

This is an author produced version of a paper published in Chinese Journal of Chemical Engineering.

This paper has been peer-reviewed but may not include the final publisher proof-corrections or pagination.

Citation for the published paper:

Guotao Sun, Diogo de Sacadura Rodrigues, Anders Thygesen, Geoffrey Daniel, Dinesh Fernando, Anne S. Meyer. (2016) Inocula selection in microbial fuel cells based on anodic biofilmabundance of Geobacter sulfurreducens. *Chinese Journal of Chemical Engineering*. Volume: 24, pp. 379-387. http://dx.doi.org/10.1016/j.cjche.2015.11.002.

Access to the published version may require journal subscription. Published with permission from: Elsevier.

Standard set statement from the publisher: © Elsevier, 2016 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Epsilon Open Archive http://epsilon.slu.se

2 3 4 5	Inocula selection in microbial fuel cells based on anodic biofilm abundance of <i>Geobacter sulfurreducens</i>
6	Guotao Sun (孙国涛) ¹ , Diogo Rodrigues ¹ , Anders Thygesen ^{1#} , Geoffrey Daniel ² ,
7	Dinesh Fernando ² , Anne S. Meyer ¹
8	
9	¹ Center for BioProcess Engineering, Department of Chemical and Biochemical
10	Engineering, Technical University of Denmark, Søltofts Plads 229, DK-2800 Kgs.
11	Lyngby, Denmark
12	
13	² Department of Forest Products/Wood Science. Swedish University of Agricultural
14	Science. SE-75007 Uppsala, Sweden.
15	
16	#Corresponding author: address as above. Telephone no. 0045 21326303, E-mail:
17	athy@kt.dtu.dk
18	
19	
20	Submission: March 8, 2015, Revision submitted: July 13, 2015.

21 Abstract

22 Microbial fuel cells (MFCs) rely on microbial conversion of organic substrates to 23 electricity. The optimal performance depends on the establishment of a microbial 24 community rich in electrogenic bacteria. Usually this microbial community is 25 established from inoculation of the MFC anode chamber with naturally occurring mixed 26 inocula. In this study, the electrochemical performance of MFCs and microbial 27 community evolution were evaluated for three inocula including domestic wastewater 28 (DW), lake sediment (LS) and biogas sludge (BS) with varying substrate loading (L_{sub}) 29 and external resistance (Rext) on the MFC. The electrogenic bacterium Geobacter 30 sulfurreducens was identified in all inocula and its abundance during MFC operation 31 was positively linked to the MFC performance. The LS inoculated MFCs showed 32 highest abundance (18 \pm 1%) of G. sulfurreducens, maximum current density (I_{max} = 690 33 \pm 30 mA·m⁻²) and coulombic efficiency (CE = 29 \pm 1%) with acetate as the substrate. I_{max} and CE increased to $1780 \pm 30 \text{ mA} \cdot \text{m}^{-2}$ and $58 \pm 1\%$, respectively, after decreasing 34 35 the R_{ext} from 1000 Ω to 200 Ω , which also correlated to a higher abundance of G. 36 sulfurreducens ($21 \pm 0.7\%$) on the MFC anodic biofilm. The data obtained contribute to 37 understanding the microbial community response to L_{sub} and R_{ext} for optimizing 38 electricity generation in MFCs. 39

- 40 Key words Lake sediment; coulombic efficiency; Denaturing gradient gel
- 41 electrophoresis; *Geobacter sulfurreducens*; anode polarisation resistance.

43 **1 Introduction**

44 A microbial fuel cell (MFC) encompasses anode and cathode reactions to drive 45 redox processes that result in production of electricity. The core principles of the 46 electricity generation are similar to those in chemical fuel cells, but in MFCs, the 47 reactions rely on bacterial metabolism based on a microbial biofilm on the anode 48 electrode [1]. Fermentative bacteria are needed to convert complex substrates (e.g. 49 glucose) into carboxylic acids including acetate, which can then be digested by 50 electrogenic bacteria [2,3]. Geobacter sulfurreducens, is an electrogenic bacterium 51 widely found in nature, which means that it can directly transfer electrons to the 52 electrode [4,5]. The performance of MFCs depends therefore on the type and abundance 53 of the microbial consortium in the anode chamber and notably in the anode biofilm. The 54 inoculum source of electrogenic and fermentative bacteria is therefore important in the 55 establishment of the anodic biofilm.

56

57 Inocula sources that have been studied in MFCs include pure bacteria [5], domestic 58 wastewater (DW) [6-8] and biogas sludge (BS) [9]. Nevin et al. reported that pure 59 cultures of electrogenic bacteria can produce higher maximum power density (MPD = 1900 mW·m⁻²) than mixed communities (1600 mW·m⁻²) with acetate as feed [5]. 60 61 Holmes et al. [10] operated MFCs inoculated with marine sediment, salt-marsh 62 sediment and freshwater sediment and showed that the power output was linked to 63 electrogenic bacteria regardless of the salinity. Yates et al. [7] examined the microbial community in two-chamber H-shape MFCs inoculated with DW (two sources tested) 64 65 and lake sediment (LS). They found that the cell voltage reached similar values (470 \pm

66 20 mV) after 20 operational cycles and that the anodic biofilm community were
67 dominated by *Geobacter* sp.

68

69 Previous studies have shown that external resistance (Rext) and substrate 70 concentration affect the power generation and microbial community composition [11-71 13]. It is known that in a mixed culture, the electrogenic bacteria compete for substrate 72 with the fermentative non-electrogenic bacteria [13]. From the available literature, it is 73 clear that a decaying microbiota is required for the MFC to convert organic substrates to 74 electric current via electrogenic bacteria, but it is unclear whether the frequently tested 75 DW may be surpassed by denser inocula such as BS and LS. A better understanding of 76 the evolution of the electrogenic versus the fermentative non-electrogenic bacteria will 77 aid in improving MFC performance.

78

79 The objective of this work is to assess the electrochemical performance, stability 80 and microbial consortium development using three inocula including DW, BS and LS, 81 respectively. It was expected that a denser inoculum would allow an increase in power 82 generation and make the process more robust to substrate changes. Based on the optimal 83 inocula, the effect on the microbial evolution of a variation of Rext and substrate loading 84 (L_{sub}) was examined to improve MFCs performance. The process analysis was 85 performed with thorough microbial analysis, and chemical analysis and electrochemical 86 impedance spectroscopy (EIS).

