly. In direct recognition, plants can detect extracellular molecules 
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referred to as Pathogen associated molecular patterns or Microbe associated 
molecular patterns (PAMPs/MAMPs), e.g. bacterial flagellin, Ef-TU proteins, 
lipopolysaccharides and peptidoglycans (Boller and Felix, 2009), and/or 
intracellular effector proteins, e.g. Avr3a, Avrk and Avra10 proteins or tissue 
damage using pattern recognition receptor (PRR) proteins located on the cell 
surface or intracellularly (Allen et al., 2004; Rivas and Thomas, 2005; Boller 
and Felix, 2009). According to Jones and Dangl (2006), the plant immune 
system can be represented in a four phase `zigzag`model. In phase 1, PAMPs 
of microbes are recognized and activate the plant immune system by binding to 
specific PRRs located on the cell surface (Bakker et al., 2007; Boller and Felix, 
2009; Mahmut et al., 2009; Newman et al., 2013). PRR recognition results in 
PAMP-triggered immunity (PTI) that prevents colonization and proliferation. 
In phase 2, certain pathogens produce effectors that increase virulence. These 
effectors can interfere with PTI and result in effector-triggered susceptibility 
(ETS). In phase 3, if the effector is specifically recognized by nucleotide 
binding-leucine rich repeat (NB-LRR) receptor proteins, effector-triggered 
immunity (ETI) is activated resulting in disease resistance e.g. manifested as a 
hypersensitive response (HR) at the infection site. In phase 4, natural selection 
may have driven pathogens to suppress ETI by shedding or developing 
additional effectors promoting virulence until plants have developed novel 
receptors. 
 

1.4.3 Inducible defense (IR, SAR, ISR) 

Plants are attacked by many different pathogens and insect pests. To stop 
infections, plants have developed an advanced immune system by combining 
constitutive and inducible defense responses of many different kinds 
(Hammerschmidt, 1999; Nürnberger et al., 2004; Návarová et al., 2012). 
Formation of reactive oxygen species and programmed cell death at the site of 
the infection observed in HR occurs due to the so called gene-for-gene 
interaction between plant resistance (R) genes and pathogen avirulence (Avr) 
genes. 

Plants can induce resistance both locally and systemically to subsequent 
attack by the same or different pathogens (Walters et al., 2005; 
Hammerschmidt, 2007). This induced resistance (IR) may control the 
pathogens or damaging factors, completely or partially (Kuc, 1982; Chen et al., 
2014). Several studies have shown that genes expressed during IR responses 
produce proteins with chitinase, glucanase and other enzymatic activities that 
are involved in defense reactions to a wide spectrum of pathogens (Van Loon 
et al., 2006). 
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The activation of defense mechanism throughout the plant can be managed 
in different ways and two common routes are referred to as systemic acquired 
resistance (SAR) and induced systemic resistance (ISR) (Pieterse et al., 2012). 
The plant hormones SA and JA are involved in systemic resistance pathways 
and are known to reduce the effect or pathogens on plants (Kniskern et al., 
2007; Makandar et al., 2010). The induction of plant defense as SAR or ISR is 
in a simplified scheme dependent on SA or JA and ET, respectively (Pieterse et 
al., 2012). Both types of systemic defense can be differentiated on the basis of 
nature of the elicitor and differences in regulatory signaling pathways 
demonstrated in a model plant system (Schenk et al., 2000; Van Wees et al., 
2000; Yan et al., 2002) shown in (Fig. 2) (Vallad and Goodman, 2004). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Two forms of induced defense in plants. Systemic acquired resistance (SAR), induced 
by exposure of below- or aboveground tissues to biotic or abiotic elicitors, dependent on salicylic 
acid (SA) signaling and resulting in accumulation of pathogenesis-related proteins (PR proteins). 
Induced systemic resistance (ISR), induced (primed) by exposure of roots to plant growth-
promoting rhizobacteria (PGPR), activation of transcription factors (MYB72 and MYC2) and 
dependent on jasmonic acid (JA) and ethylene (ET) signaling, stimulating e.g. callose formation 
but generally not PR proteins. Both pathways need the NPR1 gene though. 

 
In SAR enhanced resistance even in distal parts of the plant provide 

protection against the attack of the same or different pathogens (Sticher et al., 
1997; Jing et al., 2011; Shah and Zeier, 2013). The SAR can be triggered by 
exposing the plants to various pathogenic and non-pathogenic microbes or 
chemicals such as SA or artificial chemicals including, 2,6-dichloro-isoicotinic 
acid (INA) or benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester 
(BTH) (Sticher et al., 1997). Typical for SA mediated SAR is the induction of 
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pathogenesis related (PR) proteins like PR-1, PR-2 and PR-5 (Cameron et al., 
1994; Van Loon LC, 1997; Jones and Dangl, 2006). 

Priming refers to a special state where plants will be more tolerant or 
resistant to stress upon challenge as a result of an earlier appropriate stimulus. 
PGPR colonize the root and induce systemic resistance in areal parts of the 
plant, which is known to protect plants from pathogens (Bais et al., 2004; 
Lugtenberg and Kamilova, 2009). Priming of disease resistance by BCA was 
proposed to act through a novel signal transduction pathway resulting in ISR 
different to the classical SA-dependent SAR. In ISR neither PR proteins nor 
SA seems to be involved (Yan et al., 2002). Colonization of Arabidopsis root 
by PGPR (Pseudomonas) was shown to result in ISR dependent on JA and ET 
signaling (Van Loon, 1997; Kloepper et al., 2004). The MYB72 transcription 
factor interacting with EIL3 seems to be key players while the NPR1 gene is 
also needed for ISR (Van der Ent et al., 2008). The other transcription factor 
MYC2 can also play a potential role in regulating JA gene expression during 
rhizobacteria-mediated ISR against Pseudomonas syringae pv. tomato DC3000 
(Pst DC3000) (Pozo et al., 2008). Priming of ISR is considered to have low 
fitness costs since defense is only activated at stress challenge while e.g. 
treatment of plants with SA or JA induce plant defense and disease resistance 
immediately although no stress is imposed (van Hulten et al., 2006).  

