Supplementary Material

Title: Review of feeding conserved forage to horses: recent advances and recommendations

Authors: P.A. Harris ¹, A.D. Ellis ², M.J. Fradinho ³, A. Jansson ⁴, V. Julliand ⁵, N. Luthersson ⁶, A.S. Santos ⁷ and I. Vervuert ⁸.

¹ Equine Studies Group, WALTHAM Centre for Pet Nutrition, Leics LE14 4RT, UK
² UNEQUI, Research~Education~Innovation, Southwell, Nottinghamshire, NG25, UK
³ CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. Universidade Técnica, 1300-477 Lisboa, Portugal
⁴ Dept of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden.
⁵ AgroSup Dijon, 21079 Dijon Cedex, France
⁶ Hestedoktoren I/S, Bukkerupvej 195, 4360 Kr. Eskilstrup Denmark
⁷ Department of Veterinary Medicine, Escola Universitária Vasco da Gama, 3020-210 Coimbra / CITAB-UTAD – Center for Research and Technology of Agro-Environmental and Biological Sciences, Vila Real, PA Box 1013, 5001- 801 Vila Real, Portugal
⁸ Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 9, D-04103 Leipzig, Germany.

Corresponding Author: Pat Harris. E-mail: pat.harris@effem.com

Supplementary Material S1

References from Main text from 2008-2009 and before

Cookson WR, Rowarth JS and Cameron KC 2000. The response of a perennial ryegrass
(Lolium perenne L.) seed crop to nitrogen fertilizer application in the absence of moisture

Couetil LL and Ward MP 2003. Analysis of risk factors for recurrent airway obstruction in North
Association 223, 1645-1650.

mineral absorption, and voluntary intake by horses fed alfalfa, tall fescue, and caucasian
bluestem. Journal of Animal Science 75, 1651-1658

Cymbaluk NF, Christison GI, and Leach DH 1989. Nutrient utilization by limit-and ad libitum-

De Fombelle A, Varlould M, Goacher AG, Jacotot E, Philippeau C, Drogoul C and Julliand V
2003. Characterization of the microbial and biochemical profile of the different segments of
the digestive tract in horses given two distinct diets. Animal Science 77, 293-304.

botulinum type B toxicosis in a herd of cattle and a group of mules. Journal of American
Veterinary Medical Association 188, 382-6.

Drogoul C, Pocet C and Tisserand JL 2000. Feeding ground and pelleted hay rather than
chopped hay to ponies: 1. Consequences for in vivo digestibility and rate of passage of

Dürr L. 2004. Silage effluent production from round baled grass silage. Proceedings of the
20th General meeting of the European Grassland Federation 21-24 June 2004 Luzern,
Switzerland, p. 894-896.

Voluntary intake and digestibility in horses: effect of forage quality with emphasis on
individual variability. Animal 2, 1526-1533.

53rd Annual Meeting of the European Association of Animal Science, 1-4 September
2002, Cairo, Egypt. 259.

Ellis AD, Thomas S, Arkell K and Harris P 2005. Adding chopped straw to concentrate feed:
The effect of inclusion rate and particle length on intake behaviour of horses. Proceedings

Ellis AD, Visser CK, Van Reenen CG 2006. Effect of a high concentrate versus high fibre diet
on behaviour and welfare in horses, Proceedings of the 40th International Congress of the
ISAE, 8-12th August 2006, Bristol, UK p.42.

Ellis WC, Wylie MJ and Matis JH 1988. Dietary-Digestive interactions determining the feeding
value of forages and roughages. In Feed Science (ed. ER Orskov), pp 177-179. Elsevier,
Amsterdam, the Netherlands.

Field M and Wilman D. 1996. pH in relation to dry matter content in clamped and baled grass
silages harvested in England and Wales, Proceedings of the Xlth International Silage

Galey FD 2001. Botulism in the horse. Veterinary Clinic North American Equine Practice 17,
579-88.

Gordon CH, Derbyshire JC, Wiseman HG, Kane EA and Melin CG 1961. Preservation and
feeding value of alfalfa stored as hay, haylage and direct cut silage. Journal of Dairy
Science. 44, 1299-1311.

and colonic pH and mineral concentrations in horses with enterolithiasis. Journal of
veterinary internal medicine 18, 346-349.

Henneke DR and Callaham JW 2009. Ad Libitum Concentrate Intake in Horses, Journal of
Equine Veterinary Science 29, 425-427.

Mihin AM 1940. The role of moisture in the preparation of silages. Feeding of farm animals and fodder production, 233-242.

Pirie RS, Collie DDS, Dixon PM and McGorum BC 2003. Inhaled endotoxin and organic dust particulates have synergistic proinflammatory effects in equine heaves (organic dust-induced asthma). Clinical & Experimental Allergy 33, 676-683.

Wilkinson JM, Wilson RF and Barry TF 1976. Factors affecting the nutritive value of silage. Outlook on Agriculture 9, 3-8

Example of the range in chemical composition of forages produced and fed to horses in some European regions

<table>
<thead>
<tr>
<th>European Region</th>
<th>Forage type</th>
<th>Botanical composition</th>
<th>DM (%)</th>
<th>CP (%DM)</th>
<th>Fibre CF (%DM)</th>
<th>NDF (%DM)</th>
<th>ADF (%DM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nordic and Baltic countries (a)</td>
<td>Hay</td>
<td>Grasses</td>
<td>85 - 88</td>
<td>6.3 - 18</td>
<td>31 - 36</td>
<td>61 - 63</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Haylage</td>
<td>Grasses</td>
<td>43* - 85</td>
<td>6.1 - 20</td>
<td>26 - 35</td>
<td>50 - 64</td>
<td>27 - 41</td>
</tr>
<tr>
<td></td>
<td>Silage</td>
<td>Grasses</td>
<td>25 – 55*</td>
<td>10 - 16</td>
<td>26 - 37</td>
<td>54 - 63</td>
<td>29 - 34</td>
</tr>
<tr>
<td></td>
<td>Straw</td>
<td>Cereal</td>
<td>85</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hay</td>
<td>Grasses</td>
<td>84 - 86</td>
<td>4.8 - 19</td>
<td>24 - 38</td>
<td>54 - 72</td>
<td>27 - 40</td>
</tr>
<tr>
<td></td>
<td>Mixed i, ii</td>
<td>Grasses</td>
<td>85 - 94</td>
<td>6.3 - 20</td>
<td>25 - 46</td>
<td>53 - 75</td>
<td>28 - 53</td>
</tr>
<tr>
<td>Central Europe countries (b)</td>
<td>Hay</td>
<td>Grasses</td>
<td>84 - 86</td>
<td>4.8 - 19</td>
<td>24 - 38</td>
<td>54 - 72</td>
<td>27 - 40</td>
</tr>
<tr>
<td></td>
<td>Haylage</td>
<td>Grasses</td>
<td>55 - 82</td>
<td>6.1 - 16</td>
<td>24 - 35</td>
<td>55 - 74</td>
<td>31 - 48</td>
</tr>
<tr>
<td></td>
<td>Mixed i</td>
<td>Grasses</td>
<td>55</td>
<td>9.6 - 21</td>
<td>27 - 35</td>
<td>53 - 60</td>
<td>30 - 37</td>
</tr>
<tr>
<td></td>
<td>Mixed ii</td>
<td>Grasses</td>
<td>34 - 44</td>
<td>9.1 - 19</td>
<td>24 - 33</td>
<td>48 - 63</td>
<td>28 - 35</td>
</tr>
<tr>
<td></td>
<td>Silage</td>
<td>Mixed i</td>
<td>34</td>
<td>12 - 21</td>
<td>25 - 33</td>
<td>51 - 59</td>
<td>28 - 35</td>
</tr>
<tr>
<td></td>
<td>Straw</td>
<td>Cereal</td>
<td>84 - 90</td>
<td>3.2 - 4.9</td>
<td>40 - 45</td>
<td>76 - 80</td>
<td>47 - 50</td>
</tr>
<tr>
<td></td>
<td>Hay</td>
<td>Grasses</td>
<td>84 - 95</td>
<td>5.2 - 8.9</td>
<td>26 - 37</td>
<td>59 - 68</td>
<td>32 - 43</td>
</tr>
<tr>
<td></td>
<td>Mixed iii</td>
<td>Grasses</td>
<td>83 - 90</td>
<td>6.2 - 8.9</td>
<td>32 - 38</td>
<td>61 - 66</td>
<td>38 - 45</td>
</tr>
<tr>
<td>Southern countries (c)</td>
<td>Hay</td>
<td>Grasses</td>
<td>59 - 65</td>
<td>8.3 - 16</td>
<td>27 - 31</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Haylage</td>
<td>Grasses</td>
<td>59</td>
<td>9.4</td>
<td></td>
<td>61</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Silage</td>
<td>Mixed i</td>
<td>59</td>
<td>9.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Straw</td>
<td>Cereal</td>
<td>85 - 91</td>
<td>2.7 - 5.5</td>
<td>36 - 44</td>
<td>75 - 77</td>
<td>46 - 53</td>
</tr>
</tbody>
</table>

*NB from our consensus definition the forages included here as haylages with a DM <50% would be considered silages and DM >50% haylages.

Meadow or permanent pasture; Oats hay included; Meadow hay and consociations of grass x legume hay.

DM : Dry matter; CP : Crude Protein; CF : Crude Fibre; NDF : Neutral detergent fibre; ADF : Acid Detergent Fibre

Adapted from

(a) Finland, Sweden, Iceland, Denmark, Estonia
References: Särkijärvi et al., 2008; MTT, 2010; Saastamoinen and Hellämäki, 2012; Müller and Udén, 2007; Jansson and Lindberg