87 2 Materials and methods

88 2.1 MFCs configuration

89 The H-shaped reactors used in this study were constructed by two cylindrical acrylic glass bottles with a volume of 300 cm³ for each of the compartments (220 cm³ 90 91 liquid), which were connected with a tube with an inner diameter of 30 mm [6]. A 92 proton exchange membrane (NafionTM N117, Dupont Co., USA) with an area of 7.1 cm² was placed between the chambers. The two chambers were tightened with rubber 93 94 rings. Both anode and cathode electrode were made of two paralleled carbon paper sheets (TGPH-020, Fuel Cells Etc, USA) of 3 cm \times 8 cm (A = 24 cm²) and a thickness 95 96 of 0.35 mm.

97 2.2 Inoculation and operational conditions

98 The basic analyte consisted of M9 medium containing per liter: 6 g Na₂HPO₄, 3 g 99 KH₂PO₄, 1 g NaHCO₃, 1 g NH₄Cl, 0.5 g NaCl, 0.247 g MgSO₄·7H₂O, 0.0147 g CaCl₂ and 1 cm³ trace element solution [6]. pH could be maintained at 7.0 due to the high 100 buffer capacity of the M9 medium (64 mmol \cdot dm⁻³ of phosphate buffer + 12 mmol \cdot dm⁻³ 101 102 of carbonate buffer). The carbon source (sodium acetate or xylose) was added to the medium. The cathode solution was 100 mmol·dm⁻³ of K₃Fe(CN)₆ and 100 mmol·dm⁻³ 103 104 of phosphate buffer (pH 6.7) and was replaced at the beginning of each cycle. All MFCs 105 were operated at 30 $^{\circ}$ C in an incubator with magnetic stirring [6]. 106

107 Reactors (triplicates) were inoculated with three types of inocula: DW obtained
108 after the fine separation process (Lyngby Taarbæk Community, Denmark); LS collected
109 from Sorø lake (55°25′21″N, 11°32′23″E); and BS from Hashøj Biogas (Dalmose,

110 Denmark). pH, electric conductivity (EC), dry matter (DM) and chemical oxygen

111 demand (COD) of these inocula are shown in Table 1. The reactors were inoculated in a

112 1:1 ratio of medium to inocula and fed with sodium acetate (1 $g \cdot dm^{-3}$ of COD) using

113 R_{ext} of 1000 Ω . Feeding was done every 5 days (equal to one cycle) with fresh medium

and corresponding substrates. Due to start up time, the first cycle lasted for 7 days. After

115 2 to 3 batch cycles, stable power generation was obtained in all the reactors. The acetate

substrate was changed to xylose to study the adaptability of the microbial community to

117 a fermentative substrate still using 1 g \cdot dm⁻³ of COD content.

118 Based on the inocula test, four reactors (duplicate) inoculated with an optimal

119 inoculum (LS) were operated in batch mode testing R_{ext} of 200, 500, 800 and 1000 Ω .

120 Anode solution was replaced every 5 days, which equals to one cycle. From second

121 cycle, all the reactors were fed with fresh medium and sodium acetate. After 3 batch

122 cycles, stable power generation was obtained and different L_{sub} (0.5, 1, 1.5 and 2 g·dm⁻³

123 of COD) were tested in the MFCs. Operational cycles and corresponding R_{ext} and L_{sub}

124 are outlined in Table 2.

125 2.3 Microbial community analysis

Biofilm samples from the anode chamber were obtained by cutting 0.5 cm² of the anode electrode surface at the end of each cycle [6]. Genomic DNA extraction followed

128 by polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis

129 (DGGE) were conducted as previously described [6,14]. Similarity between the samples

130 was analyzed by using BioNumerics software v.7.1 (Applied Maths, Sint-Martens

131 Latem, Belgium) [6].

A clone library for providing a phylogenetic affiliation of the DGGE bands was
constructed and resulting sequences were submitted to EMBL Nucleotide Sequence

134	Database (Accession No. LN650984 – LN651064). Subsequently the unique clones
135	were amplified by PCR as described above. The PCR products were then run in a
136	DGGE gel to identify the bands formed by biofilm samples [6].
137	2.4 Scanning electron microscopy
138	In order to examine biofilms on the anode surfaces, the anodic electrode (~ 1 cm^2)

139 was removed without touching its surface. Small samples $(1 \times 1 \text{ cm})$ were fixed in 50 $dm^3 \cdot m^{-3}$ glutaraldehyde + 20 $dm^3 \cdot m^{-3}$ paraformaldehyde in 0.1 mol· dm^{-3} Na-acetate in 140 141 deionized water (pH 7.2). After fixation, the samples were dehydrated in aqueous 142 ethanol using: 20%, 40%, 60%, 80%, 90% and 100% for 20 min in each solution. 143 Subsequent dehydration was performed in 33%, 66% and 100% acetone in ethanol 144 before samples were critical point dried using Agar E3000 critical point dryer (Agar 145 Scientific, Stansted, UK) with liquid CO₂ as drying agent. Following coating with gold 146 using an Emitech E5000 sputter coater, samples were observed using a Philips XL30 147 ESEM scanning electron microscope at 50 to 10000 times of magnification [15]. 148 Chemical, electrochemical and statistical analysis 2.5 149 The COD concentration and dry matter content were measured similar to Sun et al. 150 [6]. Concentrations of monomeric sugars and volatile fatty acids (VFA) were measured 151 by HPLC (High-performance liquid chromatography) [6]. pH and electrical 152 conductivity were tested by multimeter (Multi 3430, WTW, Germany). 153 Electric current was recorded every 15 minutes by a data logger (Model 2700, 154 Keithley Inc.). In polarization tests, R_{ext} was varied between 30 Ω and 50 k Ω . The

155 current density (I) and maximum current density (I_{max}) were calculated by dividing the

156 current with the electrode surface area ($A = 48 \text{ cm}^2$) including both sides. EIS was

157 carried out with a potentiostat (SP-150, BioLogic, France). The anode polarization 158 resistance was measured by connecting the MFCs to the potentiostat in the three-159 electrode mode within the range from 10 kHz to 0.1 Hz with amplitude of 10 µA. Lower 160 frequencies were not tested since it can disturb the microbial process due to a long test 161 period (> 1 h). The anode and cathode were used as working electrode and counter 162 electrode, respectively. The third lead was attached to a reference electrode (Ag/AgCl; 163 #MF2079; Bioanalytical Systems Inc.) inserted in the anode chamber. Zview (Scribmer 164 Associates Inc.) was used for EIS data fitting. Coulombic efficiency (CE) was 165 calculated as the ratio of accumulative charges produced from the MFCs to the charges 166 released from substrate degradation. Statistics analysis by ANOVA (one-way; p<0.05) 167 was done by using Minitab 16 and means were compared using Turkey's multiple range 168 procedure. The significant difference between the values was indicated by letters A–D.