1.4.4 Impact of PGPB on plants 

   Soil is a heterogeneous matrix with various dynamic parameters, varying in 
nutrients and organic matter (0.8 to 2%), the levels of which are boosted by the 
presence of plants. Hence, plant-associated microorganisms face a scarcity of 
nutrients during growth in soil absent of plants. Therefore, soil bacteria enter 
stationary phase at nutrient insufficiency and remains in this stationary phase 
until nutrients can be obtained (Kolter et al., 1993). Plants acquire nutrients 
from the soil which are utilized for development. Plant root architecture plays a 
vital role in uptake of water, nutrients and anchorage to the soil (Flores et al., 
1999; López-Bucio et al., 2003). Plants face continuous challenges in the 
rhizosphere due to soil microbiota competing for nutrients and space. In the 
rhizosphere the microbial community has been estimated to constitute about 
1010 bacteria per gram of soil (Gans et al., 2005; Roesch et al., 2007). About 5 
to 21% of photosynthetically fixed carbon in the plant is transferred in the form 
of root exudates into the rhizosphere (Marschner, 1995; Hernández et al., 
2015). These root exudates are rich in small molecules that contain low (amino 
acids, organic acids, sugars, phenolics and secondary metabolites) and high 
(polysaccharides and proteins) molecular mass compounds (Walker et al., 
2003; Bais et al., 2006; Shi et al., 2011) that act as chemical signal attractants 
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and/or repellents towards a complex mixture of diverse microbes in the 
rhizosphere that includes bacteria, fungi, algae, protozoa and nematodes (Ryan 

            
 
Figure 3. Chemotactic response of Bacillus amyloliquefaciens UCMB5113 towards glucose for 
their carbon source on phosphate buffer agar plate. Glucose (G), Bacillus (B), and water (W). 

et al., 2001; Badri and Vivanco, 2009; Gaiero et al., 2013). Microbes find root 
surfaces through chemotactic responses to plant exudates. Increased 
concentrations of certain compounds in the rhizosphere therefore stimulate 
microbial colonization of the rhizoplane (Fig. 3). 

This root exudation process stimulates colonization and plant growth 
through several direct and indirect mechanisms (Couillerot et al., 2009; 
Richardson et al., 2009) where certain nutrients are available enabling 
proliferation and increased microbial populations (Bais et al., 2006; Pothier et 
al., 2007; Badri et al., 2009; Shukla et al., 2011; Drogue et al., 2013) and 
establishment of colonization of the plants. In return, PGPB enhance plant 
growth and/or antagonism towards phytopathogens resulting in mutually 
beneficial relationships. Interactions between organisms have been divided into 
three classes based on the mode of interactions and relationship; 
symbiotic/mutualism (e.g. BCA), commensalism or parasitism on plants.  

In a mutualistic relationship: two organisms of different species interact 
with each other and work together where both benefit. In commensalism 
interaction one organism benefits from the other without harming it. In 
parasitism one organism is harmed while the other benefits. 

Certain PGPB can also improve plant growth and tolerance against 
environmental stress (both biotic and abiotic). Plants are exposed to various 
environmental stresses and plant hormones play a crucial role in signaling 
including compounds such as abscisic acid (ABA), JA, SA, and ET that 
respond to stress protecting plants from different biotic and abiotic stresses 
(Fujita et al., 2006). Generally plants synthesize low amounts of ET that is 

W
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beneficial for plant growth and development. However, during stress responses 
in plants the increased ET biosynthesis is referred to as ``stress ethylene`` 
(Stearns and Glick, 2003; Glick et al., 2007) that is a response to biotic and 
abiotic stress factors (Stearns and Glick, 2003; Lim and Kim, 2013). ET 
stimulates abscission, chlorosis, and senescence in plants and leads to plant 
growth inhibition and tissue death. However, studies show that 1-
aminocyclopropane-1-carboxylate (ACC) deaminase activity of PGPB can 
control the stress ET concentration in plants (Hao et al., 2007; Ali et al., 2014; 
Glick, 2014). 

1.4.5 Bacterial mineralization 

Plants cannot directly take up compounds like nitrogen, iron, and phosphate 
which are abundant in the soil. It is known that many members of the PGPB 
community associated with the plant root system can convert atmospheric 
nitrogen into ammonium and provide it to plants by the nitrogen fixation 
process (Richardson et al., 2009; Chaparro et al., 2013). Several studies have 
shown that the majority of nitrogen-fixing organisms are Rhizobium spp. and in 
agricultural practice these nitrogen fixing PGPB are routinely used to inoculate 
plants to increase the number of nodules and plant biomass (Ma et al., 2003; 
Govindarajan et al., 2007). Next to fixed nitrogen, phosphorous is an essential 
element for plant growth. Phosphorous is found in soil, mostly in an insoluble 
state that plants cannot use directly. Many soil bacteria convert insoluble 
phosphorous and phosphate to soluble forms by producing low molecular 
weight organic acids such as gluconic and citric acid. In the soil the amount of 
bioavailable iron is very low due to its accumulation as iron oxides and 
hydroxides that cannot be readily utilized by living organisms (Kraemer, 
2004). Thus, there is a competition for iron among the organisms in the 
rhizosphere. Bacteria secrete siderophores which are low molecular weight 
chelating compounds with high-affinity for iron. The siderophore-producing 
PGPB facilitate plant iron acquisition from iron-limited environments and can 
sequester iron from neighboring microorganisms outcompeting them (Whipps, 
2001; Lodewyckx et al., 2002; Xianmei et al., 2011; Ahmed and Holmström, 
2014) as well as plant pathogens, leaving low amounts of bioavailable iron 
behind (Kloepper et al., 1980; O`Sullivan and O`Gara, 1992; Loper and 
Henkels, 1999; Fones and Preston, 2013). In addition, many PGPB and BCA 
have been thoroughly studied for production of antibiotics (e.g. Ezra et al., 
2004; Amin et al., 2012; Gutiérrez-Chávez et al., 2015; Inès and Dhouha G, 
2015) and lytic enzymes like hydrolases (Chernin and Chet, 2002; Sawant et 
al., 2015), chitinases (Frankowski et al., 2001; Tan et al, 2015), laminarinases 



