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Summary 15 

1. Alder trees (Alnus spp.) are key nitrogen fixing riparian species in the northern hemisphere. 16 

They contribute to several ecosystem services such as, input of nutrient rich leaf litter into stream 17 

food webs, stabilization of banks, provision of habitat for terrestrial and aquatic organisms, and 18 

nitrogen dynamics at local and landscape scales. 19 

2. Recently, substantial declines in alder stands have occurred along streams in Europe and North 20 

America. A major driver has been the invasive oomycete pathogen Phytophthora alni species 21 

complex, which can spread rapidly along stream networks.  22 

3. This review synthesizes information on the pathogen, processes of spread and infection, and 23 
its impacts on alder. We further address the potential ecosystem-level and management 24 
consequences of the decline of alder, and highlight research needs. 25 
 26 
4. The alder dieback caused by P. alni is associated with reductions in shade and quality and 27 

quantity of leaf litter. A decline in the structural integrity of branches and roots further threatens 28 

bank stability. Stream banks dominated by other tree species or no trees at all will result in 29 

ecosystem-level changes both above and below the waterline. 30 
 31 
5. The P. alni taxonomic complex includes different species with varying phenotypes. An 32 
improved understanding of their environmental tolerance, virulence, and evolution, along with 33 
the processes regulating the spread and impacts of the pathogen, would assist in identification of 34 
the riparian and stream systems most vulnerable not only to invasion but also to the heaviest 35 
disease outbreaks and ecosystem-level impacts. 36 
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  37 

6. Within the P. alni complex, the highly pathogenic hybrid species P. x alni is favoured by mild 38 
winters and warm, but not excessively hot summer temperatures suggesting possible changes in 39 
distribution and level of impact under future global climate change. 40 

 41 

Introduction  42 

During the past decades, an increase in outbreaks of invasive fungal and fungal-like diseases has 43 

severely affected native plant and animal species and ecosystems worldwide (Fisher et al., 2012). 44 

Freshwater ecosystems are particularly vulnerable to species invasions, due to the ease with 45 

which organisms, including pathogens, can spread along stream and river corridors as a result of 46 

their inherent connectivity (Richardson et al., 2007; Leuven et al., 2009). Examples of rapidly 47 

expanding pathogens in freshwaters include the crayfish plague Aphanomyces astaci, a major 48 

cause of the ongoing decline of the native Noble Crayfish Astacus astacus in Europe (Alderman, 49 

1996, Holdich et al., 2009), and the chytrid Batrachochytrium dendrobatidis, a zoosporic fungus 50 

contributing to massive declines in amphibian species worldwide (Stuart et al., 2004; Cheng et 51 

al., 2011). However, not only aquatic organisms, but also those living along streams and rivers 52 

are vulnerable to pathogens that spread along river corridors, with riparian plants being 53 

particularly at risk (Cotruvo et al., 2004, Richardson et al., 2007). 54 

During the 1990s, declines of riparian alder trees (Alnus glutinosa and A. incana) were noticed in 55 

several European regions (Brasier, Rose & Gibbs, 1995; Brasier, Cooke & Duncan, 1999; 56 

Brasier et al., 2004). Fungal pathologists pinpointed the novel Oomycete Phytophthora alni 57 

sensu lato (P. alni hereafter) as the cause, a hybrid species complex of unclear origin which has 58 

recently been described as composed of three species P. x alni, P. x multiformis, P. uniformis 59 

(Husson et al., 2015). Nitrogen-fixing alder trees (Alnus spp.) have a number of attributes (Box 60 

1) which make them a key riparian species in Europe, and across large parts of North America 61 

and Asia (Malanson, 1993; Govaerts & Frodin, 1998). Most significantly, alder species produce 62 

high quality, nitrogen rich leaf litter, which enters stream food webs during autumn abscission as 63 

a result of decomposition mediated by microbes and invertebrate detritivores (Handa et al., 64 

2014), and their presence can affect wider nitrogen dynamics (Box 1). Additionally, alder trees 65 

are tolerant of wet habitats, and are characterised by an extensive root structure that both 66 

stabilizes banks (Morgan & Rickson, 1995), and provides habitat for fish (especially fry) and 67 

other organisms (Flory & Milner, 1999; Erős, Botta-Dukát & Grossman, 2003; Brauns et al., 68 

2007). These and other qualities underpin the key roles that alder species play in the ecology of 69 

freshwater ecosystems, especially across Mediterranean, temperate and boreal regions of the 70 

northern hemisphere, and in the delivery of ecosystem services related to nutrient cycling, 71 

ecosystem productivity, and recreational and aesthetic values (Box 1). 72 

The sickening and dieback of alder stands following infection by P. alni thus has strong potential 73 

to have major knock-on effects on running water ecosystems, given the prominence of alder as a 74 

component of riparian vegetation across the northern hemisphere, and the importance of its plant 75 
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litter in the functioning of aquatic food webs (Piccolo & Wipfli, 2002). However, to date, the 76 

effects of P. alni have mainly been assessed and reviewed with the host tree in focus (Brasier et 77 

al., 2004; Claessens et al., 2010; Aguayo et al., 2014), with little consideration given to the 78 

potentially cascading effects on aquatic ecosystems associated with impacted riparian strips.  79 