169 **3 Results and discussion**

170 3.1 Electricity generation in MFCs using the three inocula

171 The current density outputs of the DW-, LS- and BS- inoculated MFCs are shown 172 in Fig. 1. During cycle 1, DW-inoculated MFCs needed shorter lag time (2 days) to 173 achieve stable current than LS-inoculated MFCs (4 days) and BS-inoculated MFCs (5 174 days). The short lag time of DW-inoculated MFCs indicated rapid start-up compared 175 with previous studies of 7 days by Li et al. [16] and 9.5 days by Zhang et al. [8]. After 2 176 cycles of MFC operation, the average current density ($I_{ave}=138 \pm 2 \text{ mA} \cdot \text{m}^{-2}$) in LS-177 inoculated MFCs was slightly higher (2-5%) than in DW- and BS-inoculated MFCs. 178 When xylose was added to all the MFCs (cycle 3), they took one day to recover to 179 stable current generation. Adaptation of the MFCs to xylose also resulted in a 20% drop 180 in I_{ave} . In particular for DW-inoculated MFCs (Fig. 1A), I_{ave} showed earlier drop at the

181 end of cycles 4 and 5, but after 3 cycles, all MFCs converged to a similar I_{ave} (140 ± 2

182 mA·m⁻²). Thereby DW showed the shortest lag time while LS gave the highest I_{ave} .

183 *However, I_{ave} was similar with the three inocula after shifting to xylose (cycle 5).*

 I_{max} is a key factor demonstrating the capability of power generation that MFCs can

185 produce (Table 3). *I*_{max} in all the MFCs increased from cycles 2 to 6, which can be

186 explained by the study of Read et al. [3] showing that a stronger biofilm can be formed

187 when the MFCs run for longer time. With acetate, LS-inoculated MFCs showed the

highest I_{max} (cycle 3; 690 ± 30 mA·m⁻²) compared with DW (440 ± 50 mA·m⁻²) and BS

189 $(370 \pm 30 \text{ mA} \cdot \text{m}^{-2})$. After addition of xylose (cycle 6), LS-inoculated MFCs still

190 generated higher I_{max} (1690 ± 40 mA·m⁻²), than DW and BS with 1330 ± 10 and 930 ±

191 50 mA·m⁻², respectively. The differentiation in I_{max} proved that the inocula had a

192 significant effect on electricity generation and that LS-inoculated MFCs performed best.

193 3.2 Substrate conversion and efficiency using the three inocula

194 For the acetate fed MFCs, the utilisation of acetate and current generation are

195 shown in Fig 2A,B,C (cycle 3). Acetate removal rates in the range of 58 – 61% were

achieved after 5 days of current generation ($I_{ave} = 131 - 138 \text{ mA} \cdot \text{m}^{-2}$) with the three

197 inocula. For the xylose fed MFCs, the utilisation of xylose and formation of acetate and

198 propionate are shown in Fig 2D,E,F (cycle 5). Xylose was completely degraded with all

199 the inocula after the first day with accumulation of acetate and propionate as by-

200 products. The accumulation of acetate $(5.2 \pm 0.2 \text{ mmol} \cdot \text{dm}^{-3})$ in DW-inoculated MFCs

201 was higher than with LS ($4.7 \pm 0.4 \text{ mmol} \cdot \text{dm}^{-3}$) and with BS ($3.7 \pm 0.2 \text{ mmol} \cdot \text{dm}^{-3}$). *The*

202 high formation of acetate with DW indicates a large abundance of xylose-fermenting

203 bacteria since acetate is produced faster than it is utilized in the electrogenic bacteria
204 [2].

205

206	CE was calculated based on the accumulated charge produced from the MFCs
207	divided by the charge released from substrate degradation as shown in Table 3. LS
208	showed the highest CE of $29 \pm 1\%$ when acetate was used (cycle 3). The higher CE is
209	due to the high current density and low COD removal. After xylose was added to the
210	MFCs (cycle 4), CE dropped dramatically to $14 \pm 2\%$, $18 \pm 1\%$ and $17 \pm 0.1\%$ for DW,
211	LS and BS, respectively. However, the CE increased to $17 \pm 3\%$, $23 \pm 1\%$ and $21 \pm 1\%$
212	respectively after 3 cycle of operation (cycle 6). The highest CE (23%) and I_{max} (1690
213	$mA \cdot m^{-2}$) were thereby obtained in the LS-inoculated MFCs.