20 

(Lim et al., 1991; Labourel et al., 2014), and glucanases (Singh et al., 1999; 
Tan et al, 2015). 

1.4.6 Phytohormones 

Plants respond and adjust to environmental changes by altering 
phytohormone levels. Many studies have reported that PGPB stimulate plant 
growth by direct or indirect mechanisms. In direct mechanisms bacteria 
produce phytohormones, e.g. indole acetic acid (IAA), gibberellins (GAs), 
cytokinins (CKs) and ET (Tien et al., 1979; Williams and Sicardi De Mallorca, 
1982; Badenoch-jones et al., 1984; Taller and Wong, 1989; Nieto and 
Frankenberger, 1989; Patten and Glick, 2002; Glick, 2012; Rajkumar et al., 
2013; Ahmed and Hasnain., 2014; Fierro-Coronado et al., 2014; Etesami et al., 
2014;  Khan et al., 2014; Kudoyarova et al., 2014) that stimulate plant growth 
and/or modulate the hormone level in plants that may also support antagonism 
to phytopathogens. In indirect mechanisms the bacteria induce plant immunity 
by producing molecules that can modulate the hormone level. Studies have 
shown that inoculation of CK or GA producing PGPB stimulated plant growth 
(Lorteau et al., 2001; Joo et al., 2009; Kang et al., 2009). IAA producing 
PGPB enhanced plant growth in canola (Patten and Glick, 2002), tomato 
(Mayak et al., 1999), mung beans (Xie et al., 1996), rice (Bal et al., 2013) and 
Brassica juncea L. (Indian mustard) (Shim et al., 2015). PGPB can also 
stimulate plant growth by expressing the enzyme ACC deaminase that cleaves 
ACC to -ketobutyrate and ammonia, decreasing the ET level in plants 
(Penrose and Glick, 2003; Glick, 2005; Sessitsch et al., 2005; Sun et al., 2009). 
ET plays a crucial role in plant development as well as in stress signaling 
(Frankenberger and Arshad, 1995; Glick, 2014; Schaller, 2012). ET stimulates 
seed germination, root hair development, root elongation, fruit ripening, 
opening of flowers, and abscission of leaves. However, during stress conditions 
in plants the production of ET (“stress ET”) is so high that it antagonizes plant 
growth. 

1.5 Root colonization 

Rhizobacteria can colonize plant roots at all stages of plant development 
and they can multiply on roots to build a mutual relationship between plants 
and microorganisms, where this interaction provide benefits to both partners 
(Hallmann et al., 1997; Reiter and Sessitsch, 2006). The microbial community 
structure and its ability to metabolize and compete for carbon sources in the 
rhizosphere are dependent on the amount and composition of plant root 
exudates (Klopper et al., 1992; Lazarovitis and Nowak, 1997; Farrell et al., 
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2014). Once the bacteria colonize the root they can be epiphytic and/or 
endophytic. Epiphytic bacteria stay and live on the surface of the roots.  
Endophytic bacteria can penetrate into the root and even systemically spread 
into the aerial parts of the plant and vascular tissue cortex, xylem and pith 
(Reinhold-Hurek and Hurek, 1998; James, 2000). Many studies suggest the 
mode of Gram-negative and Gram-positive bacteria penetration into the root 
through the main root, lateral roots and root hair (Estrela Borges Baldotto et 
al., 2011; Huang et al., 2011; Prieto et al., 2011). 
 

1.5.1 Bacterial endophytes 

Endophytic bacteria colonize plant tissues without causing injuries to the 
host plant (Bacon and Hinton, 2006). The endophytes first colonize the 
rhizosplane (root surface) and then form a biofilm on the host tissue (Sturz et 
al., 2000). Like phytopathogens, endophytes utilize specific mechanisms to 
enter into the plants. The endophytes may enter into the plant through different 
ways depending on the bacterial and plant species interacting. 

1.5.2 Biofilms 

PGPR are recognized among the plant associated soil microbial 
communities to enhance plant growth (Lugtenberg and Kamilova, 2009). These 
PGPR are effective in colonizing the plant root and further multiply into 
microcolonies and/or produce biofilm as a result of a successful plant-microbe 
interaction (Saleh-Lakha and Glick, 2006). The plant associated biofilms are 
highly capable of providing protection from external stress, decreasing 
microbial competition, and give beneficial effects to the host plant supporting 
growth, yield and crop quality (Ramey et al., 2004). In biofilm formation 
processes a single microbial cell adheres to a surface (abiotic or biotic), it 
multiplies to form multiple microcolonies, in which the cells are linked to each 
other and embedded in a matrix of extracellular polymeric substances called 
exopolysaccharides (Fig. 4). Biofilms can also contain extracellular DNA, 
proteins and other compounds. The growing cells in the biofilm are distinct 
both phenotypically and in gene regulation compared to planktonic cells of the 
same organism. 