This review begins with an overview of the pathogen, including its history and characteristics, 80 

processes of spread and infection, impacts on alder and known associations with environmental 81 

variables including river water conditions. Then, we discuss the implications of the loss of alder 82 

from stream riparian vegetation for the structure and function of stream ecosystems themselves, 83 

including potential impacts on stream morphology, diversity, and the functioning of stream food-84 

webs. Finally we highlight knowledge gaps and give suggestions of future research and 85 

management directions, with a focus on disentangling the linkages between the environment and 86 

the level of impact of the pathogen on alder and the wider stream ecosystem. 87 

Phytophthora alni: a novel pathogen of alder trees  88 

Phytophthora alni is a novel pathogen complex arising from within a genus of Oomycota that is 89 

well-known for a number of devastating plant diseases, which together cause large economic 90 

damage worldwide, especially in crop cultivation (Box 2). P. alni was first observed infecting 91 

alder trees in the UK in 1993 (Gibbs, 1995), and subsequently has been reported from several 92 

European countries and a large number of river systems across the continent (Table 1, Fig. 1.). 93 

The pathogen originated from a hybridization event, possibly in a plant nursery (Brasier et al.,, 94 

1999). Initially, several different variants of the pathogen were described, which were later 95 

designated into three different subspecies, P. alni subsp. alni, uniformis and multiformis (Brasier 96 

et al., 2004), recently formally described as species (Husson et al., 2015). The phylogenetic 97 

relationships among the subspecies and the identity of the parent species have been debated. It 98 

has been suggested that the species P. x alni may be a hybrid of the other two species (Ioos et al., 99 

2006); and that P. uniformis may have been introduced to Europe from North America (Aguayo 100 

et al., 2013). Studies have shown that the species display somewhat different properties, 101 

including their degree of frost tolerance and pathogenicity (Brasier & Kirk, 2001; Černý, Filipová 102 

& Strnadová, 2012). For example, P. x alni is more pathogenic than P. uniformis and P. x 103 

multiformis, and whereas P. x alni is regarded frost sensitive, P. uniformis is normally isolated 104 

from cold regions such as central Sweden or Alaska.  105 

Pathways of spread, symptoms of the disease, and present impacts on alder 106 

The mechanisms underlying the rapid expansion of P. alni throughout Europe are poorly 107 

understood. The planting of alder trees from infected nurseries is often pinpointed as the initial 108 

pathway for the introduction of P. alni into new regions (Jung et al., 2007). Human activities like 109 

fish farming, where fish along with substantial quantities of water are moved between 110 

catchments, are also believed to be a disease vector (Jung et al., 2007). Other authors point to the 111 

movement of cattle between river systems (Redondo et al., 2015). Once present in an area, 112 

swimming zoospores of P. alni can disperse from infected roots, which can lead to rapid spread 113 
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through riverine networks (Jung & Blaschke, 2004), and the worst infections are often observed 114 

in trees immediately bordering stream banks (Gibbs, Lipscombe & Peace, 1999). Infection also 115 

appears to be exacerbated after flood periods, when trees are stressed and flood-damage to roots 116 

and stems may be substantial (Strnadová et al., 2010), although high levels of disease incidence 117 

have also been found in non-flooded forest stands (Jung & Blaschke, 2004) 118 

Infection of P. alni on alder is typically observed initially as crown dieback, with the remaining 119 

leaves becoming smaller and yellowish (Fig 2). In contrast, cone production in infected trees is 120 

often higher than that of healthy trees. The pathogen typically infects the tree through the roots 121 

and at the lower part of the stem (Lonsdale, 2003). Thus, bleeding cankers are often observed at 122 

the base of the stem or in between coarse roots (Černý & Strnadová, 2010; Redondo et al., 2015) 123 

(Fig 3). Infected trees seem to be able to survive up to ten years while gradually losing vitality, 124 

although recovery may sometimes occur, especially when cold conditions suppress the pathogen 125 

(Jung & Blaschke, 2004; Jung et al., 2007). P. alni only survives in soil for less than one year in 126 

the absence of host tissue (Jung & Blaschke, 2004), and Elegbede et al. (2010) showed that 127 

recently dead trees (1-3 years) produced very little inoculum.  128 

The magnitude of the decline in alder stands attributable to P. alni can be very high, especially 129 

near river systems. In Sweden, for instance, a recent survey showed that 28% of ca. 168 alder 130 

stands investigated were infected by P. alni, with 45% of the trees in the infected stands showing 131 

symptoms of decline (Redondo et al., 2015). An even higher prevalence was found in Bavaria, 132 

southern Germany, where symptoms were observed in more than 50% of rivers and in 32% of 133 

the stands surveyed (Jung & Blaschke, 2004). Surveys in Hungary and northeastern France 134 

observed P. alni on 30.9%, 17% and 55% of sampled trees respectively (Koltay, 2007; Thoirain, 135 

Husson & Marçais, 2007; Aguayo et al., 2014). Long term monitoring is only available in UK, 136 

where incidence increased from 3% in 1994 to 11% in 2003 (Webber, Gibbs & Hendry, 2004). 137 

However, as pointed out by Fisher et al. (2012), establishing the true magnitude of impacts from 138 

P. alni on European alder stands requires more coordinated monitoring. The reports in Figure 1 139 

and Table 1 give an incomplete picture of the present situation, since detection of the pathogen in 140 

these areas may merely reflect monitoring efforts.  141 

Even though P. alni is the most important causal agent in the observed decline of alders, other 142 

species of Phytophthora may also cause similar symptoms. For instance, the generalist pathogen 143 

P. plurivora has been recurrently observed infecting alders (Jung & Blaschke, 2004; Jung & 144 

Burgess, 2009; Redondo et al., 2015), and other stressors, including flooding, may also induce 145 

alder dieback with some symptoms similar to those caused by infection. Thus there is a need to 146 

confirm the presence of P. alni in suspected cases of infection (Brasier, 2003).  147 

Given the rapid expansion of the pathogen, a key factor for the long-term viability of the alder 148 

population in Europe is the development of natural resistance or tolerance to the disease. In a 149 

recent study, insights on the existence of heritable resistance were identified by (Chandelier et 150 

al., 2015), pointing to the potential of a natural adaptation to the pathogen. Similar results were 151 
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found in UK, where moderate resistance could be identified in some of 15 provenances of alder 152 

studied (Gibbs, 2003). However, whether development of inherent resistance through natural 153 

selection will occur at a sufficient pace to minimize environmental impacts remains to be seen. 154 

Interactions with the biotic and abiotic environment 155 

Interactions between P. alni and its host are likely to depend on additional biotic and abiotic 156 

environmental factors, which can exacerbate or hinder the spread and impact of the pathogen. 157 

For example, temperature strongly influences both the pathogen itself, and subsequent impacts of 158 

the disease (Schumacher et al., 2006). Cold winter conditions, especially involving long periods 159 

of heavy frost, seem to significantly reduce the overwintering survival in P. x alni (Černý & 160 

Strnadová, 2012). Similarly, Redondo et al., (2015) showed that the distribution of P. x alni in 161 

Sweden was restricted to the areas with milder winter conditions, while P. uniformis was 162 

recovered from the whole surveyed area, including areas with harsh winter conditions. Low 163 

temperatures could slow the impact of P. x alni on individual alder stands, and its spread through 164 

catchment areas. In addition, sporulation efficiency, based on number of sporangia, has been 165 

found to be positively correlated with temperature (Chandelier et al., 2006), and summer water 166 

temperature in particular has been related to P. alni prevalence in France (Thoirain et al., 2007). 167 

Nevertheless, very warm and hot summer temperatures have been shown to limit disease 168 

incidence (Aguayo et al., 2014). It is also known for some of the Phytophthora species involved 169 

in alder dieback that sporangia production is correlated with increased light conditions (Plourde 170 

& Green, 1982), and it is thus possible that increased levels of light following canopy dieback 171 

might favour further spread of the disease. 172 

The effect of nutrients on the disease cycle is poorly understood. Electrical conductivity of the 173 

water, which reflects concentrations of ions, including nutrient ions, has been shown to affect 174 

zoospore survival in a laboratory study (Kong, Lea-Cox & Hong, 2012). In the field, a 175 

relationship between number of diseased trees and TON in streams was observed in one study 176 

(Gibbs et al., 1999), but no such relationship was seen in another (Thoirain et al., 2007). 177 

However, both studies were correlational, and it is hard to disentangle whether the positive 178 

associations between nutrients and the disease are causal. 179 

Interactions between the pathogen and other organisms in the water or riverbanks have not been 180 

assessed. In particular, it is possible that pre-existing microbial communities might interact with 181 

zoospores, affecting their activity and production, and modulating infection rates, as shown for 182 

other Phytophthora patho-systems (Yang, Crowley & Menge, 2001). Similarly hyperparasites, 183 

microplankton and other organisms feeding on zoospores might also interact with zoospores, 184 

though these interactions have not been quantified (Gleason et al., 2009; Gleason et al., 2014). 185 

Additional environmental stressors, such as insect outbreaks or flooding, may interact with the 186 

impacts of P. alni and accelerate decline in alder stands that may already be under substantial 187 

pressure (Jung, Blaschke & Oßwald, 2000; Jung, 2009). For example, Alnus species are 188 
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vulnerable to attack from several insect pests, including the beetles Agelastica alni, Plagiosterna 189 

aenea and Cryptorhynchus lapathi and the moth Argyresthia goedartella (McVean, 1953; Cech 190 

& Hendry, 2003; Borowski, Piętka & Szczepkowski, 2012), and from other pathogens, such as 191 

the fungi Armillaria spp. and Chondrostereum spp. (Cech & Hendry, 2003). In addition, severe 192 

flooding in the summer growth phase of alders may cause mortality due to anoxia. Even though 193 

alders are adapted to wet conditions, rapidly increasing water levels may nevertheless cause the 194 

oxygen transport to the root zone to collapse (Claessens, 2003). Such damages have been 195 

recorded along several European rivers during flooding after large summer rains during the past 196 

decade (Cech & Hendry, 2003; Vyhlídková et al., 2005). Experimental investigation of the joint 197 

impacts of flooding and P. alni have demonstrated that the combination of these factors can have 198 

particularly deleterious impacts on young alder plants (Strnadová et al., 2010). 199 

Projected consequences of P. alni on stream ecosystems 200 

P. alni is one of several tree pathogens currently causing substantial economic and ecological 201 

damage on riparian trees in Europe. Other notable diseases affecting riparian vegetation include 202 

Dutch Elm disease (O. novo-ulmi), contributing to declines of Ulmus spp., and Hymenoscyphus 203 

fraxineus causing Ash dieback on Fraxinus spp. (Brasier & Buck, 2001; Gross et al., 2014; 204 

Wallace et al., 2015). However, while these other tree species often occur in riparian vegetation 205 

(especially Fraxinus), both elm and ash trees lack many of the unique attributes of alder which 206 

underpin its particular importance for stream and river environments (Box 1). Any change in 207 

species composition of riparian trees can be expected to cause major changes in stream 208 

ecosystems, due to the strong potential influences of differences in functional traits among tree 209 

species on stream ecosystem structure and function (Kominoski et al. 2013). Due to its key role 210 

as a highly moisture tolerant riparian plant influencing both the physical structure of stream 211 

channels (bank stability, root habitat structures, shading) and the biological functioning of its 212 

food webs (as an N-rich detrital energy and nutrient source), dieback of Alnus due to P. alni is 213 

particularly likely to have strong impacts on the structure and function of running waters (Fig. 4).  214 

These impacts are likely to go through distinct stages, depending on the progress of the disease 215 

through affected stands. Initially, the delivery of high quality alder litter into running water 216 

ecosystems will be reduced, reflecting not only wholesale leaf dieback, but also the reduced size 217 

and quality of the affected leaves. This will reduce resource quantity and quality for both 218 

microbial decomposers and detritivores in the stream environment. However, the knock-on 219 

consequences of this are likely to be even more far-reaching. The decomposition of new leaf 220 

litter constitutes only one important linkage in a larger freshwater “litter processing chain” 221 

(Heard, 1994) which regulates the transformation of allochthonous energy sources (chiefly leaf 222 

litter) in headwater streams and its subsequent export to downstream reaches and through the 223 

landscape (Wallace & Webster, 1996; Bundschuh & McKie, in press). The activities of microbes 224 

and detritivores result in the generation of fine particulate organic matter (FPOM) from the leaf 225 

material, most notably in the form of shredder faecal particles (Graça, 2001). This FPOM is 226 

transported downstream and further consumed by detritivores feeding on smaller particle sizes 227 
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(Wallace & Webster, 1996), including filter feeders and collectors (Heard, 1994; Bundschuh & 228 

McKie, in press). These invertebrates are then important components in the diet of vertebrate 229 

predators, including amphibians and fish. Thus, a key question is whether the impairment in 230 

inputs of a high-quality litter species into freshwater ecosystems can be compensated for by 231 

increases in other resources, including other types of leaf litter, or if the loss of alder will alter 232 

nitrogen dynamics and overall productivity at local or larger scales (Goldman, 1961; Piccolo & 233 

Wipfli, 2002; Compton et al., 2003; Wallace et al., 2015)  234 

As the infection spreads through a stand, one of two broad alternatives may occur. Either alder 235 

will be progressively replaced by another riparian plant species, or it will not be replaced, and the 236 

stream will move towards a treeless state (Fig. 4). Generally speaking, the alternative tree species 237 

in the case of alder decline are few, and lack some of the characteristic attributes of alder. This 238 

situation is especially critical in boreal regions where the pool of candidate replacement riparian 239 

species (e.g. Salix) is limited by more severe climatic conditions, in contrast with more Southern 240 

locations where a more diverse range of alternatives may exist, including alien tree species. An 241 

example of the latter is Caucasian wingnut tree, Pterocarya fraxinifolia, which in some British 242 

streams has become the dominant riparian tree species (Riley et al., 2006). 243 

Replacement of alder frequently entails a change in the dominant riparian vegetation, most often 244 

willow (Salix sp.). Salix litter is neither as nitrogen rich as Alnus, and often not as palatable for 245 

consumers (Wipfli & Musslewhite, 2004; Going & Dudley, 2008). Increases in the abundance of 246 

more refractory litter will slow the overall speed of decomposition (Mineau et al. 2012; Handa et 247 

al., 2014). This in turn will potentially decrease the rate of release of finer particles supporting 248 

the productivity of the detrital part of the stream food web (Heard & Richardson, 1995; Jonsson 249 

& Malmqvist, 2005; Hladyz et al., 2011; Wallace et al., 2015). Alternatively, replacement of 250 

alder with other species producing nutrient rich, palatable litter, such as Fraxinus, may better 251 

mitigate some of the potential food-web effects of alder loss. However, such species may be 252 

more environmentally constrained than Salix, and hence less likely to succeed in some of the 253 

agricultural areas most affected by P. alni (Aguiar et al., 2013). Regardless of which species 254 

replaces alder, it is likely that nitrogen dynamics at both local (Handa et al., 2014) and catchment 255 

scales will be affected (Compton et al., 2003), reflecting the loss of a large, nitrogen fixing plant 256 