214

215 3.3 Anode polarization resistance using the three inocula

216 In an MFC, the biofilm, which is attached to the anode, serves as biocatalyst for 217 electricity generation. The metabolism of bacteria in MFCs is one of the limiting factors 218 for power generation which can be represented by the polarisation resistance of the 219 anode. EIS is an efficient non-destructive technique to determine the anode polarisation 220 resistance [17]. Measurements were conducted by connecting the MFC to a potentiostat 221 in three-electrode mode. The impedance of the anode is presented in Fig. 3 and was 222 used to calculate anode polarisation resistance (R_p) by fitting the impedance data to 223 Randles circuit (Fig. 3D). The anode polarisation resistance for DW-, LS- and BS-224 inoculated MFCs were 94 Ω , 119 Ω and 87 Ω , respectively, before MFCs started work. 225 The differentiation of the resistance at this time is due to the different EC in the inocula

226 (Table 1). Resistance decreased after the MFCs achieved stable current generation to 51

227 Ω (DW), 30 Ω (LS) and 40 Ω (BS), respectively. The decrease in resistance indicated

- that the biofilm formed on the anode surface activated the electrochemical reaction and
- that LS-inoculated MFCs can generate higher I_{max} than DW and BS. Furthermore, when
- the more complicated substrate (xylose) was added to all the MFCs, LS-inoculated
- 231 MFCs performed with lower anode resistance (24Ω) than DW (41Ω) and BS (35Ω) .
- 232 These results are corroborated by Fan et al. [18] that the lower anode resistance with
- 233 LS contribute to higher power generation (Table 3).
- 234

235 3.4 Effects of R_{ext} and L_{sub} on electricity generation

236 Four MFCs (duplicate), with a different R_{ext} (200, 500, 800 and 1000 Ω), were 237 evaluated from cycle 1 to 3 for I_{ave} and I_{max} (Table 4). The reactors with 200 Ω needed 238 1.5 days before notable current generation was obtained, while the reactors at 500 -239 1000 Ω needed 2.5 days. The MFCs with lower R_{ext} performed thereby a better start-up 240 in agreement with a previous study [10]. After stable current was observed, Iave ranged from $145 \pm 10 \text{ mA} \cdot \text{m}^{-2}$ (1000 Ω) to $555 \pm 8 \text{ mA} \cdot \text{m}^{-2}$ (200 Ω). Differences of I_{max} among 241 these reactors with different R_{ext} were also noted. The MFCs with 200 Ω produced 242 highest I_{max} of $1780 \pm 30 \text{ mA} \cdot \text{m}^{-2}$, while 1000Ω only generated $570 \pm 0.01 \text{ mA} \cdot \text{m}^{-2}$. 243 After all MFCs changed to use 200 Ω (cycle 4), similar I_{ave} (557 ± 13 mA·m⁻²) and I_{max} 244 245 $(1800 \pm 20 \text{ mA} \cdot \text{m}^{-2})$ were generated. At R_{ext} of 200 Ω (cycle 5), the L_{sub} showed no 246 significant effect on I_{ave} and I_{max} excepting the L_{sub} of 0.5 g COD·dm⁻³, which generated lower I_{ave} (419 ± 28 mA·m⁻²) than the higher L_{sub} (555 mA·m⁻²). This can be explained 247 248 by previous research, which reported that only at low resistances or at near maximum 249 current the increased L_{sub} can result in increased electricity generation [10].

251	Table 4 also reported COD removal rate (COD_{rr}) and CE in the MFCs with
252	different R_{ext} and $L_{sub}.$ The MFCs with lower R_{ext} showed both higher COD_{rr} (152 \pm 1
253	g·m ⁻³ ·day ⁻¹) and higher CE (58 \pm 1%), which can be attributed to the higher rate of
254	elecrogenesis resulting in higher current generation. Comparatively, the decreasing L_{sub}
255	resulted in lower COD _{rr} (92 \pm 6 g·m ⁻³ ·day ⁻¹) and higher CE (61 \pm 2%). A previous
256	study, using the same MFC design, also reported that the increasing L_{sub} from 0.25 to 2
257	g·dm ⁻³ of COD resulted in a decrease of CE from 37% to 16% [19]. <i>High Iave and high</i>
258	<i>CE</i> were thereby obtained at low R_{ext} (200 Ω) and a relatively low L_{sub} of 1 g·dm ⁻³ of
259	COD.

260

751

261 3.5 Microbial community: effect of inocula

262 3.5.1 Biofilm microstructure

263 SEM analysis of the micro- and ultrastructure of anode electrode biofilms after the 264 6 cycles of MFC operation showed considerable differences as shown in Fig 4. The 265 control showed no bacterial colonisation over the surface of the electrodes (Fig. 4a). 266 The electrode rods had clean, smooth and homogeneous surfaces (Fig. 4a, inset top 267 right) with even diameter of ca 8 µm. BS: Not dense unevenly distributed bacteria and 268 only low biofilm slime formation was observed (Fig. 4b). Sometimes, rods were 269 observed with areas of non-colonized clear surfaces (Fig. 4b, inset top right). In 270 addition, a diverse bacterial community (e.g. long rod types (arrowhead, Fig. 4c) and 271 oval shaped ones (arrows, Fig. 4c)) was apparent (Fig. 4c). These characteristics agree the low I_{max} of 930 mA·m² (Table 3). DW: Electrode rods had unclean surfaces with 272 273 often observed inhomogeneous particles (arrows, Fig. 4d). A close-up view showed 274 condensed colonies of mostly rod shaped bacteria with infrequent presence of slimy

275 material (inset top right, Fig. 4d and Fig. 4e). Different bacterial morphology was found 276 (Fig. 4f) and the bacteria were attached to each other (Fig. 4e and 4f). In addition, it was 277 also infrequently observed nano-threads like structures from bacteria (arrows, Fig. 4g) 278 and all these characteristics of the biofilm should collectively contribute to the 43% 279 higher I_{max} (Table 3).

280

281 LS: An even higher and thick colonisation of the electrode surfaces were seen (Fig. h) with more frequent particles of varying sizes densely distributed over electrodes 282 283 (arrows, Fig. 4h). The large particles were thick highly concentrated bacterial colonies 284 (inset top right, Fig. 4h) that are thought to contribute for higher electricity production. 285 In addition, morphology of the biofilm indicated comparatively less diverse bacterial 286 communities where long rod-shaped bacteria were more commonly observed (Fig, 4i). 287 Interestingly, nano threads-like appendages ranging from 70-120 nm in width and 288 extending tens of micron long were often seen associated with rod-shaped bacteria 289 (arrowheads, Fig. 4j) presumably representing bacterial nanowires. G. sulfurreducens 290 are known to produce nanowires that are highly conductive and have potential for long-291 range exocellular electron transfer across biofilm via intertwined nanowires [20,21]. 292 These characteristics lead to 82% higher I_{max} than with BS (Table 3) and presumably 293 also suggest high abundance and activity of electrogenic Geobacter sp. as evidence 294 from DGGE analysis (Fig. 5).