To date, many Pseudomonas spp. and Bacillus spp. are reported to be able 
to colonize plant leaves or root surfaces and are capable of biofilm formation 
(Ude et al., 2006). The colonization of microbes on plant roots depends upon 
root exudates for nutrition and carbon source (Bais et al., 2006). By producing 
organic compounds as a carbon source, root exudates play a central role in 
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triggering root colonization (Lugtenberg et al., 1999; Lugtenberg and 
Kamilova, 2009). 

 

Figure 4. Colonization and biofilm formation of B. amyloliquefaciens UCMB5113 on roots of A. 
thalaina (A-C). 

 

1.5.3 Quorum sensing 

During the formation of biofilm the bacteria communicate chemically with 
each other by quorum sensing. This helps the microbial communities to 
respond quickly, inhibiting competing organisms, improving nutrient uptake, 
and help to adapt to changing environmental conditions. Also it controls 
bacterial size and population status. N-acyl-homoserine lactones (AHLs), 2-
heptyl-3-hydroxy-4-quinoline and autoinducer-2 are examples of diffusible 
signals that are used in cell-cell communication within the bacterial community 
to synchronize some actions and make them function more like a single unit. 
These signaling molecules are unique among the microbial species. AHLs in 
Proteobacteria, gamma-butyrolactones in Streptomyces, cis-11-methyl-2-
dodecanoic acid in Xanthomonas and oligopeptides in Gram positive microbes 
are examples of such signal molecules (Danhorn and Fuqua, 2007). 

 

1.5.4 Swarming motility 

Swarming motility is defined as translocation of coordinated bacterial 
populations across solid or semi-solid surfaces. Swarming motility is due to the 
formation of dendritic fractal-like patterns formed by cells migrating from an 
initial location and is dependent on the nutrient composition and viscosity of 
the culture medium (Fig. 5). Swarming motility is one of the bacterial surface 
translocation modes among six described forms, such as swimming, darting, 
gliding, twitching and sliding (Henrichsen, 1972; Jarrell and McBride, 2008; 
Shrout, 2015). The three steps involved in swarming motility are 1) formation 

(A) (B) (C)
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of a regular colony, 2) cell differentiation at the initiation rim point of the 
colony, and 3) formation of hyperflagellated swarmer cells. The fast 
multiplication and movement of swarming cells results in rapid surface 
colonization (Eberl et al., 1999; Kearns, 2010). In swarming motility the 
bacterial cells are translocating on a surface-linked in a network with 
neighbouring bacteria by extensive flagella. In swarming motility the bacterial 
cells move rapidly on a solid or semi-solid surface in a coordinated way. 
Flagella are required for production of a viscous slime layer in in vitro 
conditions and maintain a moist environment (Verstraeten et al., 2008). 
Swarming is a common ability for many PGPR such as Bacillus (Kearns and 
Losick, 2004) and Pseudomonas strains (Déziel et al., 2003; Tremblay et al., 
2007; Oura et al., 2015). 
 
 

 
 
Figure 5. B. amyloliquefaciens strains swarming motility on PDA plates. (A) UCMB5033, (B) 
UCMB5036, (C) UCMB5113 and (D) FZB42. 

 
The chemotaxis sensory system might also be involved in swarming 

motility which shows various swarming patterns in different species (Partridge 
and Harshey, 2013). 

In some bacterial species, biosurfactant synthesis is required for swarming 
motility which is under the control of the intercellular quorum sensing 
communication system (Harshey and Matsuyama, 1994; Daniels et al., 2004). 

1.5.5  Lipopeptides  

Bacillus spp. are well studied for production of a wide range of lipopeptides 
(LPs) (Ongena and Jacques, 2007). LPs contain a lipid tail connected to a short 
linear or cyclic oligopeptide and are produced by various microorganisms 
(Raaijmakers et al., 2010). These LPs are synthesised non-ribosomally by large 
multi-enzyme complex nonribosomal peptide synthetases (NRPSs) and 
antagonise other microorganisms including phytopathogens (Stein, 2005; 
Finking and Marahiel, 2004). LPs includes surfactins, fengycins, iturins, 
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bacillomycin, bacilysin, lichenysin and mycobacillin (Ongena and Jacques, 
2008; Aleti et al., 2015). Another major group of secondary metabolites 
produced by Bacillus is polyketides that also can serve in antagonism (Aleti et 
al., 2015). 

1.6 Volatile organic compounds (VOCs) 

Volatiles are organic compounds that contain a high vapour pressure at 
room temperature. Most of the VOCs are scents or odors, lipophilic with a 
small molecular mass (<300 Da) and derivatives of terpenoids, 
phenylpropanoids, fatty acids and various sulfur and nitrogen containing 
compounds. These VOCs not only diffuse into the atmosphere above ground 
but can also diffuse into the below ground with similar complexity. Due to this 
property, these compounds are essential for inter-and intra-species attraction, 
recognition, communication, repellent action and defense (Wenke et al., 2010). 

 

1.6.1 Plant volatiles 

Plants emit volatile substances with distinctive smells from different tissue 
parts during growth and development into the atmosphere (Pichersky and 
Gershenzon 2002; Peñuelas and Staudt, 2010). It has been reported that plants 
emit more than one thousand low molecular mass organic compounds 
including terpenes, isoprenes, acids, alcohols, alkanes, alkenes, carbonyls, 
esters and ethers (Knudsen et al., 1993; Kesselmeier and Staudt, 1999). The 
rate of production and emission of terpenes are modulated by biotic and abiotic 
factors (Peñuelas and Lusia, 2001; Paris et al., 2010). Various environmental 
factors such as light and temperature influence the production of plant volatiles 
being higher in summer and in midday (Kesselmeier and Staudt, 1999). 
The volatiles from flowers serve to attract pollinators and seed dispersers 
(Reinhard et al., 2004). The volatiles emitted from infested plants serve in 
interactions and/or defense to pests, pathogens, and herbivores (Farag et al., 
2013). Plants release volatiles along with root exudates into the soil. The 
microorganisms and their population in the rhizosphere utilize these volatiles 
as infochemicals for diverse interactions (Wenke et al., 2010) (Fig. 6). 
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Figure 6. The scheme presents the possibility of intra-and interspecies interaction in belowground 
plant volatiles. The arrows show effects. (The figure from Wenke et al., 2010 is reproduced by 
publisher permission). 

1.6.2 PGPR volatiles 

PGPR can produce a complex blend of volatiles which are distinct between 
bacterial species and closely related species (Groenhagen et al., 2013; Garbeva 
et al., 2014). Certain of these bacterial volatiles can stimulate plant growth 
(Ryu et al., 2003, 2004; Zhang et al., 2007; Xie et al., 2009; Farag et al., 
2013), cause disease suppression by stimulating ISR (Rudrappa et al., 2010), or 
antagonize phytopathogens (Kai et al., 2007; Vespermann et al., 2007) 
nematodes and insects (Kai et al., 2009). 
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2 Aim of this study 
Use of plant growth promoting bacteria to control both biotic and abiotic stress 
factors are considered as eco-friendly strategies to produce more healthy crops 
and increase crop yield. However, several properties need to be addressed to 
better understand requirements for the desired effects and then to optimize 
utilization for agricultural practices. The main aim of the present work was to 
evaluate the potential of Bacillus amyloliquefaciens strains to improve growth 
and stress tolerance in Arabidopsis thaliana plants. Being a Brassicaceae 
similar effects are expected to be achieved for closely related Brassica crops 
by treatment with Bacillus. 

 
The aims of this project were to; 

1. Develop Arabidopsis thaliana as a host plant for studies of beneficial 
plant-Bacillus interactions  
 

2. Study the potential of Bacillus to promote growth of the host plant.  
 

3. Study the potential of Bacillus to antagonize some common Brassica  
phytopathogens. 
 

4. Identify some of the factors operating during plant-Bacillus interaction 
and pathogen-Bacillus interaction. 
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3 Materials and Methods 
Bacterial and fungal strains and growth conditions 
The Bacillus amyloliquefaciens subsp. plantarum strains UCMB5033, 

UCMB5036, UCMB5113 and FZB42 were maintained on LB agar (LBA) 
plates. The fungal strains were grown on potato dextrose agar PDA plates at 22 
ºC, 16/8 light and dark photoperiod (Botrytis cinerea, Alternaria brassicae, 
Alternaria brassicicola) or in darkness (Verticillium longisporum and 
Sclerotinia sclerotiorum). 

 
Plant growth 
Arabidopsis thaliana Col-0 and signaling mutants coi1-16, myb72, myc2, 

jar1, npr1 and sid2 seeds were sterilized in 70% ethanol for 1 min, 10% bleach 
and rinsed three times with water. Seeds were germinated on MS agar plates 
and/or on soil in a growth chamber at 22 ºC with 16/8 h photoperiod. 

 
Isolation of antibiotic compounds 
Antibiotic compounds were isolated from Bacillus UCMB5113 as described 

(Kim et al., 2004). The HPLC eluted fractions were collected, pooled and 
lyophilized before being tested for antifungal activity. The chemical structures 
were determined by mass spectrometry. 

 
Bacterial inoculation  
The Bacillus strain UCMB5113 was inoculated 3 cm from the root tips and 

plates were kept vertically in a growth chamber for six days before recording 
the biomass (root and leaf). The level of the phytohormones IAA, CK, GA and 
brassinosteroids (BRs) were determined after bacterial treatment. 

 
Bacterial volatiles 
Effect of bacterial volatiles on plant growth 
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Seeds were germinated for four days on petri dishes containing 0.2x 
MS/0.6% Bacto agar and 1.5% of Sucrose. Later, the seedlings were moved to 
center partition plates containing 0.2x MS/0.8% Bacto agar/1.5% Sucrose. The 
plants were placed on one side and on the other side Bacillus strains were 
inoculated (bacterial strains were grown in TSB medium overnight) and sealed 
with tape. The plates were moved to a growth chamber at 22 ºC with 16/8 
photoperiod. Shoot fresh and dry weight was determined later. The volatile 
compounds produced by UCMB5113 on different media were identified by 
GC-MS analysis. 

 
Effect of bacterial volatiles on phytopathogens 
Fungal spores of B. cinerea, A. brassicea, A. brassicicola, V. longisporum 

and S. sclerotiorum were inoculated at the centre of the PDA plates. Fungal 
strains were then exposed to B. amyloliquefaciens UCMB5113 volatiles. 
Bacteria was placed in a small petri dish lid containing TSA and placed on the 
original PDA plate lid. The plate lid with bacteria down side and fungal strain 
up side, control plates were exposed to TSA without water and plates were 
sealed with parafilm. Plates were moved to a growth chamber at 22 ºC with 
16/8 photoperiod. The V. longisporum and S. sclerotiorum plates were 
incubated in dark. The inhibition of fungal growth was determined later. 
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4 Results and Discussion 
4.1 Bacillus antibiotics (paper I) 

Bacillus spp. are Gram-positive, spore forming and soil living bacteria. A 
number of Bacillus spp. have been found to suppress necrotizing pathogens/ 
parasites or enhance plant growth (Ongena et al., 2007; Ongena and Jacques, 
2008; Kumar et al., 2013; Elkahoui et al., 2014; Rahman et al., 2014; Farace et 
al., 2014; Cawoy et al., 2014). These Bacillus strains produce secondary 
metabolites, e.g. antibiotics and biosurfactants, that can restrict microbial 
growth serving in microbial antagonism to increase the competitiveness in 
complex substrates like soil. The majority of biosurfactants produced by 
Bacillus are LPs belonging to the surfactin, iturin and fengycin families that are 
genetically and biochemically well characterized and demonstrated to serve in 
plant colonization and direct antagonism to plant pathogens (Souto et al., 2004; 
Ongena et al., 2007; Ongena and Jacques, 2008; Rahman et al., 2014; Farace et 
al., 2014; Cawoy et al., 2014). 

 
4.1.1 Bacillus effects on phytopathogens 

In the present study, the isolated Bacillus UCMB5113 strain was tested 
towards several Brassica fungal phytopathogens (B. cinerea, A. brassicae, A. 
brassicicola, V. longisporum and S. sclerotiorum) on PDA plates. An 
antifungal activity was observed in the presence of Bacillus UCMB5113 
bacteria or exudates but the effect was stronger with bacteria. This indicates 
that Bacillus UCMB5113 invest resources to constitutively produce antibiotic 
compounds that can diffuse into the surrounding environment to restrict other 
microorganisms (including phytopathogens) but that there also is an inducible 
effect on the production. However, the antagonistic effect against the fungal 
strains varied. Variation in antifungal activity has been reported also for other 
Bacillus strains (Nguyen and Kim, 2015; Rehman et al., 2015; Kadaikunnan et 
al., 2015). Further, a crude fraction isolated from Bacillus exudate enriched in 
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LPs showed high heat stability of antibiotic potency indicating high 
rhizosphere competence of UCMB5113. Subfractions of the LP were obtained 
by RP-HPLC and were examined for antifungal activity against 
phytopathogens on PDA plates. An antifungal activity was observed by the 
crude LP fraction and the RP-HPLC fractions four to ten showed varying 
antifungal activity against the different fungal strains. However, fraction 9 
showed strong antifungal activity towards the tested pathogens. 
 
4.1.2 Bacillus effects on plants challenged with pathogens 

In a pathogen bioassay where Arabidopsis leaves were treated with the 
Bacillus UCMB5113 crude exudate fraction disease protection was achieved. 
The protective effect may be due to both formation of a surface layer on the 
leaf and the content of antibiotics that prevents the attachment, multiplication 
and penetration of fungal spores, indicating a direct mechanism of protection. 

Further, plant roots coated with crude LPs and grown on MS agar showed 
protection against A. brassicicola in A. thaliana wild type Col-0 and the mutant 
sid2 but not in the mutants coi1-16, jar1, myc2, myb72, and npr1. The qPCR 
analysis showed significantly lower levels of Alternaria growth in wild type 
Col-0 treated with crude LP compounds compared to other treatments and 
mutants. Soil grown plants also showed restriction of fungal growth in Col-0 
and sid2 but not in the other mutants (coi1-16, jar1, myc2, myb72 and npr1). 
The GUS reporter plants VSP2:GUS and PDF1.2:GUS proved the involvement 
of JA in the protection. These results suggest that Bacillus UCMB5113 can 
colonize the plants and stimulate systemic resistance in plants which is 
dependent on JA signaling pathways indicative of priming of ISR thus 
providing disease resistance through an indirect mechanism. It has been 
reported that Pseudomonas and some Bacillus strains stimulate ISR in plants 
independent of SA but dependent on JA and/or ET signalling (Verhagen et al., 
2010; Falardeau et al., 2013; Rahman et al., 2014; Farace et al., 2014). 

 
4.1.3 Analysis of Bacillus lipopeptide structures  

Mass spectrometry analysis of fraction 9 identified the main component as a 
novel linear form of fengycin LP. Previous studies have shown that Bacillus 
strains produce cyclic fengycins in nature (Liu et al., 2014; Meena and 
Kanwar, 2015; Mora et al., 2015) and not linear forms. To investigate the 
linear fengycin production by Bacillus UCMB5113, time course analysis was 
performed which showed that the production of the linear fengycins was 
constitutive and resulted in increased accumulation of compounds with time 
from day 1 to 6. This indicates that Bacillus UCMB5113 secretes linear 
fengycins but the biosynthetic route is not clear and post synthesis 
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modifications can be complex. LPs are formed by NRPSs organized as large 
multi-enzyme complexes (Strieker et al., 2010) and it is difficult to predict the 
metabolism and post-synthesis modifications (Aleti et al., 2015). For example 
changes in biotic or abiotic factors may change the final structure of LPs 
(Giessen and Marahiel, 2012). 

Synthetic LP mimics of the fraction 9 linear fengycin compound with an 
acetyl (AcePEP) or a myristoyl (MyrPEP) group at the N-terminal was tested 
for antifungal activity against A. brassicicola and V. longisporum on PDA 
plates. Only the synthetic peptide with a fatty acid side chain, MyrPEP, showed 
antifungal activity. The qPCR analysis showed restriction of A. brassicicola 
growth in plants treated with MyrPEP. 

 The broad spectrum of LP produced by Bacillus UCMB5113 bacteria 
suggests efficient microbial antagonism with possibility to antagonise several 
microbes including phytopathogens through a direct mechanism which disturb 
surface properties of membranes. Further Bacillus UCMB5113 can also 
indirectly trigger ISR responses in the host plant against phytopathogens 
providing disease suppression or prevention. Based on these results we suggest 
that B. amyloliquefaciens UCMB5113 can be useful as a biocontrol agent 
against several Brassica phytopathogens. The broad spectrum of secondary 
metabolites with antibiosis effects, their high stability and direct and indirect 
protective effects support long term efficiency and improve rhizosphere 
competence. 

 
4.2 Plant growth promotion by Bacillus (paper II) 

The rhizosphere contains a huge and diversified microbial community, 
including PGPR. These PGPR enhance plant growth by direct or indirect 
mechanisms by production of phytohormones and other signals that change 
gene regulation and metabolism of the host plant that result in changed growth 
control manifested e.g. as a modified root system architecture. 

 
4.2.1 Arabidopsis growth promotion by Bacillus 

Plants inoculated with Bacillus UCMB5113 demonstrated increased 
biomass both of leaves and roots (increased branching, more root hairs) while 
the primary root was reduced compared to control plants. The increase of plant 
biomass was dose dependent. This indicates that Bacillus UCMB5113 produce 
metabolites which can alter the development of the plant root system, affecting 
meristematic activity differently among root tips, with decreased proliferation 
in the primary root and initiation of premature lateral root formation. 
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4.2.2 Hormones and growth promotion by Bacillus 
Previously, it has been reported that phytohormone producing bacteria can 

affect root system architecture by overproduction of lateral roots and root hair 
(Persello-Cartieaux et al., 2003). Auxin is a phytohormone that plays an crucial 
role in promoting cell division (Enders and Strader, 2015; Ludwig-Müller, 
2015) but in excess, inhibits cell elongation and increase the number of lateral 
roots and root hairs (Swarup et al., 2007). Similar effects were reported in 
PGPR treated sugar beet seedlings, Brassica juncea, wheat and Arabidopsis 
(Loper and Schroth, 1986; Asghar et al., 2002; Khalid et al., 2004; Zamioudis 
et al., 2013). The DR5:GUS reporter line of Arabidopsis treated with Bacillus 
UCMB5113 showed and enhanced auxin expression in the root cap, root 
meristem and procambium of roots. Bacillus UCMB5113 was also shown to 
synthesize auxins (as IAA) and the production was stimulated by presence of 
root exudates. Addition of Bacillus UCMB5113 or cell free exudate below root 
tips of vertically grown Arabidopsis plants resulted in growth arrest of the 
primary root tip or that the root tip avoided the bacterial samples growing in 
other directions. This indicates that Bacillus UCMB5113 secret IAA and/or 
other compounds with auxin activity that may interact with the plant hormone 
signaling and metabolism. It was shown that three PGPR Pseudomonas strains 
resulted in similar root system architecture of Arabidopsis as Bacillus 
UCMB5113 although one strain did not produce auxin indicating that PGPR 
production of auxins is not a prerequisite for the root effects observed 
(Zamioudis et al., 2013). 

The effect of Bacillus UCMB5113 on an Arr5:GUS transgenic Arabidopsis 
marker line showed enhanced expression of CK in plant roots, indicating 
activation of CK metabolism that may be involved in growth modulation. 
Variation in response of levels of different forms of GA and BRs were 
observed in plants root and shoots treated with Bacillus compared to controls. 
Apparently Bacillus UCMB5113 modulate the levels of different GAs and BRs 
that may contribute to the observed growth modulation.  

 
4.2.3 Role of plant signaling for growth promotion by Bacillus 

The plant roots coated with crude LPs showed growth promotion in A. 
thaliana wild type Col-0, coi1-16, jar1 and npr1 but not in myb72 on MS agar. 
Similar growth promotion was observed in plants grown on soil. This suggests 
that the corresponding genes are needed for growth promotion. However, 
variation of flowering among the treatments in Col-0 and mutants was 
observed. A significant increase of siliques, seed size and seed weight was 
observed in plants after repeated LPs treatment compared to water, methanol or 
LPs treatments. Previously it has been demonstrated that SA deficiency 
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stimulated leaf biomass and seed production (Abreu and Munné-Bosch, 2009). 
Crude LPs did not arrest primary root growth of A. thaliana plants compared to 
plants treated with bacterial exudates and synthetic IAA. This suggests that 
IAA like compounds were removed or lost its activity in crude LPs while 
processing. 

Thus, plant-PGPB interaction seems to be distinguished by modulated 
hormone levels in diverse plants that result in stimulated growth. This study 
helps to understand some factors involved in the mode of action as a basis for 
further mechanistic studies. 

 
4.3 Bacillus volatiles and their effects (paper III) 

Plants emit photosynthetically fixed carbon in the form of VOCs from 
leaves, flowers, and fruits into the air, as well as from roots into the soil. These 
VOCs play key roles in attracting pollinators, support seed dispersion, and 
provide protection against pathogens and insects above and belowground 
(Peñuelas and Llusia, 2004; Raguso, 2008). On the other hand the rhizosphere 
microorganisms emit a blend of VOCs that may have crucial roles for 
interactions with plants, beneficial microbes, deleterious microbes, insects and 
nematodes (Wenke et al., 2010; Hare, 2011). 

 
4.3.1 Effect of growth media on Bacillus VOCs and plant growth 

In this study, the effect on A. thaliana growth was monitored by exposing 
plants to Bacillus strains on different media (TSA, LBA, M9A or MSA) in 
partition plates. A negative effect on plants was observed on TSA and LBA 
plates. Similar negative effects, no effect or positive effect was seen on plants 
roots when exposed to Bacillus UCMB5113 on different media. The growth 
varied among the Bacillus strains in different broth. The TSA and LBA media 
are rich in organic material and the bacteria grow faster and produced various 
metabolic VOCs that may be more susceptible for younger than older plants 
(Bailly and Weisskopf, 2012). Leaves of A. thaliana Col-0 plants were bigger 
after exposure to volatiles from Bacillus strains compared to control plants on 
MSA. A significant increase of fresh and dry weight of plants on MSA was 
observed and for dry weight on M9A. The growth promotion efficacy varied 
among the bacterial strains. It has been demonstrated that VOCs interact with 
plant cells and can change hormone levels, increase cell division and nutrient 
absorption (Zhang et al., 2007; Xie et al., 2009). The Bacillus strains showed 
differences in colony size and structure on different media. FZB42 grow 
rapidly and reached stationary phase earlier compared to other strains. 
Bacterial genes are involved in different metabolic processes for their growth 
and depending on media produce primary and secondary metabolites that can 
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vary in structure and effect. Bacterial operons related to metabolism express 
differently dependent upon the media used for their carbon source in a strain 
specific manner (Kierul et al., 2015). The genome organization also show 
small but distinct differences among the Bacillus strains (Niazi et al., 
manuscript). 

Further UCMB5113 grown on MSA resulted in plant senescence at 
increasing doses but when grown on MSA plus root exudates where it instead 
increased fresh and dry weight of the plants. This shows that under in vivo 
conditions certain soil bacteria use root exudates as carbon source and that in 
turn can provide a positive effect on plant growth. 

 
4.3.2 Effect of Bacillus VOCs on pathogen growth 

The fungal growth of B. cinerea, A. brassicae, A. brassicicola, and S. 
sclerotiorum but not V. longisporum was reduced in plates which were exposed 
to Bacillus volatiles. This shows the Bacillus strains produce antifungal 
volatiles which serve as fungicides. Microbial antagonism due to volatiles have 
been demonstrated in other cases suggesting this to be a common tool in nature 
to support survival in soil (Chuankun et al., 2004;  Blom et al., 2011; Fiers et 
al., 2013; Garbeva et al., 2014). In the presence of root exudates the 
UCMB5113 volatiles showed antagonistic effect against A. brassicae and V. 
longisporum and the fungi lost mycelium pigmentation that may affect 
virulence (Liu et al., 2005). GC-MS analysis identified several Bacillus 
UCMB5113 volatile compounds on different media. These compounds have in 
other systems been demonstrated to either have negative effect, no effect or 
growth promoting effects on plants, and/or inhibit fungal growth (Ryu et al., 
2003, 2004; Xiao and Xu, 2007; Kai and Piechulla, 2009; Blom et al., 2011; 
Fiers et al., 2013; Garbeva et al., 2014). These results show that Bacillus 
strains produce volatile compounds that can increase plant growth and inhibit 
fungal growth, useful in agronomical application to improve crop yield and as 
a biocontrol agent to control phytopathogens. 
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5 Conclusions 
It has been proven and demonstrated that PGPB can be potential 

microorganisms for enhancing plant growth especially under stress conditions. 
In the present scenario, experiments were made to screen Bacillus UCMB5113 
against Brassica phytopathogens to elucidate their biocontrol mechanisms, and 
also the ability to promote plant growth through direct and indirect mode of 
action was assessed. Bacillus UCMB5113 showed direct antagonism to 
phytopathogens by production of antibiotic compounds and triggered ISR upon 
fungal inoculation and this resistance involved JA signalling steps. 
UCMB5113 increased biomass of A. thaliana Col-0 by at least by direct 
mechanisms. Finally it was observed that Bacillus volatiles resulted in growth 
promotion and inhibition of fungal growth under in vitro conditions illustrating 
the complex chemical interactions occurring during multi-organism 
interactions. Thus, the present study has shown that UCMB5113 is an efficient 
biocontrol agent in controlling Brassica phytopathogens in Arabidopsis 
through ISR activity and also promoting plant growth of high interest for 
implementation in agriculture. 
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6 Future perspectives 
Plants are essential resources for human beings and other living organisms. 

Environment harmful chemical pesticides are used to control stress factors and 
improve crop production. Environmentally friendly strategies such as organic 
cultivation are necessary for crop production in the future. Methodologies for 
crop protection in organic productions are scarce throughout the world. 
Biocontrol is a tool with a potentially broad range of stress control and 
potential to improve crop production without the negative environmental 
impact associated with chemical pesticides. The main goals of this study were 
to characterize some of the effects of Bacillus interaction on plants and 
elucidate some of the mechanisms operating during B. amyloliquefaciens 
priming of plant defense against different stressors. Studies till date in this 
project have led to novel findings in the sustainable production area with 
emphasis of Bacillus promoting plant growth and antagonising pathogens.  

Future research has to be focused on rhizosphere biology to create reliable 
unique settings to develop molecular and biotechnological approaches to 
increase the knowledge of the crucial molecules operating during plant- 
microbe interaction resulting in a beneficial interaction. Another challenging 
topic is to understand the microbial signals that elicit pathogen resistance in 
plants through ISR (or possibly other alternative pathways?). Techniques to 
exploit transcriptomics, proteomics and metabolics of plant-microbe 
interactions in situ in soil would be highly rewarding. In general a better 
picture of rhizosphere biology and biodiversity in relation to use of PGPR and 
BCA at scale is needed. The application of multi strain bacterial inoculation 
(“cocktails”) could be an effective approach to reduce harmful impact of stress 
on plant growth but prerequisites for effective combinations need to be 
established. The research so far carried out with bacterial volatile compounds 
(known and unknown compounds) could address the mode of action of 
different compounds and which combinations that are most effective. Volatile 
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compounds can be employed in agriculture as antibiotics/inducers against 
pathogens as illustrated by SOS signaling between plants and also the ability of 
certain plants to attract natural enemies. These studies provide a basis for 
further studies of mechanisms operating in beneficial plant-microbe 
interactions and also to develop potential methodologies to improve production 
of oilseed rape crops and other high value crops by more sustainable tools 
based on rhizosphere organisms as ecosystem services. 
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