Golv för bättre välfärd hos mjölkkor

Av: Huibert Oostra
 Michael Ventorp
 Anders Herlin
<table>
<thead>
<tr>
<th>ISBN</th>
<th>91-576-7150-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copyright</td>
<td>Författarna, JBT, SLU</td>
</tr>
<tr>
<td>Ansvarig utgivare</td>
<td>Institutionen för jordbruks biosystem och teknologi</td>
</tr>
<tr>
<td>Tryck</td>
<td>SLU Förvaltningsavdelningen, Reproeheten, Alnarp</td>
</tr>
<tr>
<td>År</td>
<td>2006</td>
</tr>
<tr>
<td>E-post</td>
<td>info@jbt.slu.se</td>
</tr>
<tr>
<td>Hemsida</td>
<td>http://www.jbt.slu.se</td>
</tr>
</tbody>
</table>

Skriften har finansierats med KULM medel från Jordbruksverket
Golv för bättre välfärd hos mjölkkor

Inledning

I liggbåsstall får korna och deras ben och fotter en viss lättnad när de befinner sig i liggbåsen, förutsatt att dessa är riktigt utformade. Därför är ett bra underlag i liggbåsen viktigt så att korna trivs där.

Även om golvet har en mycket stor inverkan, finns det andra faktorer som påverkar risken för försämrad klöv- och benhälsa, till exempel djurets ålder, fysiologiska status, födernings- och dess kvalitet. Även skötaren har en viktig roll. Att i tidigt stadium upptäcka ett avvikande beteende eller andra tecken på sjukdom kan spara mycket lidande och pengar.

Hälta är i andra hand också ett stort ekonomiskt problem. Även om mastit anses vara den mest kostsamma sjukdomen inom mjölkproduktion kommer hälta eller andra problem med ben och klövar på en klar andra plats. Kor med försämrad klöv- och benhälsa uppvisar ofta ett annat beteende
än friska kor. Förutom att de går sämre, går de mindre, spenderar mera tid i liggbäset och är kortare tid vid foderbordet.

Att de går mindre är framförallt viktigt om de mjölkas i ett automatiskt mjölkningsystem (AMS). Här är en fungerande kotrafik mycket viktig för att systemet ska fungera. Kor som är hälti i en AMS har inte enbart svårare att uppsöka mjölkningsbäset, de fungerar också som bromsklossar för de andra korna i systemet eftersom de står stilla mera och inte kan förflytta sig så snabbt.

Det är svårt att uppskatta hur mycket en hälta kostar, men beräkningar på 3000 till 5000 kr finns. Förutom de direkta veterinär-, medicin- och verkningskostnaderna, har man också andra indirekta kostnader såsom minskad mjölkproduktion och minskad fruktsamhet.

Klövens uppbyggnad

Sett från sidan består klövarna av en vägg, vilken i sin tur består av en tå, en yttre och en inre sida, en trakt och en ball [38]. Klövbenet, strålbenet och nedre delen av kronbenet ligger innanför klövkapseln [38], se Figur 1. I det lilla utrymmet mellan klövben och klövkapsel finns köttkläven som är nödvändig för näringsförsörjningen av såväl de hornbildande cellerna som skelettet [38]. Skador på denna vävnad orsakar mycket blödningar och smärta.

Kornas vikt tas primärt upp av klövkapselns vägg. Därför måste denna vara mycket stark, samtidigt som den ska vara rörlig för att möjliggöra ett kontinuerligt glidande av klövkapselns vägg nedåt mot slitytan vartefter klöven växer till [38].

I klövkapseln finns också en fettrik, elastisk vävnad (elastiska putan). Denna vävnad tar upp stötarna när kon går och skyddar sulläderhuden från klämsskador. Denna elastiska vävnad kan dock skadas vid långvarig belastning, vilket kan leda till allvarliga skador i sulan, till exempel klövsulesår [38]. Sammansättningen av fettet i elastiska putan skiljer sig något hos ungdjur gentemot hos vuxna och man antar av den anledningen att unga djur kan vara känsligare för belastning än äldre.

Vikten av golv för beteende

Vikten av att rora sig

Korna i stallet måste gå för att ta sig till vattentråg, foderbord, liggbas, att ha kontakt eller för att fly från andra kor, samt att visa brunst genom sitt beteende. Mjölkkor har en inbyggd motivation för att rora på sig, denna motivation ökar med tiden som ett djur hålls kvar på en viss plats. Kor kan rora sig över mycket stora områden om de är i sin naturliga miljö. Men även mjölkkor behöver gå mellan 2-4 kilometer per dag för att bibehålla god hälsa [1, 46]. Kor i lösdrift kan gå dessa 2-4 kilometer [54]. Framförallt kor som är låga i rang går mycket när det finns färre liggbas än kor [46].

En studie från Danmark visar att kor går 2,5 kilometer under sommaren och endast 0,8 kilometer under vintern [32]. Liknande resultat redovisar en annan studie [46] som också rapporterar att kor går mest dagtid, och då framförallt i gryningen och skymningen. Individuella egenskaper såsom ålder, kön, ras och brunst påverkar också hur mycket kon går på en dag [46].

Golv i lösdriftstall är idag nästan uteslutande gjorda i betong. I Sverige och större delar av övriga Europa är dränerande golv i form av betongspaltgolv en mycket vanlig

Vikten av vila
Kor ligger mycket. När de ligger vilar de inte bara, de idisslar och producerar också mjölk. Ben och klövar kan under vila slippa belastningen från kroppstyngden. Forskningen har inte bara visat att det är viktigt för kor att vila utan även att kvaliteten på viloplatsen är mycket betydelsefull. Kor som är ute på bete ligger många gånger längre än de som är inomhus. Detta gäller så väl under natten som under dagen. En studie har visat att kor tenderar att ligga mera i grupp och under längre perioder när de är ute på bete, samtidigt stod de betydligt kortare än om de är inomhus. Den kortare liggtiden inomhus kan vara en indikation på att liggbäsen inte var tillräckligt bekväma. Kor måste vilja ligga minst 10 timmar per dag innan man kan tala om acceptabel komfort för korna[58].

Golvets egenskaper

Golvets nötning av klövarna
Golvets nötning av kornas klövar behövs för att hålla klövarna i god form och minska risken för förvuxna klövar. En klöv växer i genomsnitt ca 5 mm/månad [39, 48]. En alltför kraftig nötning gentemot tillväxten kan dock ge en för tunn klövsula och därmed risk för inflammatoriska reaktioner [2, 14]. Till en viss grad anpassas tillväxten i klöven till nötningen.

Resultat från Alnarps golvlaboratorium [71] visar att det var mindre slitage på klövarna på de kor som gick på gummigolv jämfört med de kor som gick på betongspltgolv, därmed försennes den mindre slitage. Klövsulans form på golvets nötning kan därigenom öka, den naturliga formen på sulan, som gör att risken för överbelastning på sulan minskar. Å andra sidan innebär den minskade förslitningen att man får verka oftare och därmed får ökade kostnader för verkning om man har gummigolv. Samtidigt har man sett att klövarna slits för mycket om korna går på gjutasfält.

Golvens hårdhet
Ett hårt golv på gångytan kan ge störningar i djurens rörelsemönster och skador till följd av överbelastningen i form av högt tryck mot klövarna [64]. Skador i klövarna till följd av överbelastning, speciellt kring kalfing, är ett viktigt inledande faktor för utveckling av klövlidanden och hältor [52, 53, 74]. Golvets hårdhet är kanske den viktigaste miljöfaktorn för fångrelaterade sjukdomar. Mjuka golv ger i regel gott grepp för klövarna samtidigt som de säkerställer en stor kontaktyta mellan klöv och underlag. Man har i flera studier visat att mjuka golv ger färre klövlidanden [27, 62]

Golvens halkighet
Den kanske viktigaste egenskapen hos golv i gångar är med hänsyn till djurens behovs
golvet är. Hala golv anses allmänt vara en av huvudorsakerna till hältor och klövsjukdomar, framförallt sjukdomar som relateras till att klövhalvorna säras på grund av halkigheten. I extrema fall kan hala golv orsaka att korna halkar omkull, vilket kan leda till traumatiska skador såsom benbrott. Ett halt golv kan också medföra att korna går onaturligt och att beteendet förändras [17, 75]. Exempel på detta är att korna rör sig i mindre grad mellan foderbord och liggplats, att ridning i samband med brunstiga kor minskar och att korna slickar sig själva i mindre omfattning [19].

Golvens ytprofil

Golvens ytprofil är ett ofta använt begrepp för att beskriva olika egenskaper hos golv. Begreppet inkluderar golvens skrovlighet eller strävhet, struktur eller mönstring, nivåskillnader, öppningsarea vid dränerade golv och graden golvlutning. Framför allt dränerande golv såsom spaltgolv kan orsaka klöv- och benskador genom att medföra ojämn belastning på klöven eller att klövar fastnar i springor.

Golvens ytprofil är även förknippad med golvkaraktäriska som dräneringsförmåga, lättheten att rengöra, täthet och motstånd mot mekanisk och kemisk nedbrytning. Dessa karaktäriska är mer relaterade till golvets beständighet och ekonomi än djurens välbefinnande.

Golvytans nedsmutsning och fuktighet

Beteende på olika golv

På Alnarp Mellangård har man haft tillgång till ett unikt golvlaboratorium. Här har man studerat inverkan av olika golv på bland annat kornas beteende. I en studie har man undersökt inverkan av betongsplattgolv, gjutasfalt och gummingolv [41]. Det visade sig att korna som gick på de hårdare golven (betongsplatt och gjutasfalt) låg borttåt två timmar längre per dygn än korna som gick på det mjuka underlaget (gummimatta). En förklaring är att korna inte behövde ligga ned för att ”vila” ben och fotter i samma utsträckning när de gick på mjukt golv, vilket ökade risken för klöv- och benskador.

Samma studie visade att korna ofta stod med frambenen i liggbäset, medan de hade ett eller båda bakbenen i gödselbäset. En förklaring för detta är att korna försöker anpassa sig till ett obekvämt liggbäse. Detta kan vara fallet om till exempel nackbommen är placerad för långt tillbaka så att korna inte kan stå bekvämt i liggbäset. Att ha bakbenen i gödselbäset innebär en ökad belastning på bakklövarna, samt att de står längre i gödsel och urin [63]. För att få kor att stå i liggbäset även med bakfötterna, kan man flytta fram nackbommen. Detta ökar dock risken för att korna kan komma så pass långt fram i liggbäset att de kan gödsla där. Detta ökar risken för mastit [31].

Det fanns indikationer på att korna i grupperna med gjutasfalt och gummingolv blev störda i sitt beteende av gödselskraporna, framförallt när de stod och åt. När skrapan gick förbi backade de bort från foderbordet för att kunna kliva över skrapan. Efter att skrapan hade passerat gick de tillbaka till foderbordet [41]. Andra undersökningar har visat att graden av störningar beror på skrapornas utformning och drift [25].

Nyligen har man jämfört 5 olika golvunderlag i Sverige. Dessa underlag var: helt betonggolv med och utan gummimatta, betongsplattgolv med och utan gummimatta.
och ett golvunderlag som bestod av sand [70]. Korna gick mycket saktare med kortare steg på spaltgolvet utan gummimatta jämfört med när de gick på sand. På ett helt betonggolv tog de också kortare steg jämfört med om de gick på sand, men de gick lika fort. När de gick på gummimatta tog de större steg och gick fortare än om de gick på ett betongunderlag.

Från denna och andra studier [27] kan man dra slutsatsen att kor går bättre på gummigolv jämfört med om de går på betonggolv. Dessutom föredrar korna helt klart att gå och stå på mjukt gummigolv [69], vilket är förståeligt.

Praktiska mätmetoder

Olika golv och utvecklingen av nya golv

Dränerande golv

Utomlands har efterföljaren till enkelbalken varit tvillingbalkar, vilka gav större stabilitet och krävde mindre förstärkning i form av armering. Kraven på ökad kvalitet har sedan lett till utvecklingen av spaltgolvselement (kassetter). Elementen ger god stabilitet enligt vissa forskare, men kräver maskinell placering [5].

Spaltgolvselement har i fält visat sig ge betydligt lägre frekvens klövlidanden, i form av till exempel sjukliga förändringar i ball och klövsula, än spaltgolv med enkelbalkar. En förklaring till detta kan vara att golven med element lättare blir plana. Även relativt små nivåskillnader mellan till exempel spaltgolvsbalkar kan ge höga och ogynnsamma punkttryck på klövarnas undersida [26].

Spaltgolvets dimensioner

Spaltgolvets dimensioner inverkar på golvets dränerande förmåga och hur klöven belastas. Ju bredare stav och ju smalare spalt, desto mindre belastning [12], men desto sämre dränerande förmåga [45]. Utformningen av spaltgolvet är därför i regel en kompromiss mellan risker för klövskad och golven dränerande förmåga [9].

För vuxna djur får, enligt de svenska djur-skyddsbestämmelserna [55, 56, 59] största andelen öppningar i spaltgolv vara högst 28 % och spalten högst 35 mm bred.

De europeiska riktlinjerna för vuxna nötkreatur (CEN, 1996) anger 90-160 mm stavbredd och 30-35 mm spaltöppning. Om spaltöppningen är bredare än 35 mm är risken stor att klövarna glider ned i spalten [16].

En viktig parameter för golvets dräneringsförmåga är andelen öppningsarea av totala golvarea, dvs. öppningsandelen. I försök vid JBT var öppningsandelen helt avgörande för golvets förmåga att släppa igenom träd från mjölkande kor om spaltvidden varierades mellan 20 – 50 mm. För sinkor och ungdjur som har lite fastare träd berodde dräneringsförmågan på både öppningsandelen och spaltvidden [36].

Vid stavbredd 125 mm har man visat att den dränerande förmågan är ungefär lika stor vid spaltvidder mellan 30-45 mm [66]. Med smalare spaltvidd än 30 mm men bifbehållen stavbredd sjunker dräneringsförmågan avsevärt. Ett försök med att kombinera 125 mm breda enkelbalkar med 150 mm bred gallerdurk av stål i spalterna har inte givit någon ökad dräneringsförmåga gentemot ett betonggolv med 120 mm stavbredd och 40 mm spaltvidd [66].

I ett försök i en praktisk mjölkbesättning jämfördes ett betongspaltgolv med 100 mm stavbredd och 30 mm öppning, dvs. ca 23 % öppningsandel, med 125 mm stav och 400 spalt, dvs. ca 24 % öppningsandel. Golven var ungefär lika rena, men korna gick bättre på spaltgolvet med 100 mm stavbredd [51].

Minskas spaltbredden måste således också stavbredden minskas för att andelen öppningsarea ska bibehållas. Med hänsyn till såväl belastning på klövarna som dräneringsförmåga bör man ha en spaltvidd på 25-30 mm i kombination med 80 mm stavbredd för vuxna nötkreatur [16]. Denna mätkombination mellan stav och spalt är vid betongspaltgolv och normala spännvidder i liggståll lättast att åstadkomma med betongelement.
Skrapning av spaltgolv

Rengöring av spaltgolv med skrapor är möjlig och påverkar givetvis de hygieniska förhållandena på golvet. Skrapningen innebär emellertid ingen betydande minskning av ammoniakemissionen [42], även om pilotstudier vid JBT har visat att ammoniakemissioner från själva staven minskar när spaltgolv skrapas. Skrapor på spaltgolv används ännu inte så ofta ute i praktiken. Troligen är det för att skrapor och skrapning medför en mer kostnad på ett golv som är ämnat att bli rengjort genom djuren. Men att djuren ska hålla golvet rent genom att trampa ned gödseln genom spalten innebär att djuren måste förorena sina fötter!

I holländska studier har man visat att skrapor på spalt minskar förekomsten av framför allt infektions sjukdomar [62]. Exempelvis var risken för *Digital dermatitis* ("smittsam klövröta") nästan hälften så stor om man hade skrapor på spalt.

På Alnarps golvlaboratorium har man undersökt effekten av att ha skrapor på spaltgolv. Resultaten från denna studie visar att mängden gödsel inte bara minskar på spaltgolv utan också i liggbåsen där gödselmängden reduceras med 45 %. Korna som gick i de avdelningar där man hade skrapor på spaltgolv hade också mycket renare juver [37].

Spolning av spaltgolv

För att minska framförallt ammoniakemissionen, har man provat att regelbundet spola spaltgolv med vatten via spolsystem. Spolningen varannan timme reducerade emissionen med 35 % [42]. Man har genom spolning även fått ett lägre bakterieaktivitet på spaltgolv [33].

För att minska ammoniakemissionen från utrymmen under spaltgolv, har man försett med skrapor, föreslås [66] att man har en väl fungerande urindränering som medför separering av urin och gödsel. Även kylning av gödsel i gödselkulverten har undersökt [8]. Kylningen av gödsel var ett effektivt sätt att sänka emissionen från stallet, som sjönk med 54 %.

Förbättrad beständighet av spaltgolv

Spaltgolv av betong är en skadeutsatt konstruktion på grund av att det har stor yta och liten betongvolym att lägga in arme-
ringen i. För att öka livslängden har flera lösningar utvecklats såsom hög betongkvalitet och spännarmering istället för slakarmering. Det är också tänkbart att armeringen görs i rostfritt stål eller av kolfibribär, men rapporteras i dagsläget inte vara ekonomiskt försvarbart.

Olika ytbehandlingar på spaltgolv av betong, liksom för hela betonggolv, har provats för att öka motståndet mot mekaniska och kemiska belastningar [21, 40, 49, 57, 67]. Ofta är det frågan om olika plastmaterial och livslängden på ytbeläggningen är till betydande del proportionell mot skikt tjockleken [49]. Det finns produkter som kostar alltifrån 10-150 DKK/m² (12 – 190 kr) och som ger betydande förbättring av beständigheten, medan andra produkter ger obetydliga förbättringar [40].

Hela golv

Dränerande golv i form av spaltgolv är en mycket vanlig golvtyp på gångytor i liggbästall, såväl i Sverige som i övriga Europa. Dessa golv har dock medfört relativt stora ammoniakemissioner, framför allt om gödsel och urin har lagrats under spaltgolv. I liggbästall med gödsellagring under spaltgolv, vilket är vanligt i övriga Europa, harrör 50-60% av totala ammoniakemissionen från golven på framför allt gångytor och 40-50% från utrymmen under golvet [7]. Många faktorer påverkar emissionen [7].

Under det senaste decenniet har ammoniakemissionen fått allt större uppmärksamhet. FoU-verksamhet har i linje med detta fokuserats på att minska emissionen. Hela golv reducerar ammoniakavväganden från gödselkällare och gödselrännor under golvet. Att utveckla och använda hela golv istället för spaltgolv var därför ett av de första stegen för att reducera ammoniakavväganden.

Utvecklingen av hela (betong-) golv i transportgångar i liggbästall har framför allt skett i Nederländerna. Man har där testat horisontala och lutande golv [7]. Av de lutande golven har man provat både golv som lutar åt ett håll och golv som lutar åt två håll. Med ett helt golv som lutade mot mitten och utrustat med upp till tre långsäende spår för urindränering kunde man reducera ammoniakavväganden i stallet med 50% i jämförelse med spaltgolv. Detta förutsatte att man inte hade ett gasutbyte mellan flytgödselkällare och stallet.

Mönstrade golv

Av tradition gör man i Storbritannien många gånger mönster i golven med hjälp av spår för att göra golven mindre hala och underlätta urindränering [43]. För några år sedan lanserades ett "nytt" golv i Sverige. Det är ett mönstrat, helt golv som lutar dels mot mitten (i tvärsektionen), dels i golvets längdriktning [28]. Golvet skrąpas ca en gång per timme. Lutningen gör att urinen dräntras och tillsammans med den frekventa skrapningen av golvet hålls golvet rent och torrt enligt uppgift från gårdsägaren.

Forskningen har visat att ett hexagonmönster med 46 mm sida teoretiskt sett är bäst för kons klövar [10]. Om gödsel och urin kan pressas undan under klöven kan friktionen mellan klöv och golv ökas. Detta kan underlätta genom mönstringen i golvet. Mönstringens effekt på friktionen kunde genom mätningar dock inte bekräftas [21]. Man befarade till och med att mönstringen leder till ökad ammoniakavvägning genom att mer urinblandad gödsel blir kvar på golvet [21].

Det är heller inte enkelt att få till en bra mönstring i betongen, om mönstringen görs innan betongen har stelnat, typ s.k. stämming eller med hjälp av mönstrade gummivalv. Risken att man misslyckas kan inte försummas. Det är bland annat svårt att överallt i stallet göra mönstret i just rätt tid då betongen är lagom mjuk.

Det bästa sättet att få en bra mönstring anser vi vara att gjuta det hela golvet med en lämplig ytstruktur och sedan såga upp mönstret med specialmaskiner efter att betongen härdat. Mönstret görs då i rutor eller i mönster av ”ruter ess” (Figur 5).

Spårade golv

För att minska ammoniakemissionen på hela golvv urvecklades i Nederländerna ett i långdriktningen lutande golv med 30 mm djupa och 35 mm breda spår i långdriktningen. Mellan spåren var centrumavståndet 160 mm [68]. Spåren är ämnade att dränera urinen. Golven skrapades varannan timme med en skrapa. Skrapan var försedd med piggar som passade i spåren för att hålla spåren rena, se Figur 6 och Figur 7. I varje spår fanns också hål med jämna mellannorm som befärmade urindräne- ringen ytterligare.

![Figur 5. Mönster i form av ”diamant” eller ”ruter ess”. Avståndet mellan mönsterspåren bör vara c/c 80–100 mm, mönsterspåren bör vara ca 10 mm breda respektive minst 6 mm djupa. Spåren kan göras i rät vinkel eller som här i 60/120 graders vinkel.](image)

De skrapade, spårade golven reducerade ammoniakavgången med 46 % gentemot
traditionella spaltgolv. ”Golven medförde inte att korna rörde sig sämre än de gjorde på ett spaltgolv” [63, 68], dvs. det var ingen förbättring för korna. En nackdel som inte nämnas i dessa rapporter är att fodergrinden behövdes förstärkas eftersom korna kunde sätta klövarna i spåren och utövade ett stort tryck mot fodergrinden utan att de halkade.

Skrapning av hela golv

Man har även provat att skrapa olika typer av hela golv mycket ofta, upp till 96 gånger per dygn. På ett plan, helt golv utan vätskedränering som skrapades var 15 minuter, reducerades ammoniakemissionen med 5 % i jämförelse med att skapa varannan time. Problemet är att skraporna inte bara för bort urin och träck, de sprider också urinen på en större area, vilket förklarar den ringa effekten. Med tätt placerad urindränering kan man minska dessa problem [7]. Renheten på golvet förbättras givetvis genom så täta skrapningar.

En annan fara med skrapor är när de går under grindar eller täckplåt för att släppa ned gödseln i tvärkulvertar. I ett examensarbete vid JBT [13] provades en prototyp av självrensande kulvertgaller som kan såväl minska skaderisken för djur och människor som minska behovet av tvärgångar eller motsvarande.

Spolning av hela golv

Att spola golven med vätska är ett annat sätt att minska ammoniakavgången och att hålla golven rena [22]. I en studie [7] användes 6 liter per ko och dag, vilket medförde en 65 % reducierung av ammoniakemissionen från golvet. I vilken grad golvet blev renare rapporterades inte. Vid 3 m² gångarea per ko uppges att vattenförbrukningen är 13 liter per ko och dag [22]. Spolning av golven medför emellertid en ökad vattenförbrukning och att det behövs en större flytgödselbehållare. För att minska dessa nackdelar har det föreslagits att man använder spillvatten från mjölkrummet [33]. Vad spolning med vatten, som bland annat har en inblandning av mjölk, skulle få för konsekvenser för hygienen i stallet är inte undersökt.

Tillsats av syra

Ureas, ett enzym i träcken som katalyserar nedbrytningen av urea i urinen till ammoo-

Ett annat alternativ för att reducera ammoniakemissionen är att tillsätta (salpeter-) syra till flytgödseln under spaltgolv. Emis-
sionen har därigenom reducerats med ca 40 %.
Blev spaltgolvet därtill spolat med vatten varje timme reducerades emissionen med 55-60 % [33]. Konsekvenser man måste ta hänsyn till vid tillsättning av sal-
petersyra och spolning är att det ökade lag-
ringsbehovet för flytgödsel samt den ökade halten svavel i gödseln.

Andra golvlösningar

Ytbehandling av hela betonggolv

Ytbehandling av hela betonggolv kan påverka golvets egenskaper på flera olika sätt, till exempel att minska golvets åldrande, öka golvets friktionsegenskaper och att urin lättare avleds [67].

Åldrandet i form av ökad halkighet hos (hela) golv som skrapas är ett känt problem. I ett försök med helt betonggolv som skrapades varje timme reducerades Ler-
oux-värdet, ett mätt på golvets friktion, från 71 när det var nytt till 37 efter 6 mån-
der [67]. Genom att lägga ett 6 mm epoxiskikt på ett helt betonggolv, minska
de nötningen av golvet och Leroux-värdet minskade med endast 13 % (från 60 till 52) i stället för med 48 % för obehandlat be-
tonggolv.

I en tysk undersökning ute bland 30 besättningar [50] har golv med epoxibeläggningar i mjölningsbås t o m fått ett ökat SRT-
värde, ett annat mätt för golvets friktion, efter 5 års användning. I samma undersök-
ning har hela betonggolv i lösfritståndssats transportgångar minskat sina SRT-värden från i genomsnitt 70 som nytt till 40 efter mellan 2-5 års användning och ned till 30 för betonggolv som är över fem år gamla. Betong med tegelplätter respektive granitplätter har följt samma utveckling.

Gjutasfalt på betonggolv i transportgångar har däremot klarat åldrandet bra och golven har inte blivit hala lika fort som betonggolv. SRT-värdena för gjutasfalt har sjunkit från ca 85 som nytt till 70 vid 2-5 års användning respektive till 58 efter mer än 5 års användning [50]. Gjutasfaltbelägning uppger dock att det har tagit torrvar för skorpar på en gjutasfaltbelägning lyfts från golvet ett par mm på hjälp av distanser [20]. En fiberduk läggs mellan underliggande (betong-) golv och asfalen för att underlag och beläggning ska kunna röra sig olika.

Även vägasfalt har använts som golvbe-
läggnings i transportgångar. Vägasfalt har emellertid inte provats under tillräckligt lång tid, men SRT-värdet ligger efter 2 års användning på 70 och efter 2-5 år på 60 [50]. Negativa erfarenheter av vägasfalt rapporteras från Tyskland [20], dels problem med hygienen på grund av porositet- ten, dels bristande beständighet. Nackdelen med hög porositet skulle kunna avhjälpas med hjälp av att vägasfalten cementslammas, något som provats med gott resultat i häststall.

Upphöjt golv vid foderbord

Ett upphöjt, helt golv vid foderbordet för att skapa en särskild ätplats är en variant av golvutförrinnning i transportgångar som är placerade mellan foderbord och en liggbäsrad. En sådan lösning sänkte klövarnas vattenhalt [19].

På det upphöjda golvet kan man placera bäsavskiljare så att man får åtbäsk. Åtbäsk har sedan några år in på 90-talet byggts i
svenska lösningsproblems. En undersökning i 13 svenska liggångsstall med ätbås visade att ätbåsen gav gynnsamma resultat med hänvisning till incidensen av hältor och frekvensen av undanträngningar vid foderbordet minskade [3].

Vid försök på Alnarp minskade ätbås undanträngningar från foderbordet till en sjättedel. Dessutom stod fler kor vid foderbordet strax efter utfodringen när man använde ätbås. Utan ätbås fick kor med låg rang vanta med att komma till fodret, vilket dels kan stressa korna, dels kan medföra att det bästa fodret är utplockat innan de ranglåga korna kan börja äta [73].

Har man golv som nöter för mycket på klövarna kan användningen av ätbås med gummitäta mildra nötningen [71].

En idé är att ha ätbås längs ett foderbord som kan kompletteras med ett antal foderliggångsstall [23]. Motivet är att de äldre korna eller andra kor med ben- och klövproblem ska kunna äta och ligga på samma plats och därigenom gå mindre på transportgångar.

Gummerade golv

Alternativ till spaltgolv
Ett alternativ till golv med spalter är betonggolv försedd med hål, runda eller avlånga. Dessa golv sätts lätt igen av stråfoder och strömedel och har en sämre dränerande förmåga än spaltgolv. De avlånga hålen är ur dräneringssynpunkt något bättre än de rundna.

Belastningsskadador på klövar minskar vid användning av golv med hål jämfört med spalt, medan andra klövlidanden ökar på grund av att gönser ligger kvar i större utsträckning [6]. Golv med hål förekommer inte i nutida diskussioner kring golv för nötkreatur om det inte är för att åstadkomma urindränering.

Alternativ till betong
Andra material är plast, trä och metall. Dessa används i ringa utsträckning till vuxna nötkreatur på grund av bristande hållfasthet, beständighet eller att de är för hala. Däremot är gummibläcklade spaltgolv av stål eller trä aktuella [35].

Klövskador, klövsjukdomar och vård
Figur 9. Att se på kornas rygg är ett bra sätt att upptäcka hä lta (Bild publicerad med tillstånd från Christer Bergsten).

Klövverkning

Klövverkning är en förebyggande åtgärd. Hur ofta man ska verka klövarna beror till exempel på golvvunderlag och kons individuella krav. Forskningsresultat antyder att man bör verka korna två gånger per år [38]. Kor med starkt avvikande klövar, som till exempel korkskruvklövar bör verkas så ofta som varann månad.

På gårder där man endast verkar 1 gång/år har man 67 % mer allvarliga klövskador jämfört med gårder där man verkar 2 gånger per år. Verkar man 2 gånger per år minskar också risken för att man kommer att få ”akutkor”

Det finns gårdar som verkar klövarna 3-4 ggr/år - oftast större gårder med mer än 100 djur. Orsaken är ofta att man har hög omsättning på inkalvandade djur och att verkning bör ske före kalvning. På så sätt blir det förebyggande och inte behandlande klövvård.

Fotbad

Klövarna på kor som går i lösdrift kan med fördel badas i ett fotbad. Genom att använda sig av medel som hämmar bakterietillväxt kan man förebygga klövsjukdom [38]. Fotbadet bör vara så pass långt att alla klövar kommer i kontakt med tvättlösningen, det vill säga minst 2,5 meter långt. Det ska heller inte vara möjligt för korna att gå bredvid badet.

Om det finns plats är det bra med två olika fotbad. Det första badet kan fyllas med vanligt vatten och är endast till för att rengöra klövarna, i det andra badet kan man ha en desinfecterande lossning (t.ex. 5-10 % kopparsulfat). Vätskenivån i fotbadet får inte översätta 5 cm. Högre nivåer kan vara skadliga om till exempel kopparsulfatlösningar används [38]. Korna bör gå genom ett fotbad ett par gånger i veckan. Tvättlösningen ska bytas regelbundet, cirka efter 150-200 passager [38].

Ett fotbad kan vara skadligt om det inte sköts rätt, till exempel om man har en för stark tvättlösning, inte byter tvättlösning tillräckligt ofta eller använder det för mycket.

Smittorisk

Risken att få en smitta i en besättning, t.ex. en smittsam klövsjukdom, är störst när någonting förs in. Detta kan vara nya djur, utrustning - till exempel en verkstol, men också besökare.

Nya djur ska hållas 30 dagar i gårdskaran tän. Man bör tänka på att inte gå från gårdskaran tän till stall utan att byta eller rengöra kläder och stövlar. Utrustning som har använts på en annan gård ska vara ordentligt rengjord. Besökare får inte gå in i stallen utan tillstånd. Se till att det finns gårdens egna stövlar och kläder till låns!
Slutsatser

Ett bra golv för kor är:
• ett mjukt golv
• ett golv med ett gott grepp, men som inte sliter för mycket på klövarna
• ett rent och torrt golv
• ett golv med låg ammoniakemission

Ett golv som uppfyller dessa krav är ett golv som befrämjar kornas hälsa och välbefinnande. Torra och rena golv förebygger skador och sjukdomar.

För att uppnå detta kan det vara lämpligt att ha:
• gummi på golven i åtminstone samlingsfålla, gångar till och från mjölkning och gångar vid foderbordet
• skrapa ofta på såväl hela hela golv, varje till varannan timme, som på spaltgolv, ca var tredje timme
• åtbås med gummimatta, framför allt om fodret inte finns tillgängligt dygnet runt, om golvet i gångarna sliter mycket på klövarna samt om det finns skrapor i gångarna vid foderbordet

Referenslista

http://www.jbt.slu.se/publicering/examensarbeten/download.htm
http://www.jbt.slu.se/publicering/examensarbeten/download.htm
http://www.jbt.slu.se/publicering/examensarbeten/download.htm

39 Manson, F. J. & Leaver, J. D. 1988. The influence of concentrate amount on locomotion and clinical lame-

ness in dairy cattle. Anim Product 47, 185-190.

42 Oosthoek, J., Kroodsma, W. & Hoeksma, P. 1990. Betriebliche Massnahmen zur Minderung von Ammoniak-

45 Pfadler, W. 1981. Ermittlungen optimaler Funktionsmasse von Spaltenboden in Milchviehställen. Land-