295 3.5.2 Molecular determination of microbial community

In order to provide greater insight into microbial diversity of the biofilm samples, bacterial gene libraries were examined using full length 16S rRNA (Table 5). The bacterial species identified included the electrogenic species *G. sulfurreducens* [5] and the fermenting species *Bacteroides graminisolvens* [22], *Arcobacter butzleri* [23],

300 Paludibacter propionicigenes [24], Thermanaerovibrio acidaminovorans [25],

301 Enterobacter cancerogenus [26], Citrobacter braakii [27] and Propionispora hippie

302 [28].

303 The anodic biofilms in the three types of inoculated MFCs were sampled at the end 304 of each batch test (from cycle 2 to 5) as shown in Fig. 1. The microbial community of 305 the biofilm samples were analysed with 16S rRNA-based DGGE in combination with a 306 clone library as summarized in Fig. 5A. The band patterns of the biofilm in all the 307 MFCs became stable after 7 days of enrichment with inocula and acetate (cycle 1 in Fig. 308 1). The similarities between the lanes comparing cycle 2 and 3 were higher than 88% 309 for the 3 inocula. However, the band patterns in cycle 2 varied significantly between the 310 three types of inoculated MFCs with 59% for LS compared to DW (LS 2:DW 2) and with 33% for LS compared to BS (LS_2:BS_2). The patterns of the bands also changed 311 312 after switching substrate from acetate to xylose in all the MFCs, with similarities from 313 cycle 3 to 4 of 46%, 40% and 4% for LS, DW and BS, respectively. After short 314 acclimation of the MFCs to xylose, stable band patterns were observed in all the biofilm 315 samples with similarities above 80% (LS 4, LS 5; DW 4, DW 5; and BS 4, BS 5). 316 The distinct similarities among the different inocula and substrates demonstrated that 317 they are key factors affecting anodic microbial community in MFCs. 318 When acetate was used in MFCs, G. sulfurreducens was predominant with all the 319 inocula. In addition, T. acidaminovorans was dominant with DW, Shigella flexneri and 320 Azonexus caeni were dominant with LS and S. flexneri was dominant with BS 321 (comparing cycle 2 and 3). Among these species, only G. sulfurreducens has the 322 potential to electricity generation as a metal-reducing bacterium [4,5,29]. The change to

use xylose resulted also in a more diverse microbial community. LS-inoculated MFCs
became dominated by *E. cancerogenus*, *G. sulfurreducens*, *C. braakii* and *P. hippie*. *The presence of a more diverse microbial community after addition of xylose further illustrated why it took a short adaptation time for the MFCs to enrich fermentative bacteria to convert complex substrates (xylose) to non-fermentable substrates (e.g. acetate and propionate) [8]*.

329 3.5.3 *Quantification of G. sulfurreducens*

330 Composite analysis of the DGGE bands showed the different proportions of G. 331 sulfurreducens in the biofilm community (Fig. 5B). When acetate was added to MFCs 332 (cycle 2), LS-inoculated MFCs had the highest percentage of G. sulfurreducens (18 \pm 333 1%) compared to DW and BS with $12 \pm 0.4\%$ and $11 \pm 3\%$, respectively. The high 334 proportion of G. sulfurreducens in LS-inoculated MFCs may further explain the higher 335 I_{max} generation (Table 3). These results are also corroborated by Li et al. showing that 336 DW-inoculated MFCs produced much higher MPD (33 mW \cdot m⁻²) than activated sludge inoculated MFCs (23 mW·m⁻²) with the predominance of *Geobacter pickeringii* and 337 338 Magnetospirillum sp. in the wastewater inoculated MFCs [16]. However, the abundance 339 of these species was not quantified. 340 After xylose was added to the MFCs (cycle 4), the proportion of G. sulfurreducens

decreased to 6 - 11%. This may be due to that xylose boosts the growth of fermentative

342 bacteria, which also resulted in a significant drop in CE (Table 3). However, the

343 concentration of G. sulfurreducens increased after two cycles of MFC operation to $13 \pm$

344 0.3% in LS-inoculated MFCs, which was higher than DW (11 \pm 0.2%) and BS (10 \pm

345 0.3%). These results show that I_{max} increased versus the abundance of electrogenic

346 *bacteria (most G. sulfurreducens* with the LS inoculum).

348	Based on DGGE band intensities in Fig 6A, the abundance of G. sulfurreducens in
349	the biofilm communities was estimated (Fig. 6B). After 3 batches, the MFCs with R_{ext}
350	of 200- Ω showed highest proportion of <i>G. sulfurreducens</i> (21 ± 0.7%), followed by 18
351	\pm 0.4%, 16 \pm 0.4% and 16 \pm 0.4% for 500-, 800- and 1000 $\Omega,$ respectively. The higher
352	abundance of G. sulfurreducens in 200- Ω MFCs explains why they generated higher
353	I_{max} and CE (Table 4). The results also indicated that the lower R _{ext} assist the enrichment
354	of G. sulfurreducens, as explained as that lower Rext results in higher electrode potential
355	[11], which is favoured by G. sulfurreducens growth. When all MFCs changed to use
356	R_{ext} of 200 Ω , no significant difference in the proportion of G. sulfurreducens (22 –
357	23 %) was observed.
358	

359 The increase in MFC performance versus the abundance of the G. sulfurreducens is 360 also reflected by I_{ave} in the MFCs with different L_{sub} (Table 4). The maximum I_{ave} was 557 ± 13 mA·m⁻² at 200 Ω , which is almost two times higher than I_{ave} (285 ± 6 mA·m⁻²) 361 at 150 Ω reported by Jung and Regan [13]. Whereas an increase in the L_{sub} from 0.5 to 362 1.0 g·dm⁻³ of COD had no measureable effect on the abundance of the G. 363 364 sulfurreducens. In general, increased L_{sub} significantly decreased the abundance of G. 365 sulfurreducens (20% \rightarrow 12%) (Fig. 6B). The increased L_{sub} boosted thereby enrichment 366 of fermenting bacteria, which in turn significantly decreased CE. The increased 367 abundance of G. sulfurreducens resulted in an increase of CE regardless of the level of Rext and Lsub, which demonstrated that CE increased versus the abundance of 368 369 electrogenic bacteria. The results show that low Rext and low Lsub increased the 370 abundance of G. sulfurreducens, which in turn gave higher Iave.

372	Overall SEM microscopy (Fig. 4) showed dense, less diverse and highly active
373	bacterial community and DGGE showed high dominance of G. sulfureducens for the LS
374	inoculum (Fig. 5). Both of these results confirm the hypothesis that high current
375	generation is linked to high dominance of G. sulfureducens (Table 3).
376	4 Conclusion
377	This study showed that the lake sediment inoculated MFCs yielded higher I_{max} up
378	to 1690 mA \cdot m $^{-2}$ and CE up to 23 \pm 1% at Rext of 1000 $\Omega.$ A decrease of Rext
379	significantly increased I_{max} and CE to 1800 mA·m ⁻² and 59 ± 1%, respectively, while an
380	increase of L_{sub} only showed effect on CE with a decrease. On the basis of
381	electrochemical performance and microbial community analysis, the higher abundance
382	of G. sulfurreducens resulted in higher MFCs performance with emphasis on current
383	generation and coulombic efficiency. Elucidating the positive correlation between
384	microbial community and electrochemical performance will assist in optimization of
385	MFCs technology for practical application.

386 Acknowledgement

The authors are grateful to Danida Fellowship Centre for supporting the research
project (Biobased electricity in developing countries, DFC No. 11–091 Risø). The
financial support from China Scholarship Council (CSC No. 2011635051) for Guotao
Sun is gratefully acknowledged.

Reference

392	[1]	Sun, G., Thygesen, A., Ale, M.T., Mensah, M., Poulsen, F.W., Meyer, A.S., "The
393		significance of the initiation process parameters and reactor design for
394		maximizing the efficiency of microbial fuel cells", Appl. Microbiol. Biotechnol.,
395		98 , 2415–2427 (2014).
396	[2]	Lovley, D.R., "Microbial fuel cells: novel microbial physiologies and
397		engineering approaches", Curr. Opin. Biotechnol., 17, 327–332 (2006).
398	[3]	Read, S.T., Dutta, P., Bond, P.L., Keller, J., Rabaey, K., "Initial development and
399		structure of biofilms on microbial fuel cell anodes", B.M.C. Microbiol., 10, 98
400		(2010).
401	[4]	Lovley, D.R., Phillips, E.J.P., "Novel mode of microbial energy metabolism :
402		organic Carbon oxidation coupled to dissimilatory reduction of iron or
403		manganese", Appl. Environ. Microbiol., 54, 1472–1480 (1988).
404	[5]	Nevin, K.P., Richter, H., Covalla, S.F., Johnson, J.P., Woodard, T.L., Orloff,
405		A.L., Jia, H., Zhang, M., Lovley, D.R., "Power output and columbic efficiencies
406		from biofilms of Geobacter sulfurreducens comparable to mixed community
407		microbial fuel cells", Environ. Microbiol., 10, 2505–2514 (2008).
408	[6]	Sun, G., Thygesen, A., Meyer, A.S., "Acetate is a superior substrate for microbial
409		fuel cells initiation utilizing bioethanol effluent", Appl. Microbiol. Biotechnol.,
410		99 , 4905-4915 (2015).

411	[7]	Yates, M.D., Kiely, P.D., Call, D.F., Rismani-Yazdi, H., Bibby, K., Peccia, J.,
412		Regan, J.M., Logan, E.B., "Convergent development of anodic bacterial
413		communities in microbial fuel cells", <i>I.S.M.E. J.</i> , 6 , 2002–2013 (2012).
414	[8]	Zhang, Y., Min, B., Huang, L., Angelidaki, I., "Electricity generation and
415		microbial community response to substrate changes in microbial fuel cell",
416		Bioresour. Technol., 102, 1166–1173 (2011).
417	[9]	Chae, K.J., Choi, M.J., Lee, J.W., Kim, K.Y., Kim, I.S., "Effect of different
418		substrates on the performance, bacterial diversity, and bacterial viability in
419		microbial fuel cells", <i>Bioresour. Technol.</i> , 100 , 3518–3525 (2009).
420	[10]	Holmes, D.E., Bond, D.R., O'Neil, R.A., Reimers, C.E., Tender, L.R., Lovley,
421		D.R., "Microbial communities associated with electrodes harvesting electricity
422		from a variety of aquatic sediments", Microb. Ecol., 48, 178-190 (2004).
423	[11]	Aelterman, P., Versichele, M., Marzorati, M., Boon, N., Verstraete, W., "Loading
424		rate and external resistance control the electricity generation of microbial fuel
425		cells with different three-dimensional anodes" Bioresour. Technol., 99, 8895-
426		8902 (2008).
427	[12]	Jadhav, G.S., Ghangrekar, M.M., "Performance of microbial fuel cell subjected
428		to variation in pH, temperature, external load and substrate concentration",

Bioresour. Technol., **100**, 717–723 (2009).

430	[13]	Jung, S., Regan, J.M., "Influence of external resistance on electrogenesis,
431		methanogenesis, and anode prokaryotic communities in microbial fuel cells",
432		Appl. Environ. Microbiol., 77, 564–571 (2011).
433	[14]	Muyzer, G., de Waal, E.C., Uitterlinden, A.G., "Profiling of complex microbial
434		populations by denaturing gradient gel electrophoresis analysis of polymerase
435		chain reaction-amplified genes coding for 16S rRNA", Appl. Environ.
436		<i>Microbiol.</i> , 59 , 695–700 (1993).
437	[15]	Thygesen, A., Daniel, G., Lilholt, H., Thomsen, A.B., "Hemp fiber
438		microstructure and use of fungal defibration to obtain fibers for composite
439		materials", J. Nat. Fibers, 2, 19–37 (2005).
440	[16]	Li, X.M., Cheng, K.Y., Selvam, A., Wong, J.W.C., "Bioelectricity production
441		from acidic food waste leachate using microbial fuel cells: effect of microbial
442		inocula", Process. Biochem., 48, 283–288 (2013).
443	[17]	Ter Heijne, A., Schaetzle, O., Gimenez, S., Fabregat-Santiago, F., Bisquert, J.,
444		"Strik DPBTB, Barriere F, Buisman CJN, Hamelers HVM. Identifying charge
445		and mass transfer resistances of an oxygen reducing biocathode", Energy
446		Environ. Sci., 4, 5035-5043 (2011).
447	[18]	Fan, Y., Sharbrough, E., Liu, H., "Quantification of the internal resistance
448		distribution of microbial fuel Cells", Environ. Sci. Technol., 42, 8101-8107
449		(2008).

450	[19]	Zhang, Y., Min, B., Huang, L., Angelidaki, I., "Generation of electricity and
451		analysis of microbial communities in wheat straw biomass-powered microbial
452		fuel cells", Appl. Environ. Microbiol., 75, 3389–3395 (2009).
453	[20]	Logan, B.E., Regan, J.M., "Electricity-producing bacterial communities in
454		microbial fuel cells", TRENDS in Microbiol., 14, 512-518 (2006).
455	[21]	Reguera, G., Nevin, K.P., Nicoll, J.S., Covalla, S.F., Woodard, T.L., Lovley,
456		D.R., "Biofilm and Nanowire Production Leads to Increased Current in
457		Geobacter sulfurreducens Fuel Cells", Appl. Environ. Microbiol., 72, 7345-7348
458		(2006).
459	[22]	Nishiyama, T., Ueki, A., Kaku, N., Watanabe, K., Ueki, K., "Bacteroides
460		graminisolvens sp. nov., a xylanolytic anaerobe isolated from a methanogenic
461		reactor treating cattle waste", Int. J. Syst. Evol. Microbiol., 59, 1901-1907 (2009).
462	[23]	Rice, E.W., Rodgers, M.R., Wesley, I.V., Johnson, C.H., Tanner, S., "Isolation of
463		Arcobacter butzleri from ground water", Lett. Appl. Microbiol., 28, 31-35
464		(1999).
465	[24]	Ueki, A., Akasaka, H., Suzuki, D., Ueki, K., "Paludibacter propionicigenes gen.
466		nov., sp. nov., a novel strictly anaerobic, Gram-negative, propionate-producing
467		bacterium isolated from plant residue in irrigated rice-field soil in Japan", Int. J.
468		Syst. Evol. Microbiol., 56, 39-44 (2006).
469	[25]	Chovatia, M., Sikorski, J., Schröder, M., Lapidus, A., Nolan, M., Tice, H.,
470		Glavina, Del Rio, T., Copeland, A., Cheng, J.F., Lucas, S., Chen, F., Bruce, D.,

471		Goodwin, L, Pitluck, S., Ivanova, N., Mavromatis, K., Ovchinnikova, G., Pati,
472		A., Chen, A., Palaniappan, K., Land, M., Hauser, L., Chang, Y.J., Jeffries, C.D.,
473		Chain, P., Saunders, E., Detter, J.C., Brettin, T., Rohde, M., Göker, M., Spring,
474		S., Bristow, J., Markowitz, V., Hugenholtz, P., Kyrpides, N.C., Klenk, H.P.,
475		Eisen, J.A., "Complete genome sequence of Thermanaerovibrio
476		acidaminovorans type strain (Su883)", Stand. Genomic. Sci., 1, 254-261 (2009).
477	[26]	Kazaks, A., Dislers, A., Lipowsky, G., Nikolajeva, V., Tars, K., "Complete
478		Genome Sequence of the Enterobacter cancerogenus Bacteriophage Enc34", J.
479		<i>Virol.</i> , 86 , 11403-11404 (2012).
480	[27]	Brenner, D.J., O'Hara, C.M., Grimont, P.A.D., Janda, J.M., Falsen, E., Aldova,
481		E., Ageron, E., Schindler, J., Abbott, S.L., Steigerwalt, A.G., "Biochemical
482		identification of Citrobacter species defined by DNA hybridization and
483		description of Citrobacter gillenii sp. nov. (formerly Citrobacter genomospecies
484		10) and Citrobacter murliniae sp. nov. (formerly Citrobacter genomospecies
485		11)", J. Clin. Microbiol., 37 , 2619-2624 (1999).
486	[28]	Abou-Zeid, D.M., Biebl, H., Sproer, C., Muller, R.J., "Propionispora hippei sp
487		nov., a novel Gram-negative, spore-forming anaerobe that produces propionic
488		acid", Int. J. Syst. Evol., 54, 951-954 (2004).
489	[29]	Liu, Y., Harnisch, F., Fricke, K., Sietmann, R., Schröder, U., "Improvement of
490		the anodic bioelectrocatalytic activity of mixed culture biofilms by a simple
491		consecutive electrochemical selection procedure", Biosens. Bioelectron., 24,
492		1012–1017 (2008).

Captions of the Figures

- Fig. 1. Current density in MFCs inoculated with DW (A), LS (B) and BS (C) respectively. ace: acetate; xyl: xylose. The arrows indicate the substrate replacement. pH was found constant on approx. 7 during the experimental cycles.
- Fig. 2. *I*_{ave} and substrate degradation as function of time in MFCs enriched with DW (A, D), LS (B, E) and BS (C, F) respectively. The substrate used in (A, B, C) and (D, E, F) are acetate and xylose, respectively. The initial concentration for each substrate was 1 g·dm⁻³ of COD.
- Fig. 3. The impedance of the anode in MFCs inoculated with DW, LS and BS respectively. (A) Beginning MFC operation; (B) MFCs using acetate as substrate;
 (C) MFCs using xylose as substrate. (D) Schematic of Randles equivalent circuit to model charge transfer: ohmic resistance (R_s), polarisation reisitance (R_p) and constant phase element (CPE).
- Fig. 4. Scanning electron micrographs of the electrode without biofilm (a) and electrodes in MFCs showing their micro- and ultrastructure of biofilms formed after inoculated with BS (b, c), DW (d-g) and LS (h-j), respectively. Bars: a,b,d,h, 100 μm; c, 3 μm; e, 10 μm; f,g,i,j, 2 μm.
- Fig. 5. Bacterial 16S rRNA gene-derived DGGE profiles (A) and relative abundance of *G. sulfurreducens* in MFCs inoculated with DW, LS and BS respectively (B). The numbers (2, 3, 4 and 5) in lanes name (DW_2, DW_3,, BS_4, BS_5) means the samples were taken at the end of 2nd, 3rd, 4th and 5th cycle, respectively. The identified bands (1-11) are presented in table 4. UB indicates bands not identified by cloning. Letters A–C indicates significant difference at 95% confidence limit.
- Fig. 6. Bacterial 16S rRNA gene-derived DGGE profiles (A) and relative abundance of*G. sulfurreducens* with different R_{ext} and L_{sub} (B). The letter a d indicating the

MFCs started with 200, 500, 800 and 1000 Ω respectively. The numbers (3, 4 and 5) in lanes name (a_3, a_4,, c_5, d_5) means the sample were taken at end of the batch cycle 3, 4 and 5 respectively. The identified bands (1-11) are presented in Table 4. UB indicates bands not identified by cloning. Letters A–C indicates significant difference.

Table 1 Chemical parameters of the inocula including pH, electric conductivity (EC), dry matter (DM) and chemical oxygen demand (COD).

Inocula	рН	EC [mS·cm ⁻¹]	$DM \\ [mg \cdot g^{-1}]$	COD [g·dm ⁻³]
DW	7.2	2.1	1.2	0.4
LS	7.4	0.9	3.8	2.1
BS	8.2	37.0	20.5	16.5

Table 2 Overview of the operational parameters in 4 MFCs (duplicates) testing R_{ext} and

L_{sub}.

Batch No.	Rext	COD conc (L _{sub})
	$[\Omega]$	$[g \cdot dm^{-3}]$
Cycle 1	200, 500, 800 and 1000	1
Cycle 2	200, 500, 800 and 1000	1
Cycle 3	200, 500, 800 and 1000	1
Cycle 4	200	1
Cycle 5	200	0.5, 1, 1.5 and 2
Cycle 6	200	0.5, 1, 1.5 and 2

Batch No.		$I_{\rm max}$ [mA·m ⁻²]			CE [%]	
	DW	LS	BS	DW	LS	BS
Cycle 2	390 ± 10^{-A}	410 ± 30^{-A}	$390\pm10^{\mathrm{A}}$	28 ± 2^{A}	31 ± 4^{A}	23 ± 2^{AB}
Cycle 3	440 ± 50^{AB}	690 ± 30^{-A}	$370\pm30^{\mathrm{A}}$	$27\pm1^{\rm A}$	29 ± 1^{AB}	$24\pm1^{\rm B}$
Cycle 4	580 ± 90^{BC}	680 ± 20^{BC}	$590\pm70^{\rm A}$	$14\pm2^{\text{B}}$	$18\pm1^{\rm C}$	17 ± 0.1^{B}
Cycle 5	$840\pm20~^{\rm C}$	$1000\pm60\ ^{C}$	$870\pm50^{\mathrm{A}}$	$19\pm3^{\text{B}}$	22 ± 0.5^{BC}	21 ± 1^{AB}
Cycle 6	$1330\pm10^{\ D}$	$1690\pm40^{\ C}$	$930\pm50^{\rm A}$	$17\pm3^{\text{B}}$	23 ± 1^{ABC}	21 ± 1^{AB}

Table 3 I_{max} and CE generated in MFCs inoculated with DW, LS and BS respectively. Batch No. is corresponding to the batch test in Fig. 1. Letters A–D indicates column wise significant difference.

Table 4 Average current density (I_{ave}), COD removal rate (COD_{rr}), coulombic efficiency (CE) and maximum current density (I_{max}) in the MFCs using different external resistance (R_{ext}) and substrate loading (L_{sub}).

Batch No.	R _{ext}	L _{sub}	Iave	I _{max}	COD _{rr}	CE
	[Ω]	$[g \cdot dm^{-3}]$	$[mA \cdot m^{-2}]$	$[mA \cdot m^{-2}]$	$[g \cdot m^{-3} \cdot day^{-1}]$	[%]
Cycle 3	200	1	555 ± 8	1780 ± 0.03	152 ± 1	58 ± 1
	500	1	272 ± 4	990 ± 0.01	112 ± 2	38 ± 1
	800	1	180 ± 2	860 ± 0.01	110 ± 3	26 ± 1
	1000	1	145 ± 10	570 ± 0.01	92 ± 6	25 ± 2
Cycle 4	200	1	557 ± 13	1800 ± 0.02	150 ± 10	59 ± 1
	200	0.5	419 ± 28	1820 ± 0.06	111 ± 1	61 ± 2
Cycle 5	200	1	559 ± 10	1810 ± 0.05	149 ± 2	60 ± 1
	200	1.5	557 ± 10	1780 ± 0.05	187 ± 3	47 ± 1
	200	2	553 ± 12	1780 ± 0.04	188 ± 6	47 ± 1

Note: all four MFCs in cycle 4 were changed to use same Rext and Lsub with similar performance.

Band	Accession no.	Gene bank match	Identity [%]	Ref.	Characteristics
1	LN651010	Bacteroides graminisolvens	91	[22]	Strict anaerobe fermenting xylan /xylose
2	LN651006	Arcobacter butzleri	100	[23]	Facultative anaerobe detected on meet/food
3	LN651030	Paludibacter propionicigenes	84	[24]	Strict anaerobe fermenting sugars to propionate
4	LN651003	Thermanaerovibrio acidaminovorans	87	[25]	Fermenting anaerobic bacterium
5	LN651037	Shigella flexneri	99		Facultative anaerobe failing to ferment lactose or decarboxylate lysine
6	LN651061	Uncultured bacterium	92		
7	LN651020	Enterobacter cancerogenus	99	[26]	Facultative anaerobes fermenting glucose
8	LN651027	Geobacter sulfurreducens	99	[5]	Metal-reducing anaerobe oxidizing short-chain fatty acids, alcohols, and monoaromatic compounds with the ability to generate electricity
9	LN651013	Citrobacter braakii	99	[27]	Facultative anaerobe solely fermenting lactose
10	LN651053	Propionispora hippei	91	[28]	Strict anaerobe fermenting sugars to acetate and propionate
11	LN651007	Azonexus caeni	100		Nitrogen-fixing bacteria

Table 5 DGGE 16S rRNA gene band identification and characterisation of the species

Figure 1

Figure 3

Figure 4

Figure 5

Figure 6

Graphic abstract:

