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Abstract

This article presents a simple model of land development under uncertainty and hyperbolic 

discounting. Land kept in rural use pays an uncertain rent, while net returns from land 

development are known and constant. The landowner is viewed here as a sequence of 

infinite autonomous selves with time-inconsistent preferences. We solve the underlying non-

cooperative intra-personal stopping time game under both naïve and sophisticated beliefs 

about the landowner’s time-inconsistency and show that i) land development is accelerated 

due to his present-biased time preferences and ii) a higher acceleration is associated with 

sophistication.
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1. Introduction

Use of exponential discounting dominates the literature investigating land development decisions

as: i) it lowers the burden in terms of mathematical complexity and, very importantly, ii) it

guarantees the time consistency of any development plan set by the landowner due to the underlying

assumption of a constant rate of time preference.

However, a constant rate of time preference is a strong assumption that has been hotly debated

since Strotz (1956) proposed, as a more "reasonable" alternative,1 time-declining discount rates.

Strotz�s conjecture has since found empirical support, as several experiments have provided evidence

of individuals�taste for immediate grati�cation (see Loewenstein and Prelec, 1992, for a review).

This has led to a series of papers using hyperbolic rather than exponential functions in model set-

up (see Frederick et al., 2002, for a review). Concerning landowners, empirical support for quasi-

hyperbolic discounting has been found by Salois and Moss (2011) in a study based on US farmland

values. However, e¤orts to introduce hyperbolic discounting in the theoretical frame investigating

land development decisions have been quite limited and, to our knowledge, are represented solely

by the model provided in Salois (2012). Salois introduces a quasi-hyperbolic landowner in the

standard model of land development proposed by Irwin and Bockstael (2002) and shows that, by

increasing the rate of land conversion, quasi-hyperbolic discounting may induce overdevelopment

of rural land.

The analysis in Salois (2012) is performed in a deterministic frame and thus does not permit

consideration of the relevant impact that uncertainty about payo¤s associated with land uses may

have on the decision to develop and on its timing. In fact, as widely recognised in the literature

(see for instance Capozza and Helsley, 1990; Capozza and Li, 1994; Geltner et al., 1996), the option

value associated with the decision to be taken may make postponing development the optimal

choice in order to gather information about its future bene�ts.

The present study aims to �ll this gap by investigating the land development problem under

hyperbolic discounting in a real option frame. This enables examination of how two con�icting

elements, namely hyperbolic discounting on the one hand, inducing a rush in land development and

option value on the other hand inducing delay, a¤ect the decision and timing of land development.
1Referring to exponential discounting, Strotz (1956) argues that there is �no reason why an individual should have

such a special discount function�(p.172).
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Since, as noted by Strotz, declining discount rates may lead to time inconsistent planning, the

impact of agents�self-awareness about their time inconsistency on the decision and timing of land

development is also explicitly investigated. This is done by considering i) a landowner who fully

ignores his time inconsistency (naïve) and ii) a landowner who perfectly foresees that his time

preferences change over time (sophisticated) (see O�Donoghue and Rabin, 1999).

Previous papers studying real options in the framework of time inconsistent preferences are those

by Grenadier and Wang (2007) and Di Corato (2012). Grenadier and Wang (2007) investigate the

impact of hyperbolic discounting on investment plans and show that the timing of investment

di¤ers from that set by an exponential discounter and depends on: i) agents�self-awareness about

their time inconsistency and ii) the payo¤ form, i.e. a lump sum rather than a sequence of cash

�ows. Di Corato (2012) considers a forest-cutting problem in a dynamic game played by three non-

overlapping, imperfectly altruistic generations, each of which is viewed as a hyperbolic discounting

agent, and shows that, compared with the harvesting policy set by an exponential agent, the

option value attached to the decision to harvest is lower and earlier harvest occurs. That result

holds under both naïve and sophisticated beliefs but under sophistication harvest occurs earlier

than under naïveté.

The present study considers a standard land development problem where land kept in rural

use pays a rent following geometric Brownian motion and net returns from land development are

known and constant.2 In line with the literature, the hyperbolic landowner is viewed as a sequence

of in�nite autonomous selves with time-inconsistent preferences (see Grenadier and Wang, 2007;

Harris and Laibson, 2013). Each self is allowed to exercise the option to develop only during his

life and cares about, but has no control over, the decisions taken by his future selves. The life

of these selves is random and regulated by a Poisson death process. Each self determines his

optimal threshold for exercise of the option to develop by solving the underlying non-cooperative

intra-personal stopping game on the basis of his beliefs about the behaviour of future selves.

It is found that a hyperbolic landowner always develops land earlier than an exponential

2Grenadier and Wang (2007) study the optimal exercise of an American call option on investment under hyperbolic

discounting. The present study, in contrast, is dealing with the optimal exercise of an American put-like option to

"disinvest", by selling land to a developer. Note also that in our frame holding the option pays a periodic rent

(associated with rural use) as a sort of dividend.
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landowner. The reasoning is straightforward. Under hyperbolic discounting, the bias for present

grati�cation lowers the value associated with holding the option to develop. Hence, each self �nds

convenient anticipating future selves by killing the option earlier. Interestingly, this study shows

that a sophisticated landowner rushes land development more than a naïve landowner. In fact, due

to his perfect foresight, a sophisticated landowner, takes into account the cost of changes in the

development timing strategy that are sub-optimal from his time perspective. Hence, compared with

a naïve landowner totally ignoring this cost, the sophisticated landowner has a further argument

for anticipating future selves by killing the option to develop.

The remainder of this paper is organised as follows. Section 2 presents the basic set-up. In

Section 3, the value of land and the timing of land development under hyperbolic discounting are

determined, under the assumption of both naïve and sophisticated beliefs. The results are then

compared and discussed using the case of an exponential landowner as the benchmark. Section 4

concludes. The Appendix contains the proofs omitted from the text.

2. The basic set-up

Consider a risk-neutral, in�nite-lived landowner owning a parcel of land currently kept in rural

use (agriculture, forestry, open space etc.). Under the current destination, the landowner earns a

rent fR(t) : t � 0g. Assume that R(t) is stochastic and evolves according to the following di¤usion:

dR(t)=R(t) = �dt+ �dQ(t); with R(0) = R (1)

where � and � are the drift and volatility rates, respectively, and fQ(t)g is a standard Wiener

process with E [dQ] = 0 and E
�
(dQ)2

�
= dt.

At any t > 0, the landowner can sell his land to a developer, converting it into an urban use.

Here it is assumed that land development is irreversible3 and the net pay-o¤4 accruing to the

landowner selling his land is denoted P > 0.5

3Note that, taking a real options perspective, the landowner can be viewed as holding an American put option,

i.e. the option to develop, paying P if exercised. Otherwise, i.e. the land kept in rural use, the landowner receives

R(t) as a sort of dividend.
4As in Salois (2011), the pay-o¤ P results from the sales price net of any conversion costs (administrative fees,

permit expenses, institutional costs or necessary infrastructure expenditures, etc.).
5Note that one can easily allow for a stochastic P following geometric Brownian motion. The model would in fact

be the same once R(t) is normalised in terms of P (see Geltner et al., 1996, p. 26).
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2.1 The discount function

The time preferences of a hyperbolic landowner are characterised here by adopting the discount

function proposed by Harris and Laibson (2013), where the hyperbolic discounting agent is viewed

as an in�nite sequence of risk-neutral selves, i = 0; 1; 2; ::: . Each self i divides time into present

and future. The present lasts a random time period, si+1 � si, where si and si+1 are the birth

dates of self i and self i+1. The transition is regulated by a Poisson death process with intensity

� 2 (0;1). The future, from the perspective of self i, starts at si+1 and lasts forever. Each self i

discounts 1) exponentially, at a constant rate �, both present and future payo¤s and 2) additionally,

by the factor � 2 (0; 1) all future payo¤s. Summing up, his discount function is de�ned as follows:

De�nition 1 At time t for any � 2 (0; 1) and � 2 (0;1); the self i0s discount function is

given by the following function:

Di(s; t) =

8><>: e��(t�s); if t 2 [si; si+1);

�e��(t�s); if t 2 [si+1; 1);

for t > s and si � s � si+1: (2)

From Eq. (2), as � 2 (0; 1), a dollar paid to the generic self i in the future would be worth less than

a dollar paid in the present. Note that in the limit cases � ! 1 and � ! 0; the agent would discount

exponentially at rate � and �+ �, respectively, where � is the "speed" at which time preferences

change over time.6 Note also that:

i) The expected value of Di(s; t), i.e.

E[Di(s; t)] = e
�(�+�)(t�s) + �(1� e��(t�s))e��(t�s) = �e��(t�s) + (1� �)e�(�+�)(t�s); (2.1)

is a convex combination of two exponential discount functions using � and �+ � as discount

rates.

ii) The derivative of E[Di(s; t)] with respect to time is:

@E[Di(s; t)]=@t = �[��e��(t�s) + (�+ �) (1� �)e�(�+�)(t�s)g] < 0: (2.2)

6The probability of having a new self born in the next time interval dt is equal to �dt. Hence, consistently, when

� ! 0 the discount rate is adjusted in order to account for the "sudden death" of the current self.
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This implies that the discount factor increases as t comes nearer or that, in other words,

payo¤s are discounted at the following time-declining rate:

�(@E[Di(s; t)]=@t)=E[Di(s; t)] = �+ �(1� �)e�(�+�)(t�s)=E[Di(s; t)]: (2.3)

3. Value of land and timing of land development

In order to provide a benchmark, in this section the standard land development problem faced

by a landowner who discounts future payo¤s exponentially is �rst solved. A hyperbolic landowner

with the time preferences presented above is then considered. This landowner discounts future

payo¤s at time-declining rates and may formulate time-inconsistent plans, i.e. he may formulate

plans which may later be disobeyed and revised. The analysis then proceeds by allowing for two

extreme assumptions concerning the landowner�s self-awareness about his time-inconsistency. First

a naïve agent, i.e. an agent who ignores his time inconsistency and believes that his future selves

will act according to his current time preferences, is considered. A sophisticated agent, i.e. an agent

who perfectly foresees that his time preferences change over time, is then considered. Under naïveté,

the timing strategy set by the current self will be formulated viewing future selves as "committed"

to his plan of action. Under sophistication, in contrast, the current self sets the strategy, being

aware that future selves are going to "disobey".7 The resulting timing strategy then takes into

account the sub-optimality, from the present self �s time perspective, associated with the timing

strategies set by his future selves.

3.1 An exponential landowner

The landowner discounts exponentially future payo¤s8 at the constant discount rate � > �.9

Assume that it is currently worth keeping land in rural use, i.e. R > R� where R� is the revenue

threshold triggering land development.

7The present study focuses on "consistent planning�, i.e. the agent do not choose plans that are going to be

disobeyed. It does not consider the alternative possibility of selecting a �strategy of precommitment�which would

require committing to a certain plan of action (see e.g Pollak, 1968; Strotz, 1956).
8The analysis in this section is consistent with the limit case where � ! 1 in Eq. (2).
9This restriction is needed in order to ensure convergence. Note that if � � � land development would be never

optimal.
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Using standard arguments, in the continuation region R > R�, the value of land, V (R), is the

solution of the following problem:

V (R) = max
R

n
P;Rdt+ e��dtE [V (R+ dR)]

o
; (3)

By Ito�s lemma, Eq. (3) can be rearranged as:

(1=2)�2R2V 00(R) + �RV 0(R)� � = �R; for R > R�: (3.1)

Solving Eq. (3.1) yields the following proposition:

Proposition 1 Under exponential discounting,

i) land development occurs when revenues from rural land use reach the threshold

R� = [=( � 1)]P (�� �); (4)

ii) the value of land is equal to:

V (R;R�) = [P �R�=(�� �)](R=R�) +R=(�� �); (5)

where  is the negative root of the characteristic equation �() = (1=2)�2(� 1)+��� = 0.

Proof. See section A.1 in Appendix.

Examining the threshold in Eq. (4), it can be seen that:10 i) the higher the expected growth

rate, �, for returns from rural uses, the lower the critical threshold and the later, in expected

terms, land is converted in urban use, i.e. @R�=@� < 0; ii) as returns from rural uses become more

volatile, the critical threshold is lowered and land development is postponed, i.e. @R�=@�2 > 0; iii)

the higher the discount rate, the earlier land is converted, i.e. @R�=@� > 0; and iv) the higher the

future net returns from urban use, the earlier land is converted, i.e. @R�=@P > 0.

In Eq. (5), the �rst term represents the value of the option to develop land, i.e. the net returns

from development, P; minus the present value of forgone returns from rural land use, R�=(�� �).

Note that this payo¤materialises only if R reaches R�. Hence, consistently, the payo¤ is discounted

using the stochastic discount factor (R=R�)� which accounts for the probability of hitting R�. The

10These results are pretty standard in the literature, see for instance Capozza and Helsley (1990) and Capozza and

Li (1994).
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second term in Eq. (5) is the expected present value of returns from rural land use. This would be

the value accruing to the landowner if the condition triggering land development were not achieved.

In this respect, note that as R� ! 0, the value of the option to develop vanishes as, by Eq. (1),

R(t) > 0 and limR�!0 V (R;R�) = R=(�� �).

3.2 A hyperbolic naïve landowner

The present self i discounts by e��dt any payo¤ accruing in the time interval (s; si+1) and by

�e��dt the pay-o¤s accruing in the interval [si+1; 1). Under naïveté, self i believes that the entire

sequence of successive selves, i.e. selves in the interval [si+1; 1), will take decisions concerning

the destination of land according to his own time preferences, i.e. Di(s; t). This implies that self

i views these selves as standard exponential discounters using � as discount rate and having the

following plan of action:

keep land in rural use, if R > R�;

sell land, if R � R�:
(S.1)

Self i solves the land development problem on the basis of his beliefs and sets Rn as the critical

threshold. If R(t) hits Rn before the next self is born, self i cashes the �ow of rents accruing up

to the land sale plus the sale net pay-o¤ P . Otherwise, if self i+1 is born before R(t) hits Rn, self

i bene�ts from the �ow of rents accruing in the period (s; si+1) plus the expected present value of

the pay-o¤s cashed by future selves. Consistently with his beliefs, i.e. future selves developing at

R�, this continuation value is equal to:

V nc (R;R
�) = � � V (R;R�)

Assume that it is currently worth keeping land in rural use, i.e. R > Rn. The present self i must

then solve the following problem:

V n (R) = max
R
fP;Rdt+ e��dtE

h
e��dtV n(R+ dR)

i
+
�
1� e��dt

�
E
h
e��dtV nc (R+ dR;R

�)
i
g: (6)

By Ito�s lemma, Eq. (6) can be rearranged as:

(1=2)�2R2V n 00 (R) + �RV n 0 (R)� �V n(R) = �fR+ �[V nc (R;R�)� V n(R)]g: (6.1)

Solving Eq. (6.1) yields the following proposition:
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Proposition 2 Under hyperbolic discounting and naïve beliefs,

i) the land development threshold Rn is the solution of the following equation:

�[(� � )=(� � 1)][P �R�=(�� �)](Rn=R�) + �[Rn=(�� �)]� [�=(� � 1)]P = 0; (7)

ii) land is, in expected terms, developed earlier than under exponential discounting, i.e. Rn >

R�;

iii) the value of land is equal to:

V n(R;Rn; R�) = fP � �[P �R�=(�� �)](Rn=R�) � �[Rn=(�� �)]g(R=Rn)�+

+�[P �R�=(�� �)](R=R�) + �[R=(�� �)]; for R > Rn; (8)

where � = (�+����)=(�+���) � 1 and � is the negative root of the characteristic equation


(�) = (1=2)�2�(� � 1) + �� � (�+ �) = 0.

Proof. See section A.2 in Appendix.

The critical threshold Rn set by a hyperbolic naïve landowner is higher than that set by an

exponential landowner. This implies that, in expected terms, land is developed earlier. This makes

sense considering that, due to his present-biased time preferences, the value of keeping open the

option to develop has lower value for self i. Note in fact that the value associated with this option

when held by his future selves, i.e. the �ow of rents accruing up to the land sale plus the sale net

pay-o¤ P; is lowered by the terms � < 1 and 0 < � < 1, respectively. Hence, the optimal timing

strategy for self i is anticipating his future selves by setting a higher threshold for exercise of the

option to develop. Note that dRn=d� < 0 and dRn=d� > 0. This means that the higher the present

bias, i.e. the lower � and/or the higher �, the earlier land development occurs.

Finally, note that the timing strategy set by a hyperbolic naïve landowner is based on the belief

that his future selves are committed to S.1, i.e. the timing strategy set by the current self. This

belief is, of course, unfounded. In fact, as soon as the next self i + 1 is born, he will not adopt

the threshold R� as believed by self i, but will set his timing strategy on the basis of his own time

preferences, i.e. using Di+1(s; t). Given that, by assumption, the sequence of selves is in�nite and

naïveté persistent, each newly born self faces the same decision problem solved above for self i.

Hence, it can be concluded that the actual critical threshold for exercise of the option to develop

land is unique and equal to Rn > R�.
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3.3 A hyperbolic sophisticated landowner

A sophisticated self i has perfect foresight and anticipates that his future selves may later revise

his plan of action. Hence, his plan should be set taking into account that, from his time perspective,

future selves�timing strategies may be sub-optimal. In the present frame, the landowner is viewed

as a sequence of in�nite selves each having their own time preferences, i.e. Di(s; t). However,

as each self is followed by an in�nite number of selves, the land development problem that each

generic self must solve is the same. Hence, as they would all consider optimal developing land when

the same critical time threshold is reached, their timing strategy can be determined by imposing

stationarity to the solution of the underlying non-cooperative intra-personal timing game.

Consider the generic self i and denote i) by eR his conjecture about the critical development

threshold set by his future selves and ii) by g( eR) his own critical development threshold. Note
that, as his timing strategy must be consistent with his beliefs, the threshold g( eR) is a function of
the conjectured threshold eR.

Future selves have the following plan of action:

keep land in rural use, if R > eR;
sell land, if R � eR: (S.2)

Hence, as above, given S.2 and his time perspective, self i�s continuation value is equal to:

V sc (R; eR) = �f[P � eR=(�� �)](R= eR) +R=(�� �)g.
Assume that R > g( eR). The present self i must then solve the following problem:
V s (R) = max

R
fP;Rdt+ e��dtE

h
e��dtV s(R+ dR)

i
+
�
1� e��dt

�
E[e��dtV sc (R+ dR; eR)]g; (9)

By Ito�s lemma, Eq. (9) can be rearranged as:

(1=2)�2R2V s 00 (R) + �RV s 0 (R)� �V s(R) = �fR+ �[V sc (R; eR)� V s(R)]g: (9.1)

Solving Eq. (9.1) gives:

V s(R;h( eR); eR) = fP � �[P � eR=(�� �)](g( eR)= eR) � �[g( eR)=(�� �)]g(R=g( eR))�+
+�[P � eR=(�� �)](R= eR) + �[R=(�� �)]; for R > g( eR); (9.2)
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where g( eR) is the solution of the following equation:
�[(� � )=(� � 1)][P � eR=(�� �)](g( eR)= eR) + �[g( eR)=(�� �)]� [�=(� � 1)]P = 0: (9.3)

By imposing the stationarity condition g( eR) = eR = Rs, it can be shown that:
Proposition 3 Under hyperbolic discounting and sophisticated beliefs,

i) the land development threshold is

Rs =
� + �( � �)

�(� � 1) + �( � �)P (�� �); (10)

ii) land is, in expected terms, developed earlier than under naïve beliefs, i.e. Rs > Rn, and

R� < Rs < R�� = [�=(� � 1)]P (�+ �� �); (10.1)

iii) the value of land is equal to:

V (R;Rs) = (1� �)f[P �Rs=(�+ �� �)](R=Rs)� + [R=(�+ �� �)]g+

+�f[P �Rs=(�� �)](R=Rs) + [R=(�� �)]g; for R > Rs (11)

Proof. See sections A.2 and A.3 in Appendix.

The critical threshold, Rs, is increasing in the degree of present bias, i.e. dRs=d� < 0 and

dRs=d� > 0. In the limit cases � ! 1 and � ! 0; the threshold converges toward R�and R��, i.e.

the critical thresholds that would be set by an exponential discounter using � and �+� as discount

rates, respectively. The threshold Rs is higher than R�. As for the case of a naïve landowner,

this is again due to the need for avoiding, by killing the option, the passage of self i�s holdings,

i.e. the �ow of rents plus the option to develop, to future selves. In this respect, note that under

sophistication the incentive for anticipating future selves is even higher and leads to the de�nition

of a threshold Rs higher than that set by a naïve landowner. This makes the actual exercise by self

i of the option to develop even more likely than under naïveté. The reasoning behind this result is

straightforward. Self i in fact, being aware of his time inconsistency, fully internalises the cost of

sub-optimal (from his time perspective) timing strategies set by his future selves. This cost makes

the value associated with holding the option to develop even lower than for the case of a naïve

landowner. Last, the threshold Rs is lower than R��, i.e. the threshold corresponding to the case
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where the arrival of the next self would, as � ! 0, substantially absorb any value associated with

self i�s holdings.

Finally, the value function in Eq. (11) results from the weighted sum of the two value functions

that an exponential discounter would have using � + � and � as discount rates, respectively, and

�xing Rs as the threshold for exercise of the option to develop. This is of course consistent, as

clearly illustrated by Eq. (2.1), with the expected discount rate associated with the time preferences

of the sophisticated hyperbolic agent considered.

4. Conclusions

This paper examines the implications of hyperbolic time preferences for the timing of devel-

opment of rural land. It extends the previous model by Salois (2012) in order to account for i)

uncertainty about payo¤s associated with the asset land and ii) self-awareness about the planning

time inconsistency implied by the assumed time preferences. The results show that the impact of

option value considerations leading, as uncertainty increases, to the postponement of land devel-

opment is lower under hyperbolic time preferences. In fact, due to the present bias induced by the

implicit time-declining discount rate, the value associated with holding open the option to develop

is lower and, as a consequence, the hyperbolic landowner prefers earlier land development than in

the case of an exponential landowner. It is found that a sophisticated hyperbolic landowner sets a

higher threshold for exercise of the option to develop compared with a naïve landowner. In fact,

a sophisticated landowner, being aware that the plan initially set may be later revised, sets his

timing strategy by fully internalising the cost associated with the sub-optimality of future changes

in the strategy. In contrast, this cost is totally missed by a naïve landowner, who believes that the

development timing strategy initially set would be not violated. Hence, a further argument rushing

land development emerges under sophistication.

These �ndings refer to land development problems, but may also prove useful for other issues

characterising land-use change, such as farmland abandonment, land conservation and competition

for land for cultivation of food or energy crops.11

11See Nishihara (2002), Schatzki (2003) and Song et al. (2011), respectively.

12



Appendix

A.1 Exponential discounting

As standard, to guarantee optimality,12 the solution of the di¤erential Eq. (3.1) must meet the

following value-matching and smooth-pasting conditions:

V (R�) = P; V 0(R�) = 0: (A.1.1-A.1.2)

A candidate solution for Eq. (3.1) takes the form:13

V (R) = kR +R=(�� �); (A.1.3)

where k is a constant to be determined and  is the negative root of the characteristic equation

�() = (1=2)�2( � 1) + � � � = 0.

Substituting Eq. (A.1.3) into Eq. (A.1.1) and Eq. (A.1.2) yields:8><>: kR� +R�=(�� �) = P;

kR��1 + 1=(�� �) = 0:

Solving this system gives k and R�. Plugging k into Eq. (A.1.3) yields Eq. (5).

A.2 Hyperbolic discounting

Eq. (6.1) and Eq. (9.1) are technically similar. Proceed by solving �rst the underlying common

problem and then characterising the solution according to the assumed beliefs concerning future

selves�time preferences.

The equation to be solved is:

(1=2)�2R2V q 00 (R) + �RV q 0 (R)� (�+ �)V q(R) (A.2.1)

= �fR[1 + ��=(�� �)] + ��f[P �Rq=(�� �)](R=Rq)g

12See Dixit and Pindyck (1994, Ch. 4).
13The solution for the homogeneous part of Eq. (3.1) should have the form Vh(R) = k1R

1 + k2R
2 where k1 and

k2 are constants to be determined while 1 > 0 and 2 < 0 are the roots of the characteristic equation �() = 0:

However, as R!1; the value of the option to develop goes to zero. Thus, as 1 > 0; then k1 must be zero, otherwise

limR!1 Vh(R) =1:
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where

q = n and R
n
= R�, if the agent is naïve,

q = s and R
s
= eR, if the agent is sophisticated.

Suppose that the particular solution for Eq. (A.2.1) takes the form V q(R) = c1R+c2R: Substitut-

ing this candidate form and its �rst two derivatives, @V q(R)=@R = c1R�1+c2 and @2V q(R)=@R2 =

c1( � 1)R�2 into Eq. (A.2.1) yields:

f[(1=2)�2 ( � 1) + � � �]� �gc1R + [�� (�+ �)] c2R (A.2.2)

= �fR[1 + ��=(�� �)] + ��f[P �Rq=(�� �)](R=Rq)g

The coe¢ cients c1 and c2 can be determined by solving the following two equations:

f[(1=2)�2 ( � 1) + � � �]� �gc1 = ���[P �Rq=(�� �)](1=Rq)

[�� (�+ �)] c2 = �[1 + ��=(�� �)]

Solving both equations yields:

c1 = �[P �Rq=(�� �)](1=Rq)

c2 = [1 + ��=(�� �)]= (�+ �� �) = �=(�� �)

where � = (�+ �� � �)=(�+ �� �) � 1:

The general solution then takes the form:14

V q(R;R
q
) = kR� + �[P �Rq=(�� �)](R=Rq) + �[R=(�� �)] (A.2.3)

where k is a constant to be determined and � is the negative root of the characteristic equation


(�) = (1=2)�2�(� � 1) + �� � (�+ �) = 0.

At the critical threshold value, g(R
q
), optimality requires that the following value-matching and

smooth-pasting conditions hold:

V q(Rq;R
q
) = P; @V q(R;R

q
)=@R

��
R=g(R

q
)
= 0 (A.2.4-A.2.5)

14The solution for the homogeneous part of Eq. (A.2.1) should have the form V q
h (R) = k1R

�1 + k2R
�2 where k1

and k2 are constants to be determined while �1 > 0 and �2 < 0 are the roots of the characteristic equation 
(�) = 0:

However, as R!1; the value of the option to develop goes to zero. Thus, as �1 > 0; then k1 must be zero, otherwise

limR!1 V
q
h (R) =1.
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Solving the system [A.2.4-A.2.5] yields:

k = fP � �[P �Rq=(�� �)](g(Rq)=Rq) + �[g(Rq)=(�� �)]g(1=g(Rq))� (A.2.6)

and

�[(� � )=(� � 1)][P �Rq=(�� �)](g(Rq)=Rq) + �[g(Rq)=(�� �)]� [�=(� � 1)]P = 0 (A.2.7)

A.2.1 Naïve beliefs

Substituting q = n, g(R
n
) = Rn and R

n
= R� into Eq. (A.2.6) and Eq. (A.2.7) yields:

k = fP � �[P �R�=(�� �)](Rn=R�) � �[Rn=(�� �)]g(1=Rn)�

and

�[(� � )=(� � 1)][P �R�=(�� �)](Rn=R�) + �[Rn=(�� �)]� [�=(� � 1)]P = 0

Plugging k into Eq. (A.2.3) gives Eq. (8).

A.2.2 Sophisticated beliefs

Substituting q = s and R
n
= eR into Eq. (A.2.6) and Eq. (A.2.7) yields:

k = fP � �[P � eR=(�� �)](g( eR)= eR) � �[g( eR)=(�� �)]g(1=g( eR))�;
and

�[(� � )=(� � 1)][P � eR=(�� �)](g( eR)= eR) + �[g( eR)=(�� �)]� [�=(� � 1)]P = 0:
Then, imposing the stationarity condition g( eR) = eR = Rs yields:

k = fP � �[P �Rs=(�� �)]� �[Rs=(�� �)]g(1=Rs)�;

and

Rs =
� + �( � �)

�(� � 1) + �( � �)P (�� �):

Plugging k into Eq. (A.2.3) gives Eq. (11).

A.3 Timing thresholds: Properties

De�ne the function Z(x) = �[(��)=(��1)][P�R�=(���)](x=R�)+�[x=(���)] �[�=(��1)]P .

Note that Z(x) is convex in x, Z(Rn) = 0 and Z(R�) < 0. Optimality requires that Z 0(Rn) > 0.
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Hence, it follows that R� < Rn. Then, as � > , it can easily be shown that [=( � 1)] <

[� + �( � �)]=[�(� � 1) + �( � �)] < [�=(� � 1)]. This in turn implies that R� < Rs < R��:

Finally, de�ne the function Z(x; ex) = �[(� � )=(� � 1)][P � ex=(� � �)](x=ex) + �[x=(� � �)]
�[�=(� � 1)]P . Denote by g(ex) the solution of the equation Z(g(ex); ex) = 0: Totally di¤erentiating
with respect to ex yields:

�[(� � )=(� � 1)]f�1=(�� �) + [P � ex=(�� �)][(1=g(ex))@g(ex)=@ex� (=ex)]g(g(ex)=ex)
+�(@g(ex)=@ex)=(�� �) = 0

Rearranging gives:

@g(ex)=@ex = �[(� � )=(� � 1)](g(ex)=ex)ex( � 1)
�[(� � )=(� � 1)][P (�� �)� ex](g(ex)=ex)�1 + �ex(R�ex � 1) < 0, for R� < ex

Note that:

Z(Rn;R�) = Z(Rs;Rs) = 0

Hence, as R� < Rs, it follows that Rn < Rs.
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