(Kominoski et al. 2013) 257 

Apart from direct impacts associated with altered detrital inputs, a change in the dominant 258 

riparian species might also alter the physical characteristics of stream and riparian environments, 259 

with knock-on consequences for biota and food webs. For example, Salix spp often produce 260 

branches and dense fibrous root mats which can help stabilize river banks (Shields, Bowie & 261 

Cooper, 1995), but excessive root growth can also create a narrower channel, altering currents 262 

and changing the distribution of microhabitats for biota (Burns, 1990). Replacement of alder 263 

with less shade-giving species is likely to increase the amount of light reaching the stream bed, 264 

potentially stimulating algal productivity with further effects on the remaining food web (McKie 265 
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& Cranston, 2001; Burrell et al., 2014). These effects might include substantial shifts in both 266 

autotrophic and heterotrophic species communities (Wallace et al., 2015). 267 

Other riparian species may also not be as effective at stabilizing river banks as alder (Claessens, 268 

2003; Claessens et al., 2010; Černý & Strnadová, 2010). Černý and Strnadová (2010) report 269 

decreased riverbank stability in Czech riparian habitats impacted by P. alni, especially smaller 270 

streams. This increases the risk for erosion and bank slippage, and elevated levels of 271 

sedimentation which not only can threaten sensitive species, but can also hinder key ecosystem 272 

processes such as algal productivity and litter decomposition, as substrates become buried 273 

(Davies & Nelson, 1994; Matthaei, Piggott & Townsend, 2010). This problem is likely to be 274 

most acute during the dieback stage, as dead alder trees fall, breaking up moist river banks. 275 

Agricultural streams, already strongly affected by erosion, may be particularly vulnerable where 276 

alder play a key role in stabilizing the banks. In the longer term, consequences for erosion 277 

depend on whether the alder is replaced, and by which species.  278 

In cases where alder is not replaced by another tree species, the changes are likely to be even 279 

more profound. These changes can be projected from studies comparing forested and open 280 

streams (Stone & Wallace, 1998; Swank, Vose & Elliott, 2001; Kiffney, Richardson & Bull, 281 

2003; McKie & Malmqvist, 2009; Schade et al., 2011; Mineau et al. 2012). These and several 282 

other studies show that loss of leaf litter input, shade and subsequent increase of radiation from 283 

sun have substantial effects on stream ecosystems. At the base of the food web, the increase in 284 

insolation typically drives an increase in autochthonous productivity (Brosofske et al., 1997; 285 

Kiffney et al., 2003). This has potential to drive an increase in the overall productivity in the 286 

system, since algae grow rapidly and are typically characterized by more available carbon and 287 

other nutrients, including high quality lipids synthesized by aquatic algae (Fuller, Roelofs & Fry, 288 

1986; Muller-Navarra et al., 2000; Shurin, Gruner & Hillebrand, 2006). While not necessarily 289 

differing in overall biodiversity, fully open stream channels often differ markedly from shaded 290 

channels in the functional composition of communities (McKie & Cranston, 2001), with more 291 

algal grazing species and fewer detritivores (Kiffney et al., 2003; Gjerløv & Richardson, 2004). 292 

Increases in insolation are, however, not necessarily positive for overall ecosystem integrity, 293 

especially in systems already impacted by nutrient enrichment, where the lack of shade-294 

limitation on algal productivity increases the risk of eutrophication, associated with lowered 295 

oxygen levels and increased fish mortality (Mallin et al., 2006; Burrell et al., 2014; Schade et al., 296 

2011) 297 

Increases in solar radiation will also raise temperature and thereby potentially stimulate increases 298 

in productivity and ecosystem processes (Beschta, 1997; O'Gorman et al., 2012). However, this 299 

may also impact temperature-sensitive aquatic plant and animal species, including cold 300 

stenothermic fish species like brown trout (Salmo trutta). A large number of European trout 301 

populations inhabit streams that are on the margin of having lethal water temperatures during 302 

summer, particularly given projected rises in temperature associated with global warming 303 

(Jonsson & Jonsson, 2009; Elliott & Elliott, 2010). Notably, higher water temperatures may also 304 
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increase the range of P. alni (Chandelier et al., 2006; Thoirain et al., 2007) which could lead to 305 

higher disease levels. However, very high summer temperatures have been shown to have a 306 

negative impact on the disease (Aguayo et al., 2014) which may limit the damage in some areas. 307 

As a combination of optimal summer temperatures and warmer winters appear to be favorable 308 

for the disease we may expect future climate change to subsequently exacerbate the disease 309 

development in some areas while others may experience a decrease (Aguayo et al., 2014). This 310 

suggests that, at least in northern Europe, any further spread of the pathogen may interact with 311 

rising temperatures to accelerate alder decline, a key shading riparian species, and thereby 312 

further stress temperature-sensitive species. 313 

The influences of management may strongly affect which outcome occurs – replacement of alder 314 

with another riparian species, or wholesale loss of riparian vegetation. Often it may be desirable 315 

to replant another tolerant species like Salix, to at least avoid the more severe effects of 316 

vegetation loss. However, this may be at the longer term cost of hindering the recovery of alder 317 

at local and landscape scales, if and when the pathogen diminishes. 318 

P. alni and stream ecosystems: research needed 319 

Our review of the spread of P. alni and its impacts on alder, and our projection of the ecosystem 320 

effects of the associated decline in alder as a key riparian plant species, is solidly grounded in 321 

both currently available epidemiological information, and on both empirical and theoretical 322 

insights drawn from stream ecology. Nevertheless substantial knowledge gaps remain, which 323 

complicates making solid recommendations for control of the pathogen and management of its 324 

impact, or to forecast its current and possible future extent and level of impact. Thus there is 325 

clearly a pressing need to improve the empirical understanding of the impacts of P. alni at 326 

multiple levels of ecological organisation, particularly given the scale of dieback already 327 

observed in many regions, and the potential for climate change to facilitate the spread of the 328 

species in the future. Future research needs to focus on three broad topics: (i) the pathogen itself, 329 

(ii) the interaction between alder and the pathogen, and (iii) on the ecosystem impacts of the 330 

specific trajectory of alder decline induced by P. alni, at both local and whole-catchment scales. 331 

In all cases, there is a particular need for investigations into how key environmental factors, 332 

including climate change, nutrients, hydrological parameters and other biota, might constrain or 333 

enhance both the spread and potential impacts (at both the individual plant- and whole ecosystem 334 

scales) of the pathogen. 335 

In focussing on the pathogen, there is a need for a better characterisation of the different species 336 

within the P. alni complex, with regards to their environmental tolerances, virulence and rates of 337 

evolution and potential adaptation to novel environments. This should be linked to research on 338 

the processes facilitating the spread of the pathogen, whether anthropogenic (e.g. associated with 339 

the nursery trade or fishing activities) or incidental (dispersal during flood events, or by birds), 340 

and should also incorporate the likely effects of future climate change, which may affect the 341 

geographic distribution of the different species and the severity of the disease. More research is 342 
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required on persistence of the pathogen, for example through quantification of zoospores in 343 

water filtrates. High-throughput sequencing in combination with Phytophthora specific primers 344 

has been used to describe Phytophthora species communities in river systems (Català, Pérez-345 

Sierra & Abad-Campos, 2015) and could potentially be used to monitor P. alni. The potential for 346 

other tree species to support P. alni at low levels even in the absence of alder should also be 347 

addressed. A novel issue arising from the current review is whether the effects of the pathogen 348 

on riparian and stream microclimates, arising from losses of shade, or changed nutrient or 349 

hydrological cycles as the foundational alders die, enhances or hinders the progress of an 350 

infection through the stand, or into new stands.  351 

Taken together, an improved understanding of all the above factors would greatly assist in 352 

identification of alder stands most vulnerable not only to invasion but also to the heaviest disease 353 

outbreaks, both in the present and under future global change scenarios. The factors regulating 354 

the production and dispersal of the zoospores, and eventual new infection rates are especially 355 

worthy of research attention, including both abiotic (e.g. nutrients) and biotic (competitors or 356 

consumers) factors which might potentially be manipulated to limit their further spread within 357 

systems (Gleason et al., 2009). Similar attributes require investigation in the host plant, including 358 

the importance of environmental context for susceptibility of the plant to infection, particularly 359 

given that stressed individuals may be susceptible to zoospore attack, and the potential for 360 

resistance to develop in different species or even populations of alder. Accurate assessments of 361 

such vulnerability will in turn facilitate the development of well-targeted strategies for 362 

minimizing the spread of the pathogen into the most vulnerable alder stands. For example, 363 

current research indicates that the different species within the P. alni complex differ in 364 

environmental tolerance. This has implications for the potential of various species to colonise 365 

and spread in different regions after accidental dispersal events. An understanding of the species 366 

posing the greatest potential threat in different regions, based on their environmental preferences 367 

and virulence, can then be applied in efforts to monitor and contain the spread of the pathogen. 368 

Such efforts might range from instituting monitoring aimed at early detection in systems likely to 369 

be most vulnerable to particular P. alni species, to the planting of resistant alder strains in 370 

impacted areas, if and when such strains are identified. 371 

The focus of research on the impacts of P. alni should address not only its effects on populations 372 

of alder, but also knock-on impacts on the stream ecosystems linked to those populations. Such 373 

research needs to be strongly connected with the different stages of infection, and ultimately 374 

should aim at assessing the need and utility of specific management actions at each stage. Thus, 375 

there is a need for quantification not only of the length of the “die-back” phase following 376 

infection of a new stand (which may last up to 10 years), but also of the impacts of P. alni on the 377 

quantity and quality of allochthonous alder litter into stream detrital food webs during this phase. 378 

Such investigations should further consider the responses of both microbial decomposers and 379 

detritivorous consumers in the stream environment, not only to the reduction in resource quality, 380 

but also to the presence of the microbial pathogen on the leaves. Responses of consumers can be 381 



11 
 

characterised in terms of feeding and growth rates, faecal particle production, and even patterns 382 

of reproductive allocation. Impacts on wider ecosystem functioning can be assessed through 383 

quantification of other ecosystem processes (primary production, ecosystem respiration), and 384 

even through incorporating the impacts of P. alni on carbon and nutrient inputs and processing 385 

into biogeochemical models of nutrient flux. Other ecosystem-level impacts of the decline in 386 

alder should also be quantified relative to the stage of infection. For example, the vulnerability of 387 

banks to slippage and erosion may differ between the dieback- and post-infection stages, and 388 

changes in channel morphology and hydrology may similarly vary as the infection proceeds. In 389 

cases where impacted streams are regularly sampled as part of routine biomonitoring, it might be 390 

possible to exploit existing time-series data to address some of the changes in stream biodiversity 391 

and physico-chemical characteristics before and after the infection of the riparian stand. 392 

However, an assessment of the true extent of the impacts of P. alni at whole catchment and 393 

larger scales will require integrated field and laboratory research programs, where biodiversity 394 

and ecosystem processes are investigated in replicated infected and uninfected streams in concert 395 

with detailed laboratory characterisation of the genetics and physiology of the dominant P. alni 396 

species. Space-for-time sample designs are likely to be necessary to capture the temporal 397 

dimension of the impacts of P. alni, since the progress of P. alni infection through an individual 398 

stand (>10 years) exceeds the length of most individual research programs (<3 years).  399 

Once an infection has passed through an alder stand, implications for in-stream food-webs and 400 

habitats largely depend on the type of trees replacing the alder, if any. A key question is whether 401 

it will become possible to rehabilitate riparian stands of alder at some point, or whether the 402 

pathogen remains persistent in the system in the longer term so that any attempts to re-establish 403 

alder runs a high risk of failure. In that sense, it is critical to predict whether natural adaptation is 404 

likely to occur at a sufficiently rapid pace so impacts remain limited, or whether resistant 405 

planting stock should be obtained by breeding. Indeed, the persistence of the pathogen, not only 406 

locally but also at regional scales, might have important implications for post-infection 407 

management. Nevertheless, there may be other measures that might assist in eliminating or at 408 

least suppressing the pathogen at a regional scale, including delaying any attempts to rehabilitate 409 

alder. If it is not possible to rehabilitate alder in the medium-long term, then managers are faced 410 

with a choice to either allow riparian vegetation to follow a natural pathway of recovery and 411 

succession or foster the establishment of alternative tree species (Fig. 4). There may often be 412 

strong reasons not to allow the vegetation to recover naturally, particularly if it entails leaving 413 

dead and potentially still infected alder biomass for an extended period, or in cases where 414 

succession culminates in an open stream without any riparian vegetation. Otherwise, this choice 415 

will likely reflect a balance between favouring a tree species with resource-related characteristics 416 

similar to those of alder (e.g. producing higher quality litter, or even a non-native N-fixing 417 

species, such as some species of Acacia) and species hardy enough to tolerate some of the 418 

harsher stream-side environments occupied by alder, and providing at least some of the same 419 

benefits of alder, such as shade and bank stabilization (especially Salix).  420 
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 421 

The increased trade and travel due to globalization combined with a warmer climate is likely to 422 

increase the pressure from invasive species, with stream and rivers, as “corridor habitats” 423 

ramifying landscapes, are particularly vulnerable. The microbial dimension of invasive species 424 

has been largely overlooked so far in aquatic research, and an increase in collaborations between 425 

microbial pathologists and freshwater ecologists is crucial for advancement of knowledge in this 426 

field. The spread of the P. alni disease of alders is particularly alarming, due to the key role alder 427 

plays in the structure and functioning of these ecosystems. Running waters in a future European 428 

landscape lacking alder would not only look quite different in terms of appearance, but might 429 

well also function quite differently, due to the impairment of this nitrogen fixing species which 430 

underpins stream channel structure and in-stream food webs. 431 
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BOX 1: Importance of alder trees for stream ecosystems.  736 

 Alder trees are adapted to wet conditions, and are a prominent component of riparian 737 

vegetation along many freshwater shorelines in temperate and boreal areas of the 738 

northern hemisphere. Alder thereby contributes to maintenance of shade conditions and 739 

cooler temperatures, important for numerous stream species. The capacity of alders to 740 

thrive in wet conditions limits the pool of potential replacement species in many areas 741 

(Claessens, 2003; Malanson, 1993). 742 

 Alder is a nitrogen fixing plant, reflecting symbioses with N-fixing bacteria (Frankia 743 

alni) associated with root nodules.  744 

 As a consequence of N-fixation, alder produces litter that is substantially more nitrogen 745 

rich than other riparian species, while at the same time not being overly rich in refractory 746 

carbon compounds (Waring, 2007). These properties make it attractive for aquatic 747 

detritivores, as shown in different studies (Iversen, 1974; Otto, 1974; Grafius & 748 

Anderson, 1979; Irons, Oswood & Bryant, 1988; Friberg & Jacobsen, 1994). Leaf litter 749 

degraded by aquatic microbes and detritivores is a prominent component of nutrient and 750 

energy budgets in forested streams, and alder, when present, contributes to these pools 751 

substantially (Piccolo & Wipfli, 2002; Compton et al., 2003).  752 

 The presence of alder appears to affect N-dynamics at multiple scales. At a local scale, 753 

the presence of Alnus litter results in accelerated overall leaf decomposition, apparently 754 

reflecting the transfer of N to more nutrient poor litter species within the litter layer 755 

(Handa et al., 2014). At larger scales, the presence of Alnus in a catchment can increase 756 

N export (Compton et al., 2003). 757 

 The intermingled root systems of alder trees increase river bank stabilization (Claessens 758 

et al., 2010; Piégay, Pautou & Ruffinoni, 2003; Černý & Strnadová, 2010) 759 

 Alder trees are used by a wide variety of terrestrial invertebrates, a portion of which die 760 

and fall on to the water surface, where they serve as food for fish and other aquatic 761 

predators (Wipfli, 1997). 762 

 Alder roots, especially the characteristic “adventitious” roots which extend beyond the 763 

bank, create important habitat for invertebrates and fish (Flory & Milner, 1999; Erős, et 764 

al., 2003; Brauns et al., 2007). 765 

 Well-vegetated shorelines are of importance for the recreational and aesthetic values 766 

humans derive from streams and rivers, including sport fishing and other outdoor 767 

activities (Burns, 1990). 768 

 Alder is a relatively shade intolerant riparian plant, which together with willow (Salix 769 

spp.), are pioneer species recolonizing riparian habitats after disturbances, and is often 770 

prominent along moderately degraded channels (Hibbs, DeBell & Tarrant, 1994; Newton 771 

& Cole, 1994; Malanson, 1993).  772 

 773 
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BOX 2: Phytophthora – the “plant destroyers” 774 

Phytophthora is a genus of Oomycetes (Oomycota) which contains a number of species causing 775 

extensive damages to crops and wild plants (Kroon et al., 2012; Hansen, Reeser & Sutton, 2012; 776 

Erwin & Ribeiro, 1996), often imposing substantial economic costs (lost productivity, costs of 777 

control (Kovacs et al., 2011). The name is appropriately derived from the Greek words phytón 778 

(plant) and phthorá (destruction). The most well-known species, Phytophthora infestans, was the 779 

active agent behind the Potato blight which caused the Great Irish famine 1845-1849. While 780 

often referred to as a fungal-like organisms, Oomycota actually belong to another kingdom, 781 

Chromista. Phytophthora spp. are morphologically similar to certain fungi but unlike the latter, 782 

they are more closely related to plants than animals. Phytophthora species can reproduce both 783 

sexually and asexually. Most Phytophthora species are soil and waterborne although aerial 784 

dispersal occurs in some species. In streams and soil, swimming zoospores are an important 785 

vector for the spread of infections. 786 

A great majority of Phytophthora species are considered alien in the ecosystem where they cause 787 

damage. Many studies point to the fact that nursery trade of living plants is the most important 788 

pathway for introduction of Phytophthora species into new environments (eg Moralejo et al., 789 

2009; Rytkönen et al., 2012; Prospero et al., 2013).  790 
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Table 1. P. alni, current reported distribution. The true distribution in each region is often 804 

unknown.  805 

Region Local distribution Reference 

Austria Reported Cech (1997) 

Belgium Reported Claessens (2005) 

Czech 

Republic 

Widespread in western 

Czech Republic 

Černý et al. (2008) 

France Widespread in northern 

France 

Streito et al. (2002), Thoirain et al. (2007) 

Germany Widespread in southern. 

Germany 

Jung and Blaschke (2004) 

Hungary Reported Szabó et al. (2000), Nagy et al. ( 2003) 

Ireland Reported Brasier et al. (2004) 

Italy Northern Italy Santini et al. (2001) 

Lithuania Reported Brasier et al. (2004) 

The 

Netherlands 

Reported Brasier et al. (2004) 

Norway Southern Norway, near 

Oslo 

Strømeng (2012) 

Poland Reported Oszako (2005); Pintos Varela et al.(2010) 

Portugal Northern Portugal T. Jung, personal communication 

Spain North-western Spain Pintos Varela et al.(2010), Redondo et al., 

(2015) 

Sweden Southern- and mid- Sweden Olsson (1999), Redondo et al. (2015) 

Switzerland Reported S. Prospero, personal communication 

UK Southern. England 

(widespread) and Scotland 

Brasier et al. (1995), Gibbs et al. (1999), 

Adams et al. (2008), Aguayo et al. (2013) 

USA Alaska & Oregon Adams et al. (2008), Aguayo et al. (2013) 
 806 

Fig 1. Overview of current known occurrences of P. alni. The true distribution in each region is often 807 
poorly known. See table 1 for information on local distribution. 808 

Fig 2. An infected and dying alder stand in SW Sweden. Säve River near Gothenburg. Photo Ulf Bjelke. 809 

Fig 3. The stem of an infected alder showing typical symptoms of P. alni. Photo Jonás Oliva.  810 

Fig. 4: Key ecological attributes of alder and three potential replacement taxa in Europe: ash (Fraxinus) 811 
and Willow (Salix), together with projected consequences of a complete loss of riparian trees. Key 812 
references: (Shields, Bowie & Cooper, 1995; Brauns et al., 2007; Bingham, 2009; Schindler & Gessner, 813 
2009; Handa et al., 2014). 814 
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