Home About Browse Search
Svenska


Data assimilation in forest inventory, first empirical results using ALS data

Nyström, Mattias and Lindgren, Nils and Wallerman, Jörgen and Grafström, Anton and Muszta, Anders and Nyström, Kenneth and Ståhl, Göran and Olsson, Håkan (2015). Data assimilation in forest inventory, first empirical results using ALS data. I/In: SilviLaser 2015, 28 - 30 September 2015, La Grand Motte, France.
[Conference Paper]

[img]
Preview
PDF (Published with kind permission from Irstea France) - Published Version
270kB

Abstract

A first data assimilation case study using a time series of ALS for updating forest stand data is presented. Forest stand data are predicted from each ALS acquisition. Kalman filtering and growth models are then used to combine each new ALS based prediction with forecasts from the previous data acquisition.

Authors/Creators:Nyström, Mattias and Lindgren, Nils and Wallerman, Jörgen and Grafström, Anton and Muszta, Anders and Nyström, Kenneth and Ståhl, Göran and Olsson, Håkan
Editors:Durrieu, Sylvie and Vega, Cédric
Title:Data assimilation in forest inventory, first empirical results using ALS data
Year of publishing :2015
Page range:174-176
Number of Pages:3
Place of Publication:La Grand Motte, France
Publisher:Irstea-UMR TETIS, IGN-LIF, Société Française de Photogrammétrie et de Télédétection (SFPT)
Associated Programs and Other Stakeholders:SLU - Environmental assessment > Programme Forest
Language:English
Publication Type:Conference Paper (Paper)
Refereed:Yes
Article category:Scientific peer reviewed
Version:Published version
Full Text Status:Public
Subjects:(A) Swedish standard research categories 2011 > 2 Engineering and Technology > 207 Environmental Engineering > Remote Sensing
(A) Swedish standard research categories 2011 > 4 Agricultural Sciences > 401 Agricultural, Forestry and Fisheries > Forest Science
Agrovoc terms:forest inventories, remote sensing
Keywords:data assimilation, ALS, LiDAR, forest inventory
URN:NBN:urn:nbn:se:slu:epsilon-e-3651
Permanent URL:
http://urn.kb.se/resolve?urn=urn:nbn:se:slu:epsilon-e-3651
Related URLs:
ID Code:13007
Faculty:S - Faculty of Forest Sciences
Department:(S) > Dept. of Forest Resource Management
(NL, NJ) > Dept. of Forest Resource Management
Deposited By: SLUpub Connector
Deposited On:09 Sep 2016 08:37
Metadata Last Modified:10 Sep 2016 16:51

Repository Staff Only: item control page

Downloads

Downloads per year (since September 2012)

View more statistics

Downloads
Hits