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Applications of Visible and NIR Spectroscopy for Sorting and 

Identification of Tree Seeds 

Abstract 

Seeds are the most commonly used regeneration material for reforestation purpose; 

hence interest in “precision sowing” among nurseries is high due to the high cost of 

containerized seedling production. In addition, the increased interest in growing hybrid 

larch in commercial forestry has raised concerns about the purity of hybrid larch seed 

lots, as there are large proportions of pure parental seeds mixed with hybrid larch seed 

lots. The aims of the studies presented in this thesis were to evaluate the application of 

visible (Vis) and/or near infrared (NIR) spectroscopy combined with multivariate 

modelling for sorting filled-viable, empty and petrified seeds of Larix sibirica Ledeb., 

verification of hybrid larch, Larix × eurolepis Henry seeds, identification of seeds of 

Betula pendula Roth and Betula pubescens Ehrh., and authentication of the origin of 

Picea abies (L.) Karst seed lots. For these purposes, reflectance spectra were recorded 

on single seeds using XDS Rapid Content Analyzer (FOSS NIRSystems, Inc.) from 

400 – 2500 nm with a resolution of 0.5 nm, and multivariate classification models were 

developed. The results showed that filled-viable, empty and petrified seeds of L. 

sibirica can be sorted with 98%, 82% and 87% accuracies, respectively. When the seed 

lot was sorted into viable and non-viable (empty and petrified combined) classes, the 

predicted class membership reached 100% for both classes. The technique could 

separate the hybrid larch seeds from pure parental seeds with 100% accuracy. Seeds of 

B. pubescens and B. pendula were differentiated with 100% and 99% classification 

accuracy, respectively. Also, the overall classification accuracy among three B. pendula 

families was 93% and that of B. pubescens was 98%. NIR spectroscopy discriminated 

Swedish, Finnish, Norwegian, Polish and Lithuanian seed lots of P. abies with 92% - 

100% accuracy. Absorption bands that were accounted for distinguishing the various 

seed lots examined in this thesis were attributed to differences in seed colour, moisture 

content and chemical composition of the seeds, presumably polysaccharides, proteins 

and fatty acids, which are the common seed storage reserves. The findings demonstrate 

the feasibility of Vis + NIR spectroscopy as a robust technique for sorting seed lots 

according to their viability and for certification of seed lots by species and origin. Thus, 

concerted efforts should be made to scale-up the technique to on-line sorting system for 

large-scale tree seed handling operations.  
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1 Introduction 

1.1 Seed sorting systems 

There is a growing demand for high quality regeneration material from tree 

planters. In Sweden, for instance, the total number of tree seedlings planted in 

year 2011 was 384 million, of which Norway spruce accounted for 225 

million, Scots pine 133 million, contorta pine 16 million and other conifer and 

broad-leaved species accounted for 9.8 million (Anonymous, 2011). Seeds are 

the most commonly used regeneration material for reforestation purpose, as a 

result interests in “precision sowing” (also known as single seed sowing) have 

spurred over time among nurseries due to the high cost of containerized 

seedling production and to ensure successful emergence and establishment of 

seedlings after direct sowing in the field (Winsa & Bergsten, 1994; Winsa & 

Sahlén, 2001). Generally, improving seed quality results in more productivity, 

higher harvest index and subsequently higher incomes to seed producers 

(Deleuran et al., 2011; Karrfalt, 2011).  

 

Seed quality is defined as “a measure of characters or attributes that will 

determine the performance of seeds when sown or stored” (Hampton, 2002). It 

is a multiple concept comprising of the physical, physiological and genetic 

attributes that determine the ability of seeds to germinate and produce a normal 

seedling (viability) and the rate and uniformity of seed germination and 

seedling growth, emergence ability of seeds under unfavourable environmental 

conditions, and performance after storage, collectively characterize seed vigour 

(Hampton & TeKrony, 1995; Karrfalt, 2011). Often a seed lot is composed of 

seeds of the desired species together with foreign seeds and non-seed materials. 

According to ISTA (2010), the pure seed fraction of a given seed lot should 

contain intact seeds of the actual species as well as immature, undersized, 

shrivelled, diseased or germinated seeds, and pieces of seed units larger than 

one-half of their original size, except some families like Leguminosae for 
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which seed units with seed coats entirely removed or seeds with separated 

cotyledons are regarded as inert matter. Even the pure seed fraction is still 

composed of both viable and non-viable seeds; the latter being empty, dead, 

petrified, insect-attacked seeds that together influence the quality of a given 

seed lot. While empty seeds are totally devoid of megagametophyte (storage 

organ) and embryo, dead and petrified seeds are filled seeds but without 

embryo – a miniature plant that germinates and produces a normal seedling 

when sown. In many conifers (e.g. Larix species), insufficient female 

flowering, lack of pollination and fertilization, degeneration of ovule or early 

embryo, as well as abnormal development of the female gametophyte and 

premature abortion of female strobili are the major causes of poor seed quality 

(Owens, 1995; Philipson, 1996; Slobodník & Guttenberger, 2000). Insect 

infestation and infection by seed borne pathogens are also among the 

prominent factors that reduce the quality of a given seed lot (Pritam & Singh, 

1997; Bates et al., 2001).  Seed sorting is, thus, a common practice in seed 

handling routine to upgrade seed lot quality by removing non-seed materials, 

anatomical underdeveloped seeds as well as empty, insect and mechanically 

damaged and dead-filled seeds. 

  

To enhance the germination rate of seed lots, commercial seed conditioning 

(Van der Berg & Hendricks, 1980; Halmer, 2000; Kwong et al., 2005) has 

deployed specialized equipment to screen the seeds based on some 

characteristics such as colour, size, viability, vigour, seed health, genetic 

purity, seedling performance (Deleuran, 2011), specific gravity, shape 

(Harmond et al., 1968) and surface texture (Karrfalt, 2011), for good and bad 

seeds differ basically according to these traits. Over the years, several seed 

sorting techniques have been developed to upgrade seed lot quality; including 

pneumatic and hydraulic separators (Kaliniewicz et al., 2012), visible 

spectrophotometers and chlorophyll fluorescence (Jalink et al., 1998; 

Konstantinova et al., 2002; Ooms & Destain, 2011; Kenanoglu et al., 2013; 

Bauriegel & Herppich, 2014) and flotation techniques. The flotation techniques 

are the most widely used sorting systems at operational scale; notably specific 

gravity separations in liquid media (Demelash et al., 2003; Sivakumar et al., 

2007), the Pressure-Vacuum (PREVAC) method for removing mechanically 

damaged seeds of Scots pine (Lestander & Bergsten, 1985; Bergsten & 

Wiklund, 1987), and the incubation, drying and separation (IDS) technique 

originally developed for sorting empty and dead-filled seeds of Scots pine 

(Simak, 1981 & 1984). Later on, the IDS technique has been applied on seed 

lots of several other conifer (Simak, 1981 & 1984; Downie & Bergsten, 1991; 

Downie & Wang, 1992; Singh & Vozzo, 1994; Poulsen, 1995; Demelash et al., 
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2002) and broad-leaved species (Falleri & Pacella, 1997; Demelash et al., 

2003). However, the efficiency of these methods varies between species; e.g. 

IDS doesn’t work well for sorting petrified seeds of Larix species (Lycksell, 

1993). For Norway spruce seeds, the IDS method is limited by the wax and 

crystal layers around the micropyle (the natural opening in the seed), which 

restrict the imbibition process (Tillman-Sutela & Kauppi, 1995). Furthermore, 

some flotation media have a detrimental effect on germination of sorted seeds 

and their storability (Barnett, 1971; Simak, 1973; Hodgson, 1977).  

 

These limitations have long aroused interests in search of an efficient and 

robust sorting system that can be applied across species, and near infrared 

(NIR) spectroscopy has been a subject of much interest (Agelet & Hurburgh, 

2014). Previous studies have demonstrated the feasibility of NIR spectroscopy 

for discriminating insect-attacked seeds (Tigabu & Odén, 2002, 2003b & 

2004b; Tigabu et al., 2004 & 2007; Daneshvar et al., 2015), empty seeds 

(Tigabu & Odén, 2003a & 2004b; Daneshvar et al., 2015), dead-filled seeds 

(Lestander & Odén, 2002; Soltani et al., 2003) from viable seeds, as well as 

seed lots according to vigour classes (Tigabu & Odén, 2004a). However, these 

studies had focused on few species, thus further testing of the technique on 

seed lots of several tree species and other factors that affect the quality of seed 

lots is paramount to establish NIR spectroscopy as a robust seed sorting 

system. Particularly, evaluating the potential of the technique for sorting 

petrified seeds from a seed lot of Larix species is quintessentially given the 

increasing demand for high quality of seeds by tree growers in the Nordic 

region, and partly due to lack of efficient sorting system at the moment.   

1.2 Verification of species  

Verification of species is one of the international rules for seed testing with the 

aim of determining the extent to which the submitted seed samples conform to 

the species claimed for it using methods other than a purity test (ISTA, 2010). 

Normally this is done by comparing seeds, seedlings and plants with authentic 

samples, and seedlings and/or plants grown from authentic samples nearby and 

in identical environmental and growth conditions. For tree seeds collected from 

mixed stands, verification of species is problematic, especially when two 

related species have similar morphological appearance (e.g. birch species). For 

birch species, there are often individuals showing intermediate characteristics 

of two related birch species and the species may also hybridize, making the 

differentiation in field unreliable. Several morphological (Fries, 1964; 

Atkinson & Codling, 1986) and biochemical (Lundgren et al., 1995; Keinänen 
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et al., 1999; Laitinen et al., 2005; Isidorov et al., 2014; Raal et al., 2015) traits 

have been used to identify related birch species. However, these traits have 

limited or no applicability for direct verification of seeds from similarly 

looking birch species.  

 

Another aspect that necessitates the importance of verification of species is 

the increased interest in growing hybrids in commercial forestry. One notable 

example is the increasing interest in growing Larix eurolepis Henry – a hybrid 

of European larch (Larix decidua Mill.) and Japanese larch (Larix kaempferi 

(Lamb.) Carr.) in Scandinavia. This interest has been driven by good growth, 

relatively short rotation age and relatively high wind stability at older ages 

(Ekö et al., 2004) as well as a greater focus on climate adaptation in forestry. It 

is expected that future climate change may alter the growing conditions in 

Scandinavia in a way that makes forestry with high productivity exotic species 

more attractive than traditional ones (Picea abies (L.) Karst and Pinus 

sylvestris L.); thereby the risk of an unknown future on tree growth can be 

spread. There are, however, uncertainties about the purity of hybrid larch seed 

lots, as the outputs of some commercial hybrid larch seed orchards are 

composed of large proportions of pure parental seeds mixed with hybrid larch 

seed lots (Pâques, 2000). In addition, the EU regulation demands that hybrid 

seed producers have to provide information about the hybrid proportion 

(Pâques, 2009). The current technique, involving molecular markers (Acheré et 

al., 2004; Pâques, 2009), has limited application for routine certification of 

hybrid larch seed lots due to relatively high cost, the need for highly trained 

technician and being destructive. 

 

In tree seed handling, verification of the seed lot origin is of paramount 

importance as early establishment and growth of seedlings planted outside its 

native environment is influenced by the maternal environment during 

flowering and seed development (Johnsen et al., 1996) although transferring 

maternal clones to a warmer climate in the south for better floral initiation and 

seed maturation is a common practice. Previous studies with Norway spruce, 

for example, have shown that seedlings raised from seeds reproduced under 

warm conditions exhibit late flushing, an extended growth period and a 

delayed development of frost hardiness during early autumn compared with 

seedlings raised from seeds of the same parents reproduced under colder 

conditions (Johnsen & Ostreng, 1994; Kohmann & Johnsen, 1994; Skrøppa et 

al., 1994; Johnsen et al., 1995). These after-effects of the maternal 

environment are opined to persist for a longer time from seed as a result of a 

long-lasting epigenetic memory regulated by the prevailing temperature and 
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photoperiod during seed production (Besnard et al., 2008). For species with 

low annual seed production, like Norway spruce (Almqvist et al., 2010), there 

is a potential risk of seed lots mix-up with unknown origin as seed transaction 

allows an easy transfer of seeds between countries. Authentication of seed 

origins is, thus, quintessential to avoid the negative impact of planting 

seedlings raised from unknown seed origins. Hitherto, “trust-on-labels” is the 

common practice for seed certification, but rapid, technically simple and cost-

effective technique is still unavailable for objectively monitoring seed transfer. 

It is this lack of efficient and cost effective techniques for seed certification 

that motivated the studies on the application of NIR spectroscopy presented in 

this thesis.   

 

1.3 Near Infrared Spectroscopy 

1.3.1 Location in Electromagnetic Spectrum  

The electromagnetic spectrum is composed of several distinct spectra produced 

by electromagnetic energy originating from light radiation, which are 

characterized by their properties, such as wavelength (or wavenumber), 

frequency, polarity and intensity (Figure 1). The energy of this type of 

radiation is directly proportional to the frequency and inversely proportional to 

wavelength; for instance gamma rays have high frequency (more energy) but 

shorter wavelength than X-Rays. In contrast, radio or TV waves have low 

frequency but longer wavelength than micro waves with less energy.  

 
Figure 1. The region of visible and near infrared spectra in the electromagnetic spectrum. 

 

The location of infrared (the prefix "infra" in Greek means "below") is in 

the middle of the electromagnetic spectrum beyond the visible range. The 

infrared region comprises of three narrower regions: the near (780-2500 nm), 
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mid (10 to 2.5 μm) and far (1 mm-10 μm) infrared regions, abbreviated as NIR, 

MIR and FIR, respectively. Among these regions, the energy of the NIR is the 

highest (Burns & Ciurczak, 2008; Ozaki, 2012; Workman & Weyer, 2012). 

 

1.3.2 Historical overview 

The NIR radiation was discovered by Sir William Herschel, a German-born 

British astronomer, back in 1800 when he observed the sun spots using 

different filters. While he was applying red filter, some heat with a higher 

temperature than visible radiation beyond violet to red spectrum was produced. 

Further investigations enabled him to conclude the presence of an invisible 

form of radiation with more energy than visible light (Pasquini, 2003). Later 

on, the wavelength interval of 780-1100 nm, often referred to as the shorter-

NIR region, was named as “Herschel infrared” in recognition of his pioneering 

discovery (Davies, 1990; Ozaki, 2012). After this historic discovery, further 

study on NIR was not pursued because of the wrong presumption that “NIR 

doesn’t have relevant information for analytical Chemistry”. In addition, since 

the NIR spectra are composed of broad overlapping and weak absorption 

bands, MIR has instead become more practical and popular for its sharp 

fundamental absorption bands (Dryden, 2003). 

  

Although Abney and Festing were considered as pioneer applicants of NIR 

to measure and interpret the NIR spectra in 1881, Coblentz was the first 

researcher who applied NIR in 1900 to identify organic functional groups and 

found that each compound has a unique spectrum. The researchers’ interest in 

investigation of organic compounds and functional groups by NIR resulted in 

only about 50 published papers up to 1970 (Osborne et al., 1993; Burns & 

Ciurczak, 2008) but the publication rate had raised remarkably to more than 

1000 in the 1990s (Pasquini, 2003). Among the earliest NIR spectroscopists 

was Fowle who applied NIR to qualitatively measure the atmospheric moisture 

in 1912, followed by Ellis and Bath who used NIR to estimate the amount of 

water in gelatine in 1938. Further development of NIR technology was made in 

the 1930s as a result of the discovery of photoelectric detector (lead sulphide), 

which was eventually adopted as a major detector for the NIR region and had a 

great influence on its applications for commercial purposes in 1950s. This 

new-born detector accompanying with tungsten filament lamps significantly 

improved the development of NIR instruments by creating the possibility for 

measuring diffuse reflectance with better sensitive and sharp radiation. 
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In the late 1960s, the potential value of NIR spectroscopy for qualitatively 

measurement of agricultural products was successfully demonstrated by Karl 

Norris and his co-workers (Burns & Ciurczak, 2008). For example, they 

determined the defection rate in eggs (Norris & Rowan, 1962), the degree of 

fruit ripeness (Bittner & Norris, 1968) and moisture in grain and seed (Norris 

& Hart, 1965). Moreover, Norris had designed and developed the first grain 

moisture meter (Norris, 1962 & 1964); and hence considered as the “father” of 

modern NIR technology. In 1971, Dickey-John constructed the first NIR unit 

for commercial purposes, Grain Analysis Computer, using tungsten–halogen 

lamp as radiation source (Burns & Ciurczak, 2008).  

 

Today NIR spectroscopy is more matured and has greatly proven its 

versatility for quantitative and qualitative analyses with notable developments 

in instrumental precision and facilities such as computation and statistical 

methods, spectral data acquisition and their pre-processing. The non-invasive 

nature and diverse application of this technique in almost all fields of science 

have made it the fastest growing analytical method (Williams & Norris 2001; 

Blanco & Villarroya, 2002; Choquette et al., 2006; Burns & Ciurczak, 2008; 

Alander et al., 2013). 

 

1.3.3 Theory and Basics 

The NIR spectrum originates from interaction between infrared radiation 

energy and matter, which in turn causes transition of the radiation energy into 

mechanical vibration of molecular bonds (Burns & Ciurczak, 2008). The 

interaction between incident radiation energy and matter takes different forms: 

reflectance, transmittance and total absorption (Figure 2). When a sample is 

illuminated with monochromatic radiation emitted by NIR instrument, part of 

the radiation is reflected by the outer surface of the sample (known as specular 

reflectance), part of it traverses deep into the inner tissues of the samples and 

then reflected back (known as diffuse reflectance) or lost as internal refraction 

and scattering while part of it still passes through the sample and detected as 

transmittance or totally absorbed by the tissues. The diffuse reflectance and 

transmittance forms are the two most important foundations for the NIR 

spectroscopy technique. The specular reflectance carries little information 

about the chemical composition of the inner tissues of the samples (e.g. storage 

reserve compounds in seeds) whereas no energy absorption will result from 

refraction and scattering within the samples (Jørgensen, 2000; Workman & 

Weyer, 2012). Thus, the specular reflectance together with wide angle 

deflection and scattering of incident radiation within the sample are some of 
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the sources of spectral noise, masking the true spectral signal from the sample; 

thus  need to be carefully handle during data pre-processing to enhance signal 

to noise ratio.   

 
Figure 2. Various forms of interaction between NIR radiation and seed sample. I0 is the intensity 

of incident radiation reaching to the seed and I is the intensity of output radiation occurring as a) 

specular reflectance, b) transmittance, c) refraction, d) diffuse reflectance, e) scattering and f) 

absorbance     

The basis for absorption bands observed in NIR spectrum is that when a 

molecule absorbs a photon (the small particles of the radiation), it transits from 

one energy level to another; i.e. excitation of the atoms due to change in the 

energy level. This energy transition creates, depending on the type of the 

molecule, symmetrically and/or asymmetrically bending (change in the bond 

angle) and stretching (movement along bond length) vibrations of molecular 

bonds (Figure 3). These vibration modes of molecular bonds can be explained 

by diatomic harmonic oscillator and aharmonic oscillation models (Figure 4). 

In harmonic oscillator model, the allowable energy transitions are those in 

which the energy transition is equal to the difference between two states; i.e. 

the quantum number, υ, changes by one (Δυ = ± 1) as dictated by the quantum 

selection rules.  
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Figure 3. Different modes of bond vibration for Hydrogen atoms in water molecule 

The intensity of vibration is directly related to the bond length and the 

vibration type. Stretching of the bond needs more energy than bending; thus 

stretching happens at higher frequency while bending occurs at lower 

frequency (Davies, 2005; Burns & Ciurczak, 2008). Mathematically, 

vibrational frequency of the bond, v , in harmonic oscillator (Figure 4) is 

expressed as: 

𝑣 =  
1

2𝜋 √
𝑘

(
1

𝑚1
+

1
𝑚2

)
 

where m1 and m2 are the mass of atom 1 and 2, respectively and k is a force 

constant which is dependent on bonds. The bigger the mass of the atoms is, the 

lower the vibrational frequency will be.  

 

Discrete vibrational energy of a molecule, EVIB, in order to jump from one 

energy level to another is expressed as: 

 

𝐸𝑉𝐼𝐵 = ℎ𝑣(𝜐 +
1

2
) 

where h is Plank’s constant and υ stands for quantum number or overtone with 

integer values of 0, 1, 2 and so on (Burns & Ciurczak, 2008; Workman & 

Weyer, 2012). The potential energy, V, in fundamental absorption bands for 

harmonic oscillator can be calculated as follows: 
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𝑉 =
1

2
 𝑘 (𝑟 − 𝑟𝑒)2 =  

1

2
𝑘𝑞2 

 

where r  is the internuclear displacement during vibration, re  is internuclear 

distance in equilibrium position and q is a coordinate of displacement. 

 

Although the harmonic oscillator model explains the absorption bands 

observed in the IR region due to energy transition by one quantum number that 

causes fundamental modes of molecular vibration, it does not explain the 

presence of overtones observable in the NIR region. According to the 

aharmonic oscillation model, the internuclear distance increases as the 

molecular bond vibrates to the extent of its limit of elasticity; resulting in 

dissociation of energy that levels off the potential energy (Figure 4 blue 

parabolic shape). Such aharmonic molecular bond vibrations allow energy 

transitions between more than one level, and thus creating overtone bands (e.g. 

2υ, 3υ, 4υ for first, second and third overtones, respectively). The intensity of 

peaks decreases with increasing Δυ; meaning that first overtones (2υ) have 

better peak intensity than second overtones (3υ), which in turn, have better 

peak intensity than third overtones (4υ).  

 
Figure 4. The potential energy of a diatomic molecule undergoing aharmonic (blue line) and 

harmonic (green line) oscillation, which explains the overtone and combination bands observed in 

NIR region. 

 

…….. First overtone 

........  Second overtone 

……..  Third overtone 
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The NIR spectrum is, thus, composed of both overtones and combination 

bands from fundamental vibrational modes, and the main bands observed in the 

NIR regions correspond to hydrogen bonds containing light atoms, such as C – 

H, O – H, N – H and S – H; because light atoms can easily vibrate upon 

irradiation by NIR radiation source and deviate from harmonic to aharmonic 

oscillation mode. These molecules are the major functional moieties in nearly 

all organic samples. For example, the C – H bond vibration characterizes 

methyl, methylene and carbonyl groups in lipids whereas the O – H and N – H 

bond vibrations characterize water and amide groups in a given sample, 

respectively. 

  

1.3.4 Computation of Absorbance values 

For quantitative and qualitative analyses of organic samples by NIR 

spectroscopy based on transmittance or diffuse reflectance measurements, one 

needs to know the fraction of radiant energy absorbed by the samples (also 

known as absorbance value). According to Beer- Lambert’s law, the fraction of 

radiant energy absorbed by infinitesimal thickness of a sample is directly 

proportional to the concertation of the analyte at that thickness and the path 

length; i.e. 

 

𝐴 =  𝜀. 𝐶. 𝑙 

 

Where A is absorbance value, ε  is the molar absorptivity coefficient, 𝐶  is 

the molar concentration of sample and 𝑙  is the path length that the incident 

radiation travels through a given thickness of a sample. The amount of various 

organic substances in a mixture of sample (e.g. seeds) can be determined by 

measuring the relative amount of radiant energy absorbed at each frequency, as 

different organic compounds absorb at different frequencies and exhibit 

different absorption intensity. Thus, the transmittance (T) and diffuse 

reflectance (R) measurements can be converted into absorbance values, A, as 

follows: 

 

𝐴 = 𝑙𝑜𝑔 (
𝑇0

𝑇
)  𝑜𝑟 𝐴 = 𝑙𝑜𝑔 (

1

𝑇
)   

 

𝐴 = 𝑙𝑜𝑔 (
𝑅0

𝑅
)  𝑜𝑟 𝐴 = 𝑙𝑜𝑔 (

1

𝑅
)   

http://en.wikipedia.org/wiki/Molar_concentration
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Where To and Ro are reference transmittance and reflectance measurements, 

and T and R are transmittance and diffuse reflectance measurements from a 

sample, respectively.  

 

1.3.5 Basic instrumentation 

Any NIR spectrophotometer is assembled from five main parts: radiation 

source, wavelength selector/modulator, sample cell, detector and signal 

processor (Figure 5, upper part). A variety of radiation sources has been used 

in the development of NIR instruments, including light emitting diodes (LED), 

super-luminescent light-emitting diodes (SLED) also called tuneable diode 

lasers and tungsten-halogen lamps. Today, the tungsten-halogen lamp is the 

dominant source of radiant energy for advanced NIR instruments with high 

energy output over 300 – 2600 nm wavelength interval. The advantage of using 

this lamp lies on the cooling-effect of the halogen inside the lamp; thereby 

avoiding overheating of the instrument. Similarly, a variety of devices has been 

developed over the years for wavelength selection or modulation; notably 

prisms, Acousto-optically tuneable filter (AOTF), interferometric and non-

thermal systems (Garini et al., 2006; Balas, 2009; Burns & Ciurczak, 2008; 

Agelet, 2011; Zhang et al., 2011). While prism and AOTF angularly disperse 

the radiation into different wavelengths using large prism and radio wave 

frequency, respectively, the interferometric system is a non-dispersive system, 

in which filters are used for wavelength selection. The notable interferometric 

systems are the Michelson interferometer, Fabry-Perot filter and Fourier 

transform NIR instruments (for more details see Osborne et al., 1993; 

McClure, 1994). The non-thermal system involves the use of light emitting 

diodes and lasers that can emit radiation in a narrow range of wavelengths. 

Most of NIR instruments used in laboratories and in industries today utilize 

diffraction gratings and detection arrays for wavelength selection, which are 

proven suitable for detection of the full spectrum.     

 

Sample cells for NIR analysis can be of different types, depending on the 

nature of the sample and the instrument; for example seeds can be scanned 

individually or in bulk. For single seed analysis, each individual seed can be 

placed directly into the scanning window of the instrument (as in the case XDS 

Rapid Content Analyzer; FOSS NIRSystems, Inc., used in this thesis) or single 

seed adapters (as in the case 1225 Infratec analyser; FOSS Tecator, Sweden); 

whereas bulk seed samples can be analysed using the standard sample cups 

supplied by the manufacturer together with the instrument (see the lower part 

of Figure 5). The standard sample cup is made of silica or quartz with 
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transparent glass window to allow the incident radiation to reach the sample. 

NIR instrument can come with a fibre optic probe that allows not only analysis 

of liquid samples (Tamburini et al., 2003) but also large individual seeds 

(Tigabu and odén, 2002). 

 

 
Figure 5. Top panel: optical components of NIR instrument to scan the sample in reflectance 

mode and Bottom panel: sample presentation in NIR device. 

Detectors are the most important component of NIR instrumentation that 

transform the energy transmitted or diffusely reflected by the sample to 

spectral signal which will later on be processed by a computer to produce a 

digitized absorbance values. Silicon (Si), Lead sulphide (PbS) and an alloy 

made of Indium, gallium and arsenide (InGaAs) are the most effective 

semiconductors frequently deployed as detectors in NIR instruments. Si 
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sensors are effective in the 400 – 1100 nm while PbS detectors are effective in 

the 1100-2500 nm, and InGaAs in 1000 – 1800 nm with better sensitivity than 

the former two (Burns & Ciurczak, 2008). Sequentially arranged Si and PbS 

sensors are used for acquiring spectral information over the visible + NIR 

region (400 – 2500 nm). As the detector may influence the signal-to-noise ratio 

(SNR) due to its positioning (should be 45° against samples), each sample 

should be successively scanned several times, for example 32 times and then 

average values recorded. Finally, computers are vital component of NIR 

instrument configuration for capturing spectral data, for process monitoring 

and data analysis. 

 

1.4 Multivariate analysis of NIR spectra 

NIR spectroscopic data are not usually amenable for direct analysis due to 

several reasons. First, the spectra contain unwanted systematic variations that 

arise from light scattering, base line shift, instrumental drift, and path length 

differences. Such unwanted spectral noise should be carefully handled to 

enhance the signal from the chemical compounds analysed by using 

appropriate spectral pre-treatment (also called spectral filter) techniques. 

Second, spectroscopic data are multidimensional by nature, recorded at several 

hundred wavelength channels; thus it is not always easy to select a few 

wavelengths to analyse the chemical compound of interest in a sample due to 

the overlapping nature of spectral peaks. On top of that, spectroscopic data are 

highly collinear; i.e., some of the variables can be written approximately as 

linear functions of other variables. Thus, the first step in analysing NIR 

spectral data is to perform spectral filtering, followed by multivariate data 

analysis (MVDA) to extract the valuable information from the spectra than 

univariate analysis (Næs et al., 2002). In the subsequent sections, the 

commonly applied spectral pre-processing techniques and multivariate method 

for analysis of NIR spectral data are presented.  

 

1.4.1 Spectral pre-processing 

The particle size and shape of the sample induce multiplicative and/or additive 

scattering effects on the NIR spectra; thereby reducing signal to noise ratio of 

the spectra. This scatter effects are larger for bigger particles than smaller ones 

and varies from sample to sample because of path length differences. 

Multiplicative effect perturbs the slope of each spectrum while additive effect 

leads to shifts in the baseline compared to a reference. Therefore, the spectra 
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include information irrelevant for the property of interest and mask the 

biochemical signals from the sample. To improve the spectral signal and get rid 

of these noises, a variety of spectral pre-treatment have been developed. 

Spectral pre-treatments or spectral filters are mathematic functions for handling 

unwanted interferences in order to avoid its dominance over the chemical 

signal. The commonest data pre-treatment techniques in NIR spectroscopy are 

derivatives (Savitzky & Golay 1964), multiplicative signal correction (Geladi 

et al., 1985), standard normal variate transformation (Barnes et al., 1989) and 

orthogonal signal correction (Wold et al., 1998), which were used in the thesis, 

as deem necessary. 

 

Derivatives are simple signal pre-processing methods for correcting 

additive baseline (first derivative) and scatter (second derivatives) effects. In 

addition, the method can remove overlapping peaks by separating them; 

thereby making interpretation of spectral signal easier. The first derivative is 

the slope at each point of the original spectrum, which can be computed as the 

difference between adjacent points as follows: 

 

𝑥′ =  𝑥𝑤 − 𝑥𝑤−1 

 

where xˈ and xw denote absorbance value in the first derivative and original 

spectrum at wavelength w in the sequence, respectively. 

 

Second derivative (x'') is the slope of first derivative (xw'), and computed as 

the difference of two adjacent first derivatives as follows: 

 

𝑥′′ =  𝑥𝑤
′ − 𝑥𝑤−1

′ =  𝑥𝑤−1 − 2 × 𝑥𝑤 +  𝑥𝑤+1 

 

Although derivatives are simple to compute, they should be used cautiously as 

they cause noise inflation and signal reduction (low SNR). 

 

The Multiplicative Signal Correction (MSC) approach is another mostly 

used spectral-filtering technique in NIR spectroscopy data where scatter effect 

is the main source of variability. This can be done by plotting the spectrum of 

each sample against average one. MSC reduces model dimensionality by 

successfully removing the scatter effects originating from both multiplicative 

and additive components in two steps: firstly it determines the correction 

coefficients mathematically as given below: 
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𝑥𝑖𝑘 =  𝑎𝑖 + 𝑏𝑖�̅�𝑘 +  𝑒𝑖𝑘 

 

where i and k denote the sample and wavelength, respectively while ai and bi 

are constants estimated by least squares for additive and multiplicative effects, 

respectively, x̅k  is the average spectrum and e  represents un-modeled part. 

Then, the model corrects and transforms the spectrum as below: 

 

𝑥𝑐𝑜𝑟𝑟,𝑀𝑆𝐶 =
(𝑥𝑖𝑘 −  �̂�𝑖)

�̂�𝑖

 

 

where xcorr,MSC is the transformed spectra. 

 

The Standard Normal Variate (SNV) transformation corrects for 

multiplicative effect of scattering and particle size on an individual observation 

basis, which is analogues to mean centring and scaling to unit variance in the 

observation direction. Mathematically, the SNV transformation is computed as 

follows: 

 

𝑥𝑐𝑜𝑟𝑟,𝑆𝑁𝑉 =  
(𝑥𝑖𝑘 −  �̅�𝑖)

√∑(𝑥𝑖𝑘 −  �̅�𝑖)
2

𝑘 − 1

 

 

where xcorr,SNV  represents SNV-corrected absorbance value for x original 

absorbance value of the i
th
 observation at k wavelength and x̅ is mean of k 

wavelength channels for i
th

 observation. As seen, each spectrum is subtracted 

from its mean, x̅  and divided by its standard deviation. Therefore, after 

transformation, each spectrum is centred at zero and has values approximately 

between +2 and -2. 

 

The Orthogonal Signal Correction (OSC) is different from the spectral pre-

treatment mentioned above, as it takes into account the response variable in its 

algorithm to correct more general types of systematic noise in the spectra. The 

procedure is based on partial least squares (PLS) regression, such that the 

weights in OSC are calculated to minimize the covariance between the spectral 

data, X, and the response variable, y. Then components orthogonal to the 

response variable containing spectral variations that are not correlated to the 
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response variable are subtracted from the original spectra to produce filtered 

spectra. Recent advances in chemometrics enabled integration of OSC and PLS 

in one platform (known as Orthogonal Projection to Latent Structures, OPLS) 

so that both spectral filtering and subsequent modelling can be performed 

simultaneously (Trygg & Wold, 2002).    

 

Once the spectroscopic data are filtered, the data set is ready for developing 

models for quantitative and qualitative attributes of samples. Multivariate 

classification, also referred to as pattern recognition, is a widely used 

qualitative analysis for distinguishing between sets of similar organic materials 

(e.g. empty and filled seeds or hybrid or pure parental seeds of a given species) 

based on NIR spectroscopic measurements. The commonest multivariate 

classification methods used in NIR spectroscopy are Principal Component 

Analysis, PCA, Soft Independent Modelling of Class Analogy, SIMCA, and 

Partial Least Squares-Discriminant Analysis, or synonymously Projection to 

Latent Structures-Discriminant Analysis, PLS-DA (Næs et al., 2002; Eriksson 

et al., 2006; Varmuza & Filzmoser, 2009). At first, PCA can be used to 

recognize patters and identify outliers in the data set based on few principal 

components. In cases where there is a distinct separation between classes, 

SIMCA can be used for developing a supervised multivariate classification 

model. When the maximum variation directions in PCA do not coincide with 

the maximum separation directions among classes, a classification model can 

be developed by PLS-DA. In the subsequent section, more details about PCA 

and PLS-DA modelling approaches are described. 

 

1.4.2 Principal component analysis 

PCA is a multivariate projection method, which decomposes the large data 

matrix, X, into “structure” and “noise” with few dimensional hyper-plane 

based on maximum variance direction (Eriksson et al., 2006). For 

spectroscopic data set, the X matrix denotes absorbance values of N samples 

(e.g. single seeds) measured at K wavelength channels. In PCA, the swarm of 

data (6A) is first mean-centred so that each observation will have equal footing 

(Figure 6B); i.e., the dimensions in the hyper-plane pass through the origin (0, 

0). According to the variable space, PCA first looks for the linear direction 

with the largest variation among the observations passing through the origin 

known as a latent variable or principal component (first PC; Figure 6C). The 

process is successively repeated to search for the second largest variation in the 

data cloud orthogonal to the first one by minimize the unexplained variance 

(Figure 6D). The process culminates when all possible principal components 
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are computed, and finally the observations are project onto the new dimensions 

of the hyper-plane (Figure 6E). The maximum number of PCs is equal to N-1 

observations or K variables, depending on which one is smaller.  

 

The more PCs are extracted, the higher the variance explained by the PCA 

model and the less residual will be (Figure 6; bottom part). On the other hand, 

the dimensionality of the model increases dramatically if more PCs are 

calculated; thereby causing model complexity and increase in prediction error. 

Thus computing more PCs will result in overfitting of the model, whereas few 

PCs result in underfitted model with very high error rate. In addition, higher 

order PCs explains small variation; thus fewer significant PCs should be 

determined. This can be done using the eigenvalue criterion or cross-

validation. According to the eigenvalue criterion, a PC is considered significant 

if its normalized eigenvalue is larger than 2; or if the predictive power 

according to cross-validation is larger than a significant limit (Eriksson et al., 

2006).    

 

Mathematically, the general PCA model can be expressed as: 

 

𝑋 = 𝑇𝑃𝑡 + 𝐸 =  ∑ 𝑡𝑎𝑝𝑎
𝑡 + 𝐸 

 

where 𝐓 is a matrix of scores (N × A), 𝐏t is a matrix (A × K) of transposed 

loadings of the model after extracting A PCs, and E denotes a residual matrix 

(N × K) or unexplained part of X matrix as noise. The scores are coordinates of 

the samples projected down onto the hyper-plane (Figure 6C) while loadings 

are the direction of each PC in the hyper-plane, computed as cosine of the 

angle between the PC and each of the original coordinate axes (Figure 6F). The 

residual E is the distance between each sample in K-space and its point on the 

hyper-plane. The scores and loadings represent the “structure” while the 

residual matrix represents the “noise” part of the data.  

 

Apart from its importance for pattern recognition, PCA models can be used 

for supervised classification purpose – a classification modelling approach 

known as SIMCA (Wold, 1976). In SIMCA, a separate PCA model is 

calculated for each class of similar samples. Based on the residuals of each 

samples from the PCA model, the residual standard deviation (si) of an 

observation in the calibration set (also called absolute distance to the model) 

and the pooled residual standard deviation (S0) of the model are calculated as 

follows: 
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𝑠𝑖  = √
∑ 𝑒𝑖𝑘

2

(𝐾 − 𝐴)
 × 𝑣 

 

𝑆0  =  √
∑ ∑ 𝑒𝑖𝑗

2

(𝑁 − 𝐴 − 𝐴0)  × (𝐾 − 𝐴)
 

 

Where eik is the X-residuals of observation i and k variable, K is the total 

number of X variables (absorbance values at K wavelength channels), A is the 

number of principal components used to build the PCA model, v is the 

correction factor (which is a function of the number of observations and 

principal components and is slightly higher than 1), and A0 is equal to 1 if the 

model is centred or 0 otherwise. 

 

The squared ratio of si to S0 is approximately F-distributed with degrees of 

freedom of the observation and the model is used to compute the critical 

distance to the model for new observation in the test set at the desired 

probability level ( p = 0.05). Samples in the test set are then projected onto the 

existing PCA models and their residual standard deviations are compared to the 

critical distance of each class. Samples in the test set are then classified as (1) 

member of a given class if they fall within the critical distance of that class 

with a probability of class membership greater than 5%, (2) not belonging to 

any of the classes if they fall outside the critical distance and (3) belonging to 

two classes if they fall within an area where the critical distances of two classes 

intersect (Figure 7). The SIMCA classification results can be graphically 

presented as Coomans’ plots where class distances for two classes are plotted 

against each other in a scatter plot. 
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Figure 6. Top panel: geometrically position of the data cloud in the variable space (matrix X) 

analysed by PCA. A) The points (white circles) and their mean (black circle) before mean-

centring. B) mean-centred data points with the average of (0, 0). C) Calculation of first PC on 

which observation n is projected and gets a score t. The distance between the observation n and 

its projection is residual e. D) calculation of second PC perpendicular to the first one E) Third PC 

is orthogonal to the plane formed by two first PCs on which observation n  is projected F) 

Presentation of loadings as an interpretation component for the scores. The loading line is a 

cosine of angle α between each PC and original observation. Bottom panel: model error (dotted 

line) and estimated error (dashed line) determine the optimum number of components which is 

representing by red ellipse. 
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Figure 7. Coomans’ plot illustrating the distances of samples from two classes based on PCA 

model. The dotted lines correspond to the critical distance of each class. “overlap” region shows 

the samples belong to both classes, panel “no class” represents the samples predicted with no 

class membership.   

1.4.3 Projection to Latent Structures – Discriminant Analysis 

PLS-DA is another approach to develop multivariate classification models 

when the maximum variation directions in PCA do not coincide with the 

maximum separation directions among classes. It is a regression approach that 

establishes a relationship between the predictor X-matrix (e.g. NIR spectra) 

and the response matrix through an inner linear relation of their scores 

(Eriksson et al., 2006). The response matrix, Y, is composed of dummy 

variables (1 for samples belonging to the class, 0 otherwise), which indicates 

class membership (Figure 8A). The predictor, X and response, Y, matrices are 

then decomposed into “structure” and “noise” as follows: 

𝑿 = 𝑻𝑷𝑡 + 𝑬 

𝒀 = 𝑼𝑸𝑡 + 𝑭 

Where T, P
t
 and E denote scores, loadings and residuals of the predictor data 

matrix, X; and U, Q
t
 and F denote scores, loadings and residuals of the 

response matrix, Y (Figure 8B). PLS calculates the linear relation between the 

inner variables, T and U by maximizing their covariance. For each PLS 

component, a weight vector, w*, that describes the contribution of each 

predictor variable to the explanation of the response variables is computed. 

Thus, the matrix of weights, W*, over all PLS components contain the 

structure in the predictor matrix that maximizes the covariance between T and 

U.  

 

The PLS model can thus be expressed as: 
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𝒀 = 𝑿𝑾∗ 𝑸′  = 𝑿𝑩 + 𝑭 

B is a matrix of regression coefficients. The prediction equation for new 

sample 𝑛 can be expressed as: 

 

𝑦𝑛 =  𝑏0 +  𝑏𝑛𝑥𝑛
𝑇  

where b0 is the intercept, bn is the regression coefficient. 

 

The goodness of fit, a measure of model performance and relevance, is 

evaluated by computing the explained variation of the predictor matrix (R
2
X) 

and the response (R
2
Y) as follows  

 

𝑅2𝑋 = 1 − 𝑅𝑆𝑆𝑋[𝐴]/𝑆𝑆𝑋[0] 

𝑅2𝑌 = 1 − 𝑅𝑆𝑆𝑌[𝐴]/𝑆𝑆𝑌[0] 

where RSSX[A] and RSSY[A] are the sum of squares of the X- and Y-

residuals after extracting A components, respectively, and SSX[0] and SSY[0] 

are the total explained variation of X and Y matrices, respectively. 

 

The goodness of prediction, a measure of the prediction ability of the 

computed model, can be evaluated using a parameter called predictive power 

(Q
2
) based on cross-validation or test sets. The fraction of the total variation in 

the response, Y, that can be predicted by a component, Q
2
, is computed as 

 

𝑄2 = 1 − 𝑃𝑅𝐸𝑆𝑆/𝑆𝑆𝑌 

PRESS is the predictive residual sum of squares of the response Y, [∑(y −

ŷ)2] and SSY is the residual sum of squares of the previous dimension. The 

cumulative Q2  for all significant components needed to build the model is 

computed as: 

 

𝑄𝑐𝑢𝑚
2 = [1.0 −  ∏(𝑃𝑅𝐸𝑆𝑆/𝑆𝑆)𝑎]    a = 1, 2,…, A 

where ∏(PRESS/SS)a is the product of PRESS/SS for each component, a. A 

model with large cumulative Q
2 

value for a given response indicates that the 

model for that response is good. As a rule of thumb, a model with a Q
2
 > 0.5 is 

considered as good and a Q
2
 > 0.9 as excellent (Eriksson et al., 2006). 
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Figure 8. Data structure for PLS-DA analysis (Panel A); schematic presentation of the PLS 

algorithm indicating the decomposition of X- and Y-matrices into their respective scores, T and 

U, loadings, P and Q, residuals E and F together weight matrices C and G (Panel B); and model 

fitness as a function of number of PLS factor, A where the red ellipse depicts the optimum 

balance between R2Y and Q2Y for deciding the number of PLS components to consider (Panel C). 
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The predictive power of the model, Q
2
, is also very important for 

determining the number of significant components to build the final model. 

Generally, the explained variation for the response variables (R
2
Y) increases 

with increasing number of components whereas the predictive power, Q
2
, 

increases to a certain level and thereafter starts to decline. Thus, the optimal 

number of components is at the breaking point beyond which Q
2
 declines 

(Figure 8C). It has been suggested that the difference between R
2
Y and Q

2 

shouldn’t be larger than 0.2 - 0.3. Otherwise, the model will extract too much 

irrelevant information or few informative data (Eriksson et al., 2006). The 

significance of a component is evaluated according to Rules 1 and 2 (Eriksson 

et al., 2006), which state that a component is considered significant if Q
2
 for 

the whole data set based on cross validation is larger than a significant limit 

(Rule 1), or if Q
2
 for each Y-variable is larger than a significant limit (Rule 2). 

 

The contribution of each predictor for the modelling of the response can be 

determined by analysing the loading and weight plots. For spectroscopic data, 

the loading and weight plots show absorption peaks that correlate with the 

scores of the observation for each component. When the computed model has 

several components, interpretation of loading and weight plots will be a bit 

cumbersome. One way of circumventing this problem would be to compute a 

parameter called Variable influence on projection (VIP). VIP for A components 

and K variables is a weighted sum of squares of the PLS weights (w) for a 

given component a and k variable, taking into account the amount of explained 

Y-variance (SSY) of a component and sum of squares of the response variable 

Y before (SSY0) and after (SSYA) extracting A number of components 

(Eriksson et al., 2006). Mathematically, VIP can be calculated as: 

  

𝑉𝐼𝑃𝐴𝐾 = √(∑(𝑤𝑎𝑘
2 ∗ (𝑆𝑆𝑌𝑎−1 −  𝑆𝑆𝑌𝑎)) ∗  

𝐾

(𝑆𝑆𝑌0 −  𝑆𝑆𝑌𝐴)

𝐴

𝑎=1

) 

 

Its major advantage is that there will be only one VIP-vector, summarizing 

all components and Y-variables; hence a plot of VIP values against wavelength 

enables identifying absorption bands that have strong influences on the 

discriminant models. Since the sum of squares of all VIP values is equal to the 

number of spectral X variables in the model, the average VIP value would be 

1.0. Thus, predictors with VIP value greater than 1.0 have a strong influence on 
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the model, but a cut-off around 0.7 – 0.8 has been suggested to discriminate 

between relevant and irrelevant predictors (Eriksson et al., 2006). 

 

Interpretation of NIR absorption bands is not usually straightforward due to 

the overlapping nature of absorption peaks of several compounded in a sample 

and the complex chemical composition of the sample (e.g. seeds). However, 

the chemical ‘fingerprints’ of the peaks can be characterized and interpreted 

based on previous studies and assignment of bands to functional groups 

(Osborne et al., 1993; Shenk et al., 2001; Workman & Weyer, 2012), and 

knowledge of seed chemical composition; particularly the storage reserves in 

the seeds. In this thesis, the interpretation of absorption bands was based on 

these approaches.  

 

1.4.4 Orthogonal Projections to Latent Structures – Discriminant Analysis  

OPLS-DA is a variant of PLS-DA, which has gained increasing popularity as a 

classification modelling approach in recent years (Pinto et al., 2012). Unlike 

PLS-DA, the OPLS-DA modelling approach integrates facilities for both data 

pre-processing to remove unwanted systematic noise in the spectra and 

subsequent modelling. Basically, OPLS-DA modelling separates predictive 

from non-predictive (Y-orthogonal) variations in the spectra and uses only the 

predictive variations for fitting the model. To do this, it uses information in the 

categorical response matrix Y (a matrix of dummy variables) to decompose the 

X matrix (the NIR spectral data) into three distinct parts: (1) the predictive 

score matrix and its loading matrix for X, (2) the corresponding Y-orthogonal 

score matrix and its loading matrix, and (3) the residual matrix of X (Trygg & 

Wold, 2002). Unlike other spectral pre-processing methods, OPLS-DA 

provides dimensionally less complex models (i.e., few components to build the 

model), and additional facilities for interpretation of inter- and intra-class 

variability, causes of unwanted systematic variations in the spectra and spectral 

variations relevant for class discrimination by examining the score and loading 

plots of predictive and orthogonal components (Pinto et al., 2012; Daneshvar et 

al., 2015). 

 

In this thesis, the different spectral pre-processing techniques as well as 

SIMCA, PLS-DA and OPLS-DA modelling approaches were applied, as 

deemed necessary.  
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2 Objectives 

The main objective of the studies presented in this thesis was to evaluate the 

application of visible and near infrared spectroscopy combined with 

multivariate modelling as a fast and non-destructive method for seed sorting 

and seed certification in order to upgrade and ensure overall seed lot quality of 

tree species that are of great importance in reforestation in boreal and 

temperate ecosystems. The specific objectives and hypotheses were: 

   

 Sorting viable, empty and petrified seeds of Larix sibirica (Paper- I) 

 

Hypothesis: filled-viable seeds have more storage reserves than empty 

seeds but lower moisture content than petrified seeds, which can be 

detected by NIR spectroscopy as a basis for discriminating them. 

  

 Evaluating the feasibility of visible and NIR spectroscopy for 

verification of hybrid larch, Larix × eurolepis, seeds (Paper- II) 

 

Hypothesis: Variations in colour and storage reserve compounds like 

lipids and proteins as well as moisture content exist in seeds of hybrid 

and pure parental seeds that can be detected by visible and NIR 

spectroscopy as a basis for discriminating them. 

 

 Identifying two birch species and their families by using VIS + NIR 

spectra of single seeds (Paper- III) 

 

Hypothesis: Silver and downy birch seeds differ in colour and 

chemical compositions of seed storage reserves that can be detected 

by NIR spectroscopy as a basis for discriminating between species. 
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Seeds from different families within species also differ in their 

chemical composition due to genetic effect. 

 

 Authenticating the origin of Picea abies seed lots (Paper- IV) 

 

Hypothesis: Seeds from different origins vary with respect to seed 

storage reserves due to genetic and maternal environment effects, 

which can be detected by NIR spectroscopy as a basis for 

authentication of seed origin. 
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3 Material and methods 

3.1 Tree species, seed samples and preparation  

The feasibility of NIR spectroscopy for seed sorting and identification of seed 

lots were investigated using different seed lots from temperate and boreal tree 

species. The tree species included in the studies presented in this thesis were 

Larix sibirica Ledeb., Larix kaempferi (Lamb.) Carr., Larix decidua Mill, L. × 

eurolepis Henry, Betula pendula Roth, Betula pubescens Ehrh., and Picea 

abies (L.) Karst. Interests in growing Larix species (commonly known as larch) 

in the Northern hemisphere, particularly Fenno-Scandinavia, have grown over 

the past few decades owing to their better juvenile growth, high timber quality, 

adaptation to the harsh climate and relatively strong resistance to wind throw 

and root- and butt rot (Polubojarinov et al., 2000; Karlman et al., 2011). Larix 

sibirica Ledeb. is one of the promising timber species for planting in the boreal 

ecosystem while L. × eurolepis is highly preferred for planting in the 

temperate zone of southern Sweden. The hybrid larch exhibits heterotic vigor 
in growth performance (Matyssek & Schulze, 1987; Pâques, 1992; Baltunis, et 

al., 1998) and is considered as a fast growing conifer possessing high quality 

wood and suitable for reforestation purposes (Pâques, 1989).  

 

Betula species (birch as common name) are regarded as pioneer species 

growing typically in the northern hemisphere, over northern temperate and 

boreal ecosystems.  Birch can rapidly colonize gaps created by disturbance, 

clear-cuttings and promote secondary succession owing to their vigorous seed 

production and fast juvenile growth capacities (Fischer et al., 2002). They also 

serve as nurse-trees for other late-successional species with more economic 

traits (Renou-Wilson et al., 2010). Among Betula species, silver birch (Betula 

pendula Roth) and downy birch (Betula pubescens Ehrh.) are commercially 

important species in northern Europe, which look similar in their general 
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morphological appearance. Regarding the taxonomy of these birch species, 

there has been scientific debates for a long time since its genetic and biological 

variation within-family and between species is not always clear (Lundgren et 

al., 1995; Atkinson et al., 1997; Fischer et al., 2002; Feehan et al., 2008; 

Hynynen et al., 2010; Ashburner & McAllister, 2013). P. abies (Norway 

spruce) is widely distributed in northern and central Europe where its stands 

are managed mainly for timber production (Koski et al., 1997; Szymański, 

2007).  

 

For the discrimination of L. sibirica seed lot according to its viability 

(Study I), four seed lots obtained from the Forest Research Institute, Sävar, 

Sweden were used. The seed lots were first sorted into filled, empty and 

petrified seeds by digital X-ray analysis (MX-20 Cabinet X-ray System; 

Faxitron X-ray LLC, Lincolnshire, IL 600069) based on the international seed 

testing rule (ISTA, 2003). Seeds with visible embryonic cavity and 

megagametophyte (storage organ) were considered as viable; seeds without 

any content (megagametophyte and embryo) were considered as empty while 

seeds without embryonic axis and with purely white hardened content were 

considered as petrified. In addition, the petrified seeds show a tube-like 

structure possessing two lateral wings with no clear septa (Lycksell, 1993). In 

total, 675 seed samples from four different seed lots were sorted into 225 

filled-viable, empty and petrified seeds each and employed for NIR analysis.  

 

To identify hybrid larch seeds from that of pure parent species (Study II), 

seed lots of European larch produced in 2010 by controlled pollination of 

known maternal (D02V983) and paternal (S21K9780044) clones, Japanese 

larch produced by open pollination of known maternal clone (S08N1001) but 

unknown paternal clone in 1995 and their hybrid (S21K9580102 × 

S21K9580032) produced by controlled pollination in 2010 were obtained from 

clonal archive of the Swedish Forest Research Institute at Ekebo, Sweden. The 

seeds were stored in a freezer (-4° C) from the time of harvest, and a total of 

336 seed samples, 112 samples per species, were randomly drawn from the 

total seed lots of each species to serve as working sub-samples for NIR 

analysis.  

 

To distinguish between B. pendula and B. pubescens as well as families 

within species, seeds from three families of B. pendula (S21H1030038, 

S21H0930014 and S21H0930019) and B. pubescens (S21H0030013, 

S21H0030017 and S21H0030019), each were obtained from a clonal archive 

of the Swedish Forest Research Institute at Ekebo, Sweden. The seeds were 
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produced by controlled crossings of known maternal and paternal parents in 

year 2000 for B. pubescens and in 2009/2010 for B. pendula. The parental 

material were all selected as plus-trees from stands in southern Sweden and 

Finland to be used for long-termed breeding, and were at that time (1989-1991) 

differentiated by morphological characters and later on also checked by 

chemical markers using phenolic bark contents, particularly the B. pubescens 

parents (Lundgren et al., 1995). The seed samples were continuously kept in a 

freezer at -4℃ until the study was conducted. A total of 600 seed samples, 100 

samples per family and species, were randomly drawn from each seed lot as a 

working sub-sample. 

 

To identify the origin of P. abies seed lots, five seed lots originating from 

Sweden, Finland, Norway, Poland and Lithuania were used. The seed lots were 

obtained from the Forest Research Institute, Sävar, Sweden. The seeds were 

collected from stands, except the Lithuanian origin which was collected from a 

seed orchard in Typevenai, and all seed lots had a germination capacity of 

more than 92%. Each seed lot was divided into sub-samples, and a random 

sample of 150 seeds per origin was taken for NIR analysis. 

3.2 NIR spectral acquisition 

In all the studies presented in this thesis, NIR reflectance spectra in the form of 

log (1/R) were collected on individual seeds using XDS Rapid Content 

Analyzer (FOSS NIRSystems, Inc.) from 400 – 2498 nm at 0.5 nm resolution. 

The equipment had Silicon and InGaAS detectors with a tungsten-halogen 

lamp as a radiation source. To acquire a spectrum, each single seed was placed 

at the centre of the scanning glass window of the instrument with 9 mm 

aperture at stationary module and then covered with the instrument’s lid with a 

black background. Prior to collecting the NIR spectrum of single seed, 

reference reflectance measurement was taken using the standard built-in 

reference of the instrument. In addition, reference measurements were taken 

after every 20 scans to reduce the effects of possible instrumental “drift”. For 

every seed, 32 monochromatic scans were made and the average value 

recorded.  

3.3 Data analysis 

The spectral data collected by NIR spectrometer were exported from Vision 

Software (FOSS NIRSytems, Inc. VISION 3.5) as NSAS file and imported into 

Simca-P+ software (Version 13.0.0.0, Umetrics AB, Sweden) for developing 
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multivariate discriminant models. Prior to fitting discriminant models, the data 

sets were divided into calibration and test sets. The number of samples in the 

calibration and test sets of each study is shown in Table 1. As a rule of thumb, 

ca. 30% of the data set was excluded during the calibration process to make up 

the test set, except in study I where 20% of the data set was excluded as test set 

due to limited availability of seeds in each seed lot fraction. The spectral data 

were composed of both visible and NIR regions for studies II and III while the 

visible region was excluded in studies I and IV as it appeared to carry very 

little information, which was useful for discriminating L. sibirica seed lots 

according to their viability and identifying origins of P. abies seed lots.  

Table 1. Number of samples in the calibration and test sets for each study 

Study Calibration set Validation set Total 

I 540 135 675 

II 225 111 336 

III 402 198 600 

IV 500 250 750 

 

 Direct analysis of NIR data is not sometimes possible due to unwanted 

systematic variation arising from instrumental drift, path length differences, 

baseline shift and light scattering that influence the chemical signals from the 

samples (Tigabu & Odén, 2004a & b ; Tigabu et al., 2004). This unsystematic 

noise in the spectra increases model dimensionality and should be removed 

from the spectral data to enhance signal to noise ratio (SNR). For this purpose, 

the raw spectra were filtered using different data pre-treatment techniques: first 

and second derivatives, MSC, SNV and OSC. The OSC treatment has already 

been integrated in the OPLS-DA modelling approach as first step to filter more 

general types of interferences in the spectra by removing components 

orthogonal to the response variable calibrated against (Trygg & Wold, 2003).  

 

As the first step in model building, PCA was performed to get an overview 

of data cloud and to detect any possible outliers. There were no serious outliers 

in all the studies. Subsequently, discriminant models were developed using 

Orthogonal Projections to Latent Structures-Discriminant Analysis (OPLS-

DA) using the digitized NIR spectra as regressor and a y-matrix of dummy 

variables (1 if member of a given class, 0.0 otherwise) as regressand. All 

calibrations were developed on mean-centred data sets and the number of 

significant model components were determined by a seven-segment cross 

validation (a default setting). A component was considered significant if the 

ratio of the prediction error sum of squares (PRESS) to the residual sum of 
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squares of the previous dimension (SS) was statistically smaller than 1.0 (Næs 

et al., 2002; Eriksson et al., 2006). The discriminant models were then used to 

discriminate test set samples, which were excluded during the calibration 

process. An observation was considered as a member of a given class if 

predicted values were greater than a discrimination threshold (Ypred ≥ 0.5), 

otherwise considered as non-member. The classification accuracy for test set 

samples, expressed in percentage, was computed as the proportion of seeds 

predicted correctly as member of a given class to the total number of seeds in 

the test set for that class. 

 

In study IV, classification models were also developed using Soft 

Independent Modelling of Class Analogy (SIMCA) approach, which is a 

supervised multivariate classification method based on a disjoint principal 

component analysis (PCA) for each class of similar observations (Erickson et 

al., 2006). Based on the residuals of each samples from the PCA model, the 

residual standard deviation (si) of an observation in the calibration set (also 

called absolute distance to the model) and the pooled residual standard 

deviation (S0) of the model were calculated. This, in turn, was used to calculate 

the confidence interval or the critical distance to the model with an 

approximate F-test with degrees of freedom of the observation and the model 

at the 5% probability level. Samples in the test sets were then projected onto 

the existing PCA models and their residual standard deviations were compared 

to the critical distance of each class. Samples in the test set were classified as 

(1) member of a given class if they fall within the critical distance of that class 

with a probability of class membership greater than 5%, (2) not belonging to 

any of the classes if they fall outside the critical distance and (3) belonging to 

two classes if they fall within an area where the critical distances of two classes 

intersect. The SIMCA classification results were graphically presented as 

Coomans’ plots where class distances for two classes were plotted against each 

other in a scatter plot. 
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4 Results and Discussion 

4.1 Discrimination of Larix sibirica seed lots according to 
viability class 

The OPLS-DA model developed to simultaneously discriminate filled-viable, 

empty and petrified seeds had two predictive and 13 Y-orthogonal components 

(A = 2 + 13). The total spectral variation described by the model was 100%; of 

which the predictive variation (R
2
XP) accounted for 26.7% and the Y-

orthogonal spectral variation (R
2
Xo) constituted 73.3%. The predictive spectral 

variation, in turn, modelled 84.2% of the class variation (R
2
Y) in the 

calibration set with 82.0% prediction accuracy (Q
2
cv) according to cross 

validation. The score plot for the predictive components (Figure 9A) showed 

clear separation of petrified seeds from filled-viable and empty seeds along the 

first component (tp[1]) and filled-viable seeds from the other two seed lot 

fractions along the second component (tp[2]). The corresponding predictive 

loading plot revealed that the absorption band in 780 – 1100 nm with a broad 

peak centred at 970 nm was attributed to separating petrified seeds from filled-

viable and empty seeds (Figure 9B). Whereas absorption bands in 1140 – 1256 

nm, 1268 – 1418 nm, 1590 – 2035 nm with major peaks at 1196 nm, 1390 nm, 

1706 nm, 1859 nm, 1878 nm and 1986 nm were attributed to discriminate 

filled-viable seeds from petrified and empty seeds (Figure 9C).  
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Figure 9. Score plot for the first (tp[1]) and second (tp[2]) predictive components (A) showing 

clear clustering patterns of filled-viable (green star), empty (blue box) and petrified (brown 

triangle) seeds, and loading plots for the first (B) and second (C) predictive components showing 

absorption bands accounted for class discrimination..  

 For test set samples, the computed three-class OPLS-DA model correctly 

assigned filled-viable, empty and petrified seeds with 98%, 82% and 87% 

classification accuracy, respectively. None of the filled-viable seeds were 

misclassified as member of other class, but one sample appeared to have no 

class. Similarly, neither empty nor petrified seeds were misclassified as filled-

viable seeds, but nearly 11% of empty seeds in the test set was misclassified as 

petrified seed and 4% as both empty and petrified seeds while 4% of petrified 

seeds were misclassified as empty and as both empty and petrified. Nearly 9% 

of petrified seeds and 2% of empty seeds had no class. 

 

When two-class OPLS-DA model was fitted to discriminate seed lots into 

filled-viable and non-viable (empty and petrified seeds combined) classes, the 

modelled vitiations between classes (R2Y) and the predictive ability (Q2cv) of 

the fitted model improved to 93.7% and 93.1%, respectively. The score plot 
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showed a symmetrical separation of viable and non-viable seeds along the 

predictive component and within-class variation along the Y-orthogonal 

component (Figure 10A). Although some seeds from each viability class fell 

outside of the 95% confidence ellipse according to Hotelling’s T2 test (a 

multivariate generalization of Student’s t-test), they were not strong outliers. 

The corresponding predictive loading for the first component revealed that 

absorption peaks centred around 970 nm, 1250 nm and 1352 nm were mainly 

accounted for discriminating non-viable seeds from viable seeds (Figure 10B); 

while the Y-orthogonal loading plot showed a broad absorption band in 1300 – 

1900 nm that were uncorrelated to between-class variation. For test set 

samples, the computed two-class model assigned viable and non-viable classes 

with 100% accuracy (Figure 10C). As a whole, the model statistics shows that 

the two class model was an excellent model (Sensus Eriksson et al., 2006). 

 
Figure 10. Score plot for the first predictive (tp[1]) versus orthogonal (to[1]) components 

showing symmetrical separation of viable (green stars) and non-viable (blue dots) seeds (A); 

loading plot for the first predictive component (P1[p]) showing absorption bands correlating to 

seed classes (B), predicted class membership of non-viable and viable seeds in the test set by two-

class OPLS-DA (c); and a plot of Variable Influence on Projection, VIP, showing absorption 

bands that were relevant for discriminating the seed lot by viability class (D). 

By extracting irrelevant spectral variations that are not useful for class 

discrimination, the OPLS-DA modelling results in parsimonious models. 

Dimensional complexity is an important factor in the interpretation of 

multivariate analysis and parsimonious models with few dimensions 

(components) are often highly preferred (Trygg & Wold, 2002; Pinto et al., 

2012). However, the proportion of spectral variations that is uncorrelated with 
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class discrimination is larger than the predictive variation. This might be 

attributed to spectral redundancy. As the absorbance values were measured at 

0.5 nm wavelength interval, it is legitimate to expect a high degree of 

redundancy in the absorbance values at this scale of resolution. In addition, 

variations in size and moisture content among individual seeds induce path 

length difference and light scattering, which in turn are uncorrelated to class 

discrimination (Tigabu & Odén, 2004b). This is further evidenced from the Y-

orthogonal score plot where few samples from each class positioned far away 

from the bulk of the samples while the corresponding orthogonal loading plot 

showed a major absorption peak at 970 nm, which is attributed to water 

(Lestander & Odén, 2002). Thus, variation in moisture content among 

individual seeds could be a source of unwanted spectral variation that had no 

correlation with class discrimination. Nevertheless, NIR spectroscopy is highly 

sensitive in detecting subtle differences as low as 0.1% of the total 

concentration of the analyte (Osborne et al., 1993) while multivariate analysis 

is powerful in extracting such information from the spectra (Eriksson et al., 

2006).  

 

The VIP plot shows that absorbance in 780 – 1300 nm with a major peak 

centred around 970 nm, and a smaller peak at 1256 nm as well as a small bump 

at 1350 nm had a strong influence on the discrimination of filled-viable and 

non-viable seeds (VIP > 1; Figure 10D). The spectral region between 1414 nm 

and 1644 nm with a broad absorption band also accounted for class 

discrimination. Other regions of interest in the longer wavelength range 

appeared at 2080 nm that contributed well for class discrimination (VIP = 

0.81). The absorption peaks together with functional groups responsible for 

absorption and the tentative compounds are given in Table 2.  The absorption 

band in 780 – 1100 nm with a broad peak centred at 970 nm was positively 

correlated with petrified seeds. This region is characterized by O – H stretching 

second overtone where absorption spectra of aliphatic and aromatic hydroxyl 

groups as well as starch and water overlap (Osborne et al., 1993; Workman & 

Weyer, 2012). Lestander and Odén (2002) found the absorption peak at 970 

nm useful to detect moisture difference between filled-viable and dead-filled 

seeds of Scots pine. As petrified seeds dry slowly and maintain fairly high 

moisture content than empty seeds during drying, the origin of spectral 

differences between petrified and empty seeds could be attributed to 

divergence in moisture content between these seed lot fractions. 

 

For discriminating filled-viable seeds from empty and petrified seeds, the 

model utilized spectral information in the longer wavelength regions with 
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major peaks at 1200 nm, 1390 nm, 1706 nm, 1859 nm, 1878 nm and 1986 nm. 

The 1100 – 1300 nm region is characteristic of the second overtone of C – H 

stretching vibration and functional group responsible for absorption are methyl 

and methylene (Shenk et al., 2001; Workman & Weyer, 2012). It has been 

shown that the major absorption band in fat or oil is due to a long chain fatty 

acid moiety that gives rise to CH2 second overtone at 1200 nm; and the band 

near 1180 nm has been assigned as the second overtone of the fundamental C – 

H absorption of pure fatty acids containing cis double bonds, e.g. oleic acid, 

(Sato et al., 1991; Osborne et al., 1993). The 1300 – 1600 nm regions presents 

two peaks at 1320 nm and 1390 nm, which correspond to C – H combination 

and first overtone of N – H stretching vibration due to absorption by CH2 and 

protein moieties (Shenk et al., 2001).  Protein moieties could be the possible 

source of variation for discriminating filled-viable seeds from empty and 

petrified seeds in this region, as the absorption band in this region has been 

shown to play minor role for oil and fat classification (Hourant et al., 2000).  

Table 2. Absorption peaks together with functional groups responsible for absorption and the 

tentative compounds for discriminating L. sibirica seed according to their viability.  

Absorption peak 

(nm) 

Functional groups Tentative compound 

970 O – H aliphatic and aromatic hydroxyl groups, 

starch, water 

1180 C – H fatty acids 

1200 CH2 fatty acid 

1320 C– H , N– H protein 

1390 C– H , N– H protein 

1706 C – H methyl and methylene (linoleic and oleic 

acids, triolein, trilinolein, trilinolenin) 

1760 C – H methyl and methylene (linoleic and oleic 

acids, triolein, trilinolein, trilinolenin) 

1856 C – H methyl and methylene (linoleic and oleic 

acids, triolein, trilinolein, trilinolenin) 

1876 C – H methyl and methylene (linoleic and oleic 

acids, triolein, trilinolein, trilinolenin) 

1986 C = O , O – H , HOH protein, starch, water 

 

The 1600 – 1900 nm shows several bumps and peaks in the vicinity of 1706 

nm, 1760 nm, 1856 nm and 1876 nm. The region is characteristic of the first 

overtone of the C – H stretching vibration of methyl and methylene groups 

(Shenk et al., 2001). The absorption peaks at 1710 nm and 1725 nm correlates 

to linoleic and oleic acids, respectively as well as triolein in the vicinity of 

1725 nm, trilinolein near 1717 nm, and trilinolenin near 1712 nm (Sato et al., 

1991). The absorption bands observed in this study could, therefore, be 

correlated to the dominant fatty acids in L. sibirica seeds: linoleic, Δ5-olefinic, 

pinolenic and oleic acids, which account 42.66%, 30.8%, 30.57% and 16.67% 
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of the total seed fatty acids, respectively (Wolff et al., 1997). The 1850 – 2050 

nm region shows one absorption band, centred near 1986 nm that arises from C 

= O stretch second overtone, combination of O – H stretch and HOH 

deformation, as well as O – H bend second overtone. Several compounds, 

notably protein, starch and water, show characteristic absorption in this region 

(Shenk et al., 2001). The absorption band in this region presumably correlates 

more to water than to other compounds because viable seeds often retain more 

bound water than empty seeds. As a whole, the discriminant models utilized 

spectral difference attributed to seed moisture content, seed coat chemical 

compositions coupled with storage reserves as a basis to discriminate filled-

viable, empty and petrified seeds.  

4.2 Identification of hybrid larch seeds  

Both PLS-DA and O2PLS-DA models were developed using raw and pre-

treated data set in the Vis + NIR (400 – 2500 nm) and NIR (780 – 2500 nm) 

regions to distinguish hybrid larch seeds from pure parental seeds. The PLS-

DA models fitted to Vis + NIR spectra required 9 to 15 significant components 

(A) to describe 91% – 94% of the class variation (R
2
Y) in the calibration set, 

depending on the data set. The prediction power of the models according to 

cross-validation (Q
2

cv) ranged from 85% to 87%. For samples in the test set, 

the accuracy of predicted class membership for L × eurolepis was 100% across 

all data sets, except the 2nd derivative data set where one seed sample was 

rejected as a non-member. Similarly, the accuracy of predicted class 

membership for L. decidua seeds was 97% – 100%; and that of L. kaempferi 
was 95% – 97%. For PLS-DA models fitted to NIR region alone, the number 

of significant components to build the model was slightly lower than the 

models built using Vis + NIR region. However, the computed models still 

explained 86% – 94% of the class variation for the calibration set with 80% – 

87% prediction ability according to cross-validation. For samples in the 

prediction set, the classification accuracy of pure and hybrid larch seeds did not 

change much compared to the model built using Vis + NIR region, except the 

1st derivative data set that resulted in 13% less classification accuracy for L. 
kaempferi (cf. 84% in NIR and 97% in Vis + NIR).     

The O2PLS-DA models developed using the Vis + NIR had two predictive 

and 7 – 14 Y-orthogonal components, depending on the data set (e.g. A = 2 + 

10 for untreated data set). The predictive spectral variation (R
2
XP) accounted 

for 9% – 46% of the total spectral variation of the pure and hybrid seed classes 

while the Y-orthogonal spectral variation (R
2
Xo) constituted 47% – 82%, 

depending on the data set. The predictive spectral variations (R
2
XP), in turn, 

modelled more than 90% of the variation between pure and hybrid seed classes 

(R
2
Y) in the calibration set for all but raw data set, with 83% – 90% prediction 
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accuracy (Q
2
cv) according to cross validation. For models fitted using the NIR 

region alone, the two components were also required to build the models that 

described still 77% – 90% of the class variation with 74% – 88% classification 

accuracy according to cross-validation. The modelled class variation (R
2
Y) and 

the predictive ability of the model (Q
2

cv) were larger for pre-treated than 

untreated data sets, particularly for SNV-treated data set, irrespective of the 

wavelength region. As a whole, the model statistics showed that the NIR 

region alone contained substantial information that allowed hybrid larch seeds 

to be discriminated from pure parental larch seeds. For test set samples, the 

O2PLS-DA models computed using SNV-treated data sets consistently 

assigned L. decidua and L. kaempferi seeds in the prediction set to their 

respective classes with 100% accuracy in both Vis + NIR and NIR regions, 

while the classification accuracy for L × eurolepis seeds was 97% in the NIR 

region and 100% in Vis + NIR region (Figure 11). As a whole, the O2PLS-DA 

models were more superb in terms of dimensional complexity of the model as 

well as in goodness-of-fit and goodness-of-prediction than the PLS-DA 

models; and spectral pre-treatments slightly reduced the number of components 

needs to buildings, which could be attributed to the removal of scatter effect to 

some extent (Rinnan et al., 2009).  

 
Figure 11. The Class membership of L. decidua (A), L. × eurolepis (B) and L. kaempferi (C) 

seeds in the prediction set validated by O2PLS model developed using SNV-transformed data set 

according to their class. Note that the red dashed line is threshold for classification. 
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To get more insights into the modelling process, score and loading plots for 

O2PLS-DA model fitted on SNV-treated data set were further examined. The 

score plot (t[1] versus t[2]) showed a clear separation of L. decidua seed lot 

from the other two seed lots along the first predictive component, while L × 

eurolepis seed lot was clearly separated from the pure larch seed lots along the 

second component (Figure 12). Analysis of the corresponding predictive 

loading plot for the first component revealed that one sharp peak at 410 nm and 

four broad absorption bands in 1409 – 1630 nm, 1886 – 1996 nm, 2019 – 2190 

nm and 2230 – 2410 nm appeared to be important to discriminate L. decidua 

seed lot from the other seed lots. The loading plot for the second predictive 

component also showed one sharp peak at 460 nm and two broad absorption 

bands in 840 – 1190 nm and 1217 – 1620 nm that were mainly accounted for 

discriminating L × eurolepis seed lot from the pure parental seed lots, while an 

absorption peak at 638 nm was mainly accounted for discriminating L. 

kaempferi from L × eurolepis seed lot.  

 
Figure 12. The Score plot for the first two predictive components (t1 versus t2) of O2PLS-DA 

model built using SNV-transformed spectra, depicting clear-cut separation of seeds classes. 

The VIP plot also shows that absorption bands in 400 – 750 nm, with two 

major peaks centred around 460 nm and 638 nm and two shoulder peaks in the 

vicinity of 415 nm and 687 nm had a strong influence on the discrimination of 

pure and hybrid larch seeds (VIP > 1; Figure 13). In the NIR region, absorption 

bands in 1890 – 2201 nm and 2245 – 2500 nm, with peaks centred at 1929 nm, 

2098 nm, 2332 nm and 2490 nm also accounted for class discrimination. Other 

NIR regions of interest that helped improve class discrimination appeared in 

the 860 – 1380 nm, 1410 – 1505 nm and 2240 – 2388 nm (VIP = 0.81-1.0). 
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Figure 13. VIP plot for the O2PLS model built on SNV-treated data set in 400-2500 nm 

wavelength region. The threshold of significant contribution in model building is shown by red 

dashed line. 

Apparently, seeds of L. kaempferi appear to be more red-brownish than L. 

decidua and L. × eurolepis seeds, which in turn vary slightly in colour. As the 

seed coat and the megagametophyte (storage organ), accounting more than half 

of the total seed mass, are of maternal origin, the chemistry of the seed coat 

would presumably be influenced more by the genotype of the maternal than 

paternal parents. It should be noted that the maternal parent for the hybrid larch 

in the present study was L. decidua while the paternal parent was L. kaempferi. 

Many conifers exhibit genotypic variation in seed physical traits, such as 

surface structure of seeds (Tillman-Sutela et al., 1998), seed size and 

germinability (Mamo et al., 2006) as well as qualitative colour characteristics 

of the seed coat (Tillman-Sutela & Kauppi, 1995), thus it is legitimate to 

expect colour variation among seed lots investigated in the present study. This 

finding accords with previous studies that have demonstrated the efficacy of 

the visible region for classifying wheat kernels according to their colour (Wang 

et al., 1999) and identification of seed origin and parents of Scots pine (Tigabu 

et al., 2005). 

 

In the NIR region, absorption bands accounted for discriminating L × 

eurolepis seed lot from the pure parental seed lots appeared in 840 – 1190 nm 

and 1217 – 1620 nm.  The absorption bands in these regions are characteristic 

of the third overtone of C – H stretching vibration, combination of N – H 

second overtone stretching vibration and C – H stretch and deformation. 

Functional groups responsible for absorption in this region are mainly CH3, 

CH2, ArNH2 (aromatic amino acids) and NH2, which are common molecular 

moieties of fatty acids and proteins (Table 3; Osborne et al., 1993; Shenk et al., 

2001; Workman & Weyer, 2012). Thus, NIR spectroscopy has utilized 

differences in fatty acids and proteins as a basis for discriminating seeds of L × 

eurolepis from L. kaempferi and L. decidua. This divergence in seed storage 
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reserves between hybrid and pure parental (particularly L. kaempferi) seeds is 

expected because the contribution of the paternal parent (which is L. kaempferi 

in this study) to the total seed mass is much lower than that of the maternal 

parent. The embryo (a smaller fraction of the seed mass) is derived from both 

parents while more than half of the seed mass is of maternal origin. Maternal 

variation in seed storage reserves is also evident as reproductive allocation in 

plants is generally governed by the genetic constitution (see review, Bazzaz et 

al., 2000). Tigabu et al. (2005) have found maternal variation in storage 

reserves as the basis for identifying among maternal parents of Scots pine 

using NIR spectra. 

       

The absorption bands in 1409 – 1630 nm, 1886 – 1996 nm, 2019 – 2190 nm 

and 2230 – 2410 nm were highly relevant for discriminating L. decidua seeds 

from L × eurolepis and L. kaempferi seeds. The absorption peaks together with 

functional groups responsible for absorption and the tentative compounds are 

given in Table 3.  The 1409 – 1630 nm region of the NIR reflectance spectra 

presents two broad peaks at 1480 nm and 1550 nm, which corresponds to first 

overtone of O – H and N – H and combination band of C – H vibration of 

various functional groups; notably ROH, starch, H2O and protein moieties 

(Workman & Weyer, 2012). The absorption band in 1900 – 2000 nm with 

absorption peak centred at 1929 nm arises from C = O stretch second overtone, 

combination of O – H stretch and HOH deformation, and O – H bend second 

overtone. Molecular moieties of protein, starch and water show overlapping 

absorption peaks in this region (Shenk et al., 2001; Workman & Weyer, 2012). 

The absorption bands in 2019 – 2190 nm and 2230 – 2410 nm are 

characteristic of CH2 stretch-bend combinations as well as other vibrational 

modes of molecular bonds (Workman & Weyer, 2012). Several fatty acids, 

notably polyunsaturated fatty acids, in several oil crops have shown positive 

correlation to absorption bands in these regions (Osborne et al., 1993; Hourant 

et al., 2000). Tigabu and Oden (2003a) also found correlations between 

absorbance values in these spectral regions and major fatty acids as a basis for 

discrimination of viable and empty seeds of Pinus patula.  

 

Thus, it appears that NIR spectroscopy detected differences in the amount 

of reserve compounds, mainly lipids, and proteins, as well as seed moisture 

content to distinguish seeds of L. decidua from seeds of L × eurolepis and L. 

kaempferi. Fatty acids such as linoleic, Δ5-olefinic, pinolenic and oleic acids 

were the major composition in seeds of larch species that contributed to the 

discrimination of filled-viable, empty and insect-attacked seeds of three larch 

species in a previous study (Tigabu & Oden, 2004b). It should be noted that 



55 

lipids are the dominant reserve compounds in seeds of many conifers including 

those of larch; and the major fatty acids include linoleic, Δ5-olefinic, pinolenic 

and oleic acids that account for 43.1%, 30.6%, 27.4% and 18.8% of the total 

fatty acids, respectively in L. decidua seeds while linoleic acid accounts for 

45.5%, Δ5-olefinic acid for 28.9%, pinolenic acid for 25.8% and oleic acids for 

18.4% of the total fatty acids in seed lipids of L. kaempferi (Wolff  et al., 1997 

& 2001).  

Table 3. Absorption bands and peaks together with functional groups responsible for absorption 

and the tentative compounds accounted for identification of hybrid larch seeds 

Bands/peaks (nm) Functional groups Tentative compound 

840 – 1190 C – H , N – H fatty acids and proteins 

1217 – 1620 C – H , N – H fatty acids and proteins 

1480 O – H , N – H , C – H ROH, starch, H2O and protein 

1550 O – H , N – H , C – H ROH, starch, H2O and protein 

1929 C = O, O – H protein, starch and water 

2019 – 2190 CH2 fatty acids 

2230 – 2410 CH2 fatty acids 

4.3 Discrimination between two birch species and their families  

OPLS-DA models were developed to distinguish between B. pubescens and B. 

pendula based on Vis + NIR, visible and NIR spectra of single seed. The 

model developed using the Vis + NIR region had one predictive and 10 Y-

orthogonal components (A = 1 + 10). The total spectral variation described by 

the model was 97.2%; of which the predictive spectral variation (R
2
XP) 

accounted for 16.8% and the spectral variation uncorrelated to the classes 

(R
2
Xo) constituted 80.3%. This small proportion of predictive spectral variation 

modelled 93.6% of the variation between species (R
2
Y) with 91.9% predictive 

power (Q
2
cv) according to cross validation. When the model was fitted on 

either visible or NIR spectra alone, both the proportion of modelled variation 

between species and the predictive power according to cross-validation were 

decreased, but still the models explained 75.9% - 84.9% of the variation 

between species.  

 

The score and loading plots of OPLS-DA model fitted on Vis + NIR 

spectral data were examined to get insights into the modelling process and to 

understand which phenomena were irrelevant for distinguishing between B. 

pendula and B. pubescens (Figure 14). The score plot for the first predictive 

and orthogonal components (tp[1] versus to[1]) showed symmetrical separation 

of B. pubescens and B. pendula in the calibration set (X-axis) while the 

orthogonal scores revealed within species variation (Y-axis), particularly vivid 
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for B. pubescens (Figure 14A). There were few samples of B. pubescens that 

fell outside the 95% confidence ellipse according to Hotelling’s T2 test (a 

multivariate generalization of Student’s t-test), but these samples were 

moderate outliers and excluding them from the calibration set did not improve 

the model. The corresponding predictive loading plot (Figure 14B) revealed 

that B. pendula seeds had high absorbance values in the visible region with 

absorption maxima at 465 nm while B. pubescens seeds had high absorbance 

values in both visible and NIR regions with shoulder peaks at 643 nm, 1410 

nm, 1700 nm, 1895 nm, 2045 nm and 2250 nm. The orthogonal loading plot 

showed one major absorption maxima at 690 nm and several shoulder peaks in 

both visible and NIR regions that were irrelevant for the classification of birch 

species (Figure 14C). Note that the narrow peak at 1100 nm was due to a shift 

in the detection system from Silicon-detector in 780 – 1100 nm to InGaAs-

detector in 1100 – 2500 nm.  

 

For samples in the test set, the OPLS-DA model fitted on Vis + NIR spectra 

assigned B. pubescens and B. pendula to their respective classes except for one 

B. pendula sample that was misclassified as B. pubescens (Figure 14D). The 

overall prediction accuracy of class membership was 100% for B. pubescens 

and 99% for B. pendula. Similarly, the discriminant model developed using the 

visible region alone resulted in 99% classification accuracy for both birch 

species (Figure 14E), while the model developed in the NIR region alone 

distinguished B. pubescens and B. pendula  with 98% and 94% accuracy, 

respectively (Figure 14F). 

 

Similarly discriminant models were fitted on Vis + NIR spectra to 

distinguish among three families of each birch species; and the computed 

models described 83% of the variation among B. pendula families (R
2
Y) with 

80.6% predictive power (Q
2
cv) according to cross validation using 52.3% of the 

spectral variation. The model fitted on visible spectra alone had slightly lower 

explained variation among B. pendula families and the predictive power while 

the model fitted on NIR spectral alone had slightly higher the explained 

variation and the predictive power of the model than full spectra model. For B. 

pubescens, the modelled variation among families was 93.7% and the 

predictive power of the model was 91% for the Vis + NIR region, but these 

values decreased slightly when the model was fitted on either visible or NIR 

region alone. As a whole, the model statistics highlight the feasibility of Vis + 

NIR spectroscopy for identifying seeds by genotypes. 
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Figure 14. Left panel is a score plot for the first predictive (tp[1]) and orthogonal (to[1]) 

components of OPLS-DA model developed in Vis+ NIR region, depicting clear-cut separation of 

two Betula species (A). Note that the ellipse shows 95% confidence interval; loading plots for the 

first predictive component (B) and orthogonal component (C), showing relevant and irrelevant 

absorption bands for distinguishing the birch species, respectively; and right panel is plots of class 

membership of test set samples predicted by OPLS-DA models fitted on Vis + NIR (D), visible 

(E) and NIR (F) regions. Note that the red dashed line is threshold for classification (Ypred > 

0.5). 

The score plot for the first two predictive components (tp[1] versus tp[2]) 

shows that B. pendula families formed clear grouping with few overlaps 

(Figure 15A). The visible region with a dominant peak at 690 nm and several 

shoulder peaks centred at 459 nm, 598 nm, 646 nm, and 665 nm in both the 

first (Figure 15B) and second (Figure 15C) components accounted for 

distinguishing B. pendula families. In the NIR region, small shoulder peaks at 

1898 nm, 2062 nm, 2243 nm, 2318 nm and 2455 nm contributed to the 

discrimination of B. pendula families. For B. pubescens families, the grouping 

was very distinct along the first two predictive components (Figure 15D). 

Absorption maxima that contributed for discriminating families along the first 

component appeared at 464 nm, 646 nm, and 692 nm in the visible region, and 

at 1898 nm (Figure 15E). Along the second predictive component, the 

dominant absorption peak accounted for discrimination of families appeared at 
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1898 nm (Figure 15F). Other small absorption peaks that contributed to 

discriminate B. pubescens families appeared at 466 nm, 555 nm, 688 nm, 1407 

nm, 2064 nm and 2238 nm. 

 
Figure 15. Left panel is a score plot for the first and second predictive components (tp1 versus 

tp2) of OPLS-DA model fitted on Vis + NIR spectra for distinguishing among B. pendula 

families (A), loading plots for the first (B) and second (C) predictive components, showing 

absorption peaks accounted for discriminating B. pendula families. Right panel is a score plot for 

the first and second predictive components (tp1 versus tp2) of OPLS-DA model fitted on Vis + 

NIR spectra for distinguishing among B. pubescens families (D), loading plots for the first (E) and 

second (F) predictive components, showing absorption peaks accounted for discriminating B. 

pubescens families. 

D) Scores 
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Figure 16. Class membership of samples in the test set predicted by OPLS-DA models fitted on 

Vis + NIR region for discriminating among families of B. pendula (left column) and B. pubescens 

(right column). Note that the red dashed line is threshold for classification (Ypred > 0.5). 

For samples in the test set, the overall classification accuracy of B. pendula 

families by OPLS-DA model fitted on Vis + NIR spectra was 93%. For half-

sib families (S21H0930014 and S21H0930019) with the same paternal parent 

(F01E9302), only two test set samples were misclassified as member of the 

other class while four samples were rejected as non-member of the respective 

class (Figure 16). When the model was fitted on visible spectra alone, the 

overall classification accuracy decreased to 89%, but the discriminant model 

fitted on NIR spectra alone resulted in 98% classification accuracy. For B. 

pubescens families, the discriminant models developed using the Vis + NIR 

spectra resulted in 98% classification accuracy of samples in the test set 

(Figure 16). There was no misclassification of half-sib families (S21H0030013 

and S21H0030017) that had the same paternal parent (S21K913009). The 

discriminant model fitted on visible spectra alone also resulted in similarly 

high classification accuracy. The model developed using the NIR region alone 
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had slightly lower classification accuracy, particularly for one family, than the 

other models, albeit overall high classification accuracy. 

 

Analysis of VIP plot revealed that the absorption band in 400 – 750 nm, 

with two major absorption peaks centred at 465 nm and 643 nm and two 

shoulder peaks at 422 nm and 613 nm were highly relevant for distinguishing 

B. pendula and B. pubescens (VIP > 1; Figure 17A). In the NIR region, 

absorption peaks centred at 1697 nm, 1895 nm and 2247 nm were highly 

relevant for discrimination of the two birch species. Other absorption peaks in 

the NIR region which were relevant for species discrimination appeared at 

1407 nm, 1730 nm, and 2045 nm (VIP = 0.8 – 1.0). For discriminating B. 

pendula families, the most relevant absorption peaks in the visible region were 

observed at 482 nm, 664 nm and 689 nm while peaks at 1898 nm, 2242 nm and 

2317 nm were highly relevant for discriminating families in the NIR region 

(Figure 17B). Other peaks in the NIR region that contributed to discrimination 

of families appeared at 1413 nm, 1697 nm, 1943 nm, 2060 nm, 2140 nm, 2285 

nm and 2468 nm. For B. pubescens, absorption peaks accounted for 

discrimination of families appeared at 464 nm, 643 nm and 690 nm in the 

visible region and 1407 nm, 1897 nm, 1950 nm and 2239 nm in the NIR region 

(Figure 17C). Other absorption peaks that contributed to family-discrimination 

of this species were also found at 595 nm, 2156 nm, 2307 nm and 2458 nm. 

 

From the loading plot, it can be seen that the absorption peak at 465 nm 

correlates positively with B. pendula whereas the peak at 643 nm correlates 

positively with B. pubescens. Apparently, seeds of B. pubescens appear to be 

more red-brownish than B. pendula seeds, which in turn vary among families 

within each species. This finding is consistent with previous studies that have 

demonstrated the usefulness of reflectance spectra in the visible region for 

identification of seed origin and parents of Scots pine (Tigabu et al., 2005) as 

well as for seeds of hybrid larch and its’ parental species (Farhadi et al., 2015). 

In NIR region, absorption bands in 1350 – 1450 nm, 1660 – 1740 nm, 1800 – 

1930 nm and 2000 – 2270 nm were highly relevant for discriminating B. 

pendula from B. pubescens, and the spectral signature was dominantly 

emanated from B. pubescens seeds as evidenced from the positive loadings in 

these regions. 
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Figure 17. Variable Influence on Projection (VIP) plot depicting absorption bands accounted for 

distinguishing B. pendula from B. pubescens (panel A), B. pendula (panel B) and B. pubescens 

(panel C) families by OPLS-DA models developed using the Vis + NIR spectral region. 

The absorption maxima that were accounted for discriminating families 

within species had also a similar pattern. It appears that the absorption peak at 

1897 nm had the highest influence on the discrimination of between- and 

within species in the NIR region (Figure 17). Table 4 summarizes the 

absorption peaks together with functional groups responsible for absorption 

and the tentative compounds. The absorption peaks at 1892 nm and 1900 nm 

are characterized by O – H hydrogen bonding between water and alcohol and 

second overtone C = O stretch and C = OOH, respectively (Workman & 

Weyer, 2012). The 1350 – 1450 nm region of the NIR reflectance spectra 

presents a peak at 1407 nm, which corresponds to first overtone of O – H and 

combination band of C – H vibration of various functional groups; notably 

ROH, and hydrocarbons (Workman & Weyer, 2012). The absorption band in 

1660 – 1740 nm with absorption peaks centred at 1697 nm and 1730 nm arises 
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mainly from C – O  stretch first overtone, and the functional group responsible 

for absorption is methylene. 

 

The absorption band in 1900 – 2000 nm with absorption peak centred at 

1943 nm (for B. pendula families) and 1950 nm (for B. pubescens families) 

arises from combination of O – H stretch and HOH deformation, and O – H 

bend second overtone and C = O stretch second overtone. Molecular moieties 

of alcohol, esters and acids show overlapping absorption peaks in this region 

(Shenk et al., 2001; Workman & Weyer, 2012). The absorption bands in 2019 

– 2190 nm and 2230 – 2410 nm are characteristic of CH2 stretch-bend 

combinations as well as N – H combination bands and C – H stretch and CH2 

deformation (Workman & Weyer, 2012). In these regions, several compounds, 

such as polysaccharides, proteins and lipids, exhibit characteristic absorption 

peaks. Fatty acids in several oil crops have also shown positive correlation to 

absorption bands in these regions (Osborne et al., 1993; Hourant et al., 2000). 

Farhadi et al. (2015) also found these spectral regions useful for discrimination 

of pure and hybrid larch seeds. Thus, NIR spectroscopy appears to have 

detected differences in chemical compounds, probably polysaccharides, 

proteins and lipids, of seeds between the two species and their families as a 

basis for distinguishing between- and within-birch species.  

Table 4. Absorption bands and peaks together with functional groups responsible for absorption 

and the tentative compounds that were accounted for differentiation of the two birch species and 

their families 

Bands/peaks 

(nm) 

Functional groups Tentative compound 

1892 O – H , C = O , C = OOH  water, alcohol 

1900 O – H , C = O , C = OOH water, alcohol 

1407 O – H , C – H ROH, hydrocarbons 

1697 C – O methylene 

1730 C – O methylene 

1943 O – H , HOH , C = O alcohol, esters and acids 

1950 O – H , HOH , C = O alcohol, esters and acids 

2019 – 2190 CH2 , N – H , C – H polysaccharides, proteins and lipids 

2230 – 2410 CH2 , N – H , C – H polysaccharides, proteins and lipids 

4.4 Authentication of putative origin of P. abies seed lots 

PCA models were fitted on SNV-transformed NIR reflectance spectra to 

identify the origin of P. abies seed lots. The number of significant components 

to build the PCA models was seven for Poland and Finland and six for 

Sweden, Norway and Lithuania each. Among the Nordic seed lots, the PCA 

models differentiated the Swedish and Finish seed lots with 86% and 76% 
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accuracy, respectively (Figure 18A) and the Norwegian and Finish seed lots 

with 82% and 76% accuracy respectively (Figure 18B). However, the 

classification accuracy for Swedish (26%) versus Norwegian (44%) seed lots 

was low due to a large overlap between Swedish (60%) and Norwegian (38%) 

seed lots (Figure 18C). While the Swedish and Polish seed lots were 

differentiated with 86% and 70% accuracy, respectively (Figure 18D), the 

classification accuracy for Swedish (30%) versus Lithuanian (54%) seed lots 

was low, and the proportion of test samples rejected by the PCA models as 

non-member was 20% for Swedish and 32% for Lithuanian seed lots (Figure 

18E).  

 

The PCA models clearly differentiated between Finish and Lithuanian seed 

lots with 76%  and 72% classification accuracy (Figure 18F) and between 

Finnish and Polish seed lots with 70% and 66% accuracies, respectively 

(Figure 18G). The Norwegian and Lithuanian seed lots were correctly 

identified with 78% and 72% accuracy, respectively (Figure 18H); while seed 

lots of Norwegian and Polish origins were correctly identified with 82% and 

66%, respectively (Figure 18I). The two southern seed origins, Poland and 

Lithuania, were also clearly differentiated (Figure 18J). As a whole, the 

SIMCA analysis showed that there was considerable overlap between seed lots 

of Swedish (60%) and Norwegian (38%), between Swedish (50%) and 

Lithuanian (16%) origins and to some extent between Norwegian (20%) and 

Lithuanian (4%) origins.  

 

To improve the classification accuracy of seed lots by origin, a O2PLS-DA 

model fitted on raw NIR reflectance spectra to simultaneously discriminate the 

five origins of P. abies seed lots; and the computed model had four predictive 

and six Y-orthogonal components to summarize 36.4% of the predictive 

spectral variation (R
2
XP) and 63.6% of the Y-orthogonal spectral variation 

(R
2
Xo) that had no correlation to differences among origins. The predictive 

spectral variations, in turn, modelled 52.8% of the variation between origins 

(R
2
Y) in the calibration set with 50.4% predictive ability of the fitted model 

(Q
2

cv) according to cross validation. For test set samples, the predicted class 

membership was low for Swedish (32%), moderate for Norwegian (50%), and 

Polish (52%) and high for Finnish (86%) and Lithuanian (78%) seed lots. 

While seeds of Finnish origin were not misclassified as member of other 

origins, the proportions of test set samples that was misclassified as member of 

another class were 4%, 8%, 10% and 12% for Lithuanian, Swedish, Polish and 

Norwegian seed lots, respectively, which in turn were lower than the 
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proportions of samples in the test set that were rejected by the five-class 

O2PLS-DA model as non-member of any class. 

 
Figure 18. Classification of P. abies seeds in the test set with respect to their origins using 

SIMCA. The dashed lines represent the 95% critical distance of the PCA model for each seed 

origin. 

To further improve the classification of seed lots by origin two-class OPLS-

DA models were developed for pairs of seed origins; and both the modelled 

variation between seed origins (R
2
Y) and predictive ability of the fitted models 

according to cross validation (Q
2
cv) were improved substantially (more than 
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75%) compared with the five-class O2PLS-DA model. The score plot for the 

first predictive and orthogonal component (tp[1] versus to[1]) showed 

symmetrical separation of paired origins along the predictive component (x-

axis, Figure 19), except the Swedish – Lithuanian (Figure 19C), Norwegian – 

Lithuanian (Figure 19E) and Finnish – Polish (Figure 19G) origins where 

slight overlap between seed lots were observed. The first orthogonal 

component (y-axis, Figure 19) simply showed within class variability. Some 

samples fell outside the 95% confidence ellipse according to Hotelling’s T2 

test, but these samples were moderate outliers and excluding them from the 

calibration set did not improve the model. For test set samples, 100% correct 

classification was obtained for Swedish versus Finnish (Figure 20A), Finnish 

versus Norwegian (Figure 20B), Finnish versus Lithuanian (Figure 20C) and 

Polish versus Lithuanian (Figure 20D) seed lots. The classification accuracy 

for the Swedish versus Norwegian seed lots was 98% with a misclassification 

of one sample from each origin (Figure 20E). Although the Swedish samples 

were correctly classified, there was a misclassification of one Polish (Figure 

20F) and seven Lithuanian (Figure 20G) samples as Swedish. Similarly eight 

Polish samples were misclassified as Finish (Figure 20H); two Norwegian 

samples as Polish (Figure 20I) and two Lithuanian samples as Norwegian 

(Figure 20J). As a whole, the overall classification accuracy of seed origins 

ranged from 92% to 100%. 

 

The success of identifying seed origins by the SIMCA modelling approach 

was generally good (66% – 86%); except the large overlap between Swedish 

and Norwegian, and Swedish and Lithuanian seed lots. In addition, the PCA 

models rejected several test set samples as outlier, particularly for the Swedish 

and Lithuanian seed lots. Basically, PCA finds the directions in multivariate 

space that represent the largest sources of variation (the so called principal 

components); however this maximum variance direction does not always 

coincide with the maximum separation directions among classes (Eriksson et 

al., 2006). Even the O2PLS-DA model developed to simultaneously identify 

the five origins did not improve the classification accuracy of seed origins. 

According to Eriksson et al. (2006), the discriminant analysis does not work 

for classes that are not tight, which was the case in this study as observed in the 

O2PLS-DA score plot (data not shown). Individual seeds within a given seed 

lot often vary in size, which in turn induces path length difference and create 

marked differences in spectral signature (Tigabu & Odén, 2004a & b). When 

two-class OPLS-DA models were fitted to the raw spectral data for pair-wise 

identification of seed origins, the modelled class variation (R
2
Y) and predictive 

ability of the fitted models according to cross validation (Q
2

cv) were improved 
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substantially, so also the overall classification accuracy of test set samples. 

This indicates that the paired origins have tighter classes than all origins 

considered simultaneously, and hence the calculated two-class OPLS-DA 

models were more efficient to describe the variation between origins than the 

five-class discriminant model. 

 
Figure 19. score plots for the first predictive (tp[1]) and orthogonal (to[1]) components of OPLS-

DA model developed for pair-wise identification of seed origins, depicting symmetrical 

separation of paired origins. 
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Figure 20. Class membership of samples in the test set predicted by OPLS-DA models fitted on 

NIR spectra of paired origins. Note that the red dashed line is threshold for classification (Ypred 

> 0.5). 

VIP plots were made to examine absorption bands that were accounted to 

identify the origin of P. abies seed lots (Figure 21). Absorption bands with 

peaks centred at 832 nm, 1276 nm, 1676 nm and 1931 nm were highly relevant 

(VIP ≥ 0.7) for identification of Swedish versus Finnish seed lots (Figure 21A). 

For identification of Finnish versus Norwegian seed lots, the absorption band 

with one major peak at 908 nm and a small shoulder peak at 1714 nm were 

highly relevant (Figure 21B), whereas one major peak at 948 nm and several 

smaller peaks at 1394 nm, 1713 nm, 1862 nm contributed to the identification 

of Swedish versus Norwegian seed lots (Figure 21C). Absorption peaks 



68 

accounted for distinguishing between Swedish and Polish seed lots appeared at 

1408 nm and 1927 nm (Figure 21D), between Swedish and Lithuanian at 843 

nm, 1279 nm and 1706 nm (Figure 21E), between Finnish and Lithuanian at 

839 nm, 1276 nm, 1712 nm (Figure 21F), between Finnish and Polish at 1377 

nm, 1709 nm and 1864 nm (Figure 21G), between Norwegian and Lithuanian 

at 1931 nm (Figure 21H), between Norwegian and Polish at 1925 nm (Figure 

21I), and between Polish and Lithuanian at 1470 nm, 1927 nm and 2427 nm 

(Figure 21J). 

 

Absorption peaks together with functional groups responsible for absorption 

and the tentative compounds accounted for identifying seed origins are 

summarizes in Table 5. Absorption maxima in the shorter NIR region (780 – 

1100 nm) that appeared to have a strong influence on the identification of 

origins were found at 832 nm, 839 nm, 843 nm and 948 nm. These peaks are 

characteristic of the third overtone of C – H stretching vibration and second 

overtone N – H and C – H stretching vibrations (Workman & Weyer, 2012). 

Molecules responsible for absorption in this region are lipid and protein 

moieties like CH3, CH2, ArNH2 (aromatic amino acids) and NH2. A broad 

shoulder peak centred at 1276 nm was also observed, which is characteristic of 

the second overtone of C – H stretching vibration of various functional group, 

such as –CH2 ,CH3, –CH ═ CH– (Shenk et al., 2001; Workman & Weyer, 

2012). According to Osborne et al. (1993), long chain fatty acid moiety gives 

rise to CH2 second overtone at 1200 nm. The two very weak shoulder peaks 

around 1394 nm and 1408 nm correspond to C – H combination and first 

overtone of N – H stretching vibration due to absorption by CH2 and protein 

moieties (Shenk et al., 2001; Workman & Weyer, 2012). The absorption band 

in 1600 – 1800 nm presents two weak peaks in the vicinity of 1676 nm and 

1710, which are characteristic of the first overtone of the C – H stretching 

vibration of methyl and methylene groups. Previous studies have shown that 

the absorption bands at 1710 and 1725 nm correlate with linoleic and oleic 

acids (Hourant et al., 2000; Kim et al., 2007; Ribeiro et al., 2013) and 

implicated as a basis for identification of origin Scots pine seeds within 

Sweden (Tigabu et al., 2005). 

 

The dominant peak at 1931 nm arises from O – H stretch/ HOH 

deformation combination and O – H bend second overtone and C = O stretch 

second overtone due to absorption by several functional groups, notably H2O, 

starch and –CO2R  (Osborne et al., 1993; Shenk et al., 2001; Workman & 

Weyer, 2012). Pure water has absorption peaks at 1940 nm due to O – H 

stretch first overtone and combination bands involving O – H stretch and O – 
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H bend although these bands are subject to shift as a result of variation in 

temperature and in hydrogen bonding when water is in a solvent or solute 

admixture (Osborne et al., 1993). The dominant absorption peak at 1931 nm 

found in this study would likely be correlated more to seed moisture content 

than starch, as starch grains are not detectable in dry seeds of P. abies although 

they are abundant in plastids before desiccation (Hakman, 1993). 

 
Figure 21. Variable Influence on Projection (VIP) plots depicting absorption bands accounted for 

identification of seed origins by pair-wise OPLS-DA models. Red dashed line shows the 

threshold of significant contribution in model building.  
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As a whole, it appears that NIR spectroscopy has detected the subtle 

differences in chemical compounds, probably seed storage reserves, like lipids 

and proteins, as well as moisture content of seeds from different origins. It 

should be noted that lipids are the dominant reserve compounds in seeds of 

many conifers including P. abies seeds, which vary between 21.3% and 31.6% 

with higher amount towards the northern origin (Tigabu et al., 2004). Previous 

studies have also shown that oleic, linoleic and 5,9,12-octadecatrienoic acids 

are the most abundant fatty acids in the triacylglycerol of P. abies seeds 

(Tillman-Sutela et al., 1995); and Δ5 unsaturated polymethylene interrupted 

fatty acids (UPIFAs) constitute 27% of P. abies seeds (Lísa et al., 2007). 

Furthermore, the total protein content of P. abies seeds varies between 15.7% 

and 18.7%; being significantly higher for Finnish than Swedish origin (Tigabu 

et al., 2004).  

Table 5. Absorption peaks together with functional groups responsible for absorption and the 

tentative compounds accounted for identifying putative origin of P. abies seed lots 

Absorption peak 

(nm) 

Functional groups Tentative compound 

832 C – H , N – H lipid and protein 

839 C – H , N – H lipid and protein 

843 C – H , N – H lipid and protein 

948 C – H , N – H lipid and protein 

1276 C – H  fatty acid 

1394 C – H , N – H CH2 and protein 

1408 C – H , N – H  CH2 and protein 

1676 C – H methyl and methylene  

1710 C – H methyl and methylene  

1931 O – H  water 
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5 Conclusion and Recommendations 

The studies presented in this thesis provide evidence about the feasibility of 

NIR spectroscopy as a robust technique for sorting seed lots according to their 

viability and certification of seed lots. Based on the findings, the following 

conclusion can be made: 1) NIR spectroscopy discriminates filled-viable and 

non-viable seeds of Larix sibirica with 100% accuracy; 2) Vis + NIR 

spectroscopy differentiates hybrid and pure parental larch seeds with 100% 

accuracy; thus the result demonstrates the feasibility of Vis + NIR 

spectroscopy as a powerful non-destructive method for certification  of hybrid 

larch seeds, 3) Multivariate modelling of Vis + NIR spectra of single seeds 

distinguishes B. pubescens from B. pendula with 100% and 99% accuracy, 

respectively; as well as families with B. pendula and B. pubescens with 93% 

and 98% accuracies, respectively; demonstrating the feasibility of NIR 

spectroscopy as taxonomic tool for classification of species that have 

morphological resemblance as well as seed verification, and 4) NIR 

spectroscopy correctly classified Picea abies seed lots according to their 

origins with 92% - 100% accuracy; attesting the potential of the technique for 

monitoring putative seed origin and seed certification. It appears that Vis + 

NIR spectroscopy has detected differences in seed colour and chemical 

compounds, probably reserve compounds like polysaccharides, lipids and 

proteins as well as moisture content differences, as a basis for characterizing 

the various seed fractions investigated in this thesis.  

 

The power of the NIR spectroscopy heavily depends on the data analysis 

techniques. In this thesis, SIMCA, PLS-DA and OPLS-DA modelling 

approaches were used for developing classification models. The OPLS-DA 

modelling approach appears to be superb in the development of parsimonious 

models with few dimensions as well as in providing additional information that 

allow within-class variation to be explained.  
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From practical point of view, NIR spectroscopy can be used as a rapid 

diagnostic tool to estimate the viability of seed crop and guide decisions during 

seed collection. It can also offer a unique opportunity for seed orchard 

managers to rapidly estimate the hybrid seed yield from open pollinated mixed 

species seed orchards. In addition, breeders can benefit from use of the NIR 

technique to assess the efficiency of artificial pollination in seed orchard 

management research. Apart from its taxonomic importance, NIR spectroscopy 

can be used as a research tool to rapidly identify distinct elite families from 

natural stands for future breeding works. The possibility of tracing the origin of 

seed lots by NIR spectroscopy reduces growth anomalies in future tree crops; 

thereby boosting the confidence of forest owners. In addition, with known 

genotypes and by producing homogenous products, genetic diversity of seed 

orchards is easily manageable and can also be maintained (McKeand et al., 

2003). The regulatory authorities can also adopt this method to monitor seed 

transactions. Thus, further research is recommended to expand the calibration 

database by testing several seed lots, species and hybrids. Further study is also 

recommended to standardize the technique for routine seed testing purpose, as 

it has the potential to replace some of the existing methods, such as X- ray 

analysis, cutting and biochemical tests of viability.    

 

From commercial point of view, non-destructive whole seed NIR analysis is 

more attractive from perspectives of cost per seed and non-invasiveness; 

thereby enhancing efficiency in bulk seed handling. Today, on-line sorting 

system based on NIR spectroscopy for tree seed lots does not exist. For cereals,  

Near Infrared Transmittance (NIT)-based technique is available for sorting 

wheat, durum wheat and barley according to protein contents, hardness, 

virtuousness, pearling yield, vigour/viability, and fusarium-infected kernel with 

substantially high throughput, 1000 kernels per minute (IQ SEED SORTER,  

www.bomill.com). Thus, concerted efforts should be made to scale-up the 

technique to on-line sorting system for large-scale tree seed handling 

operations.  

 

http://www.bomill.com/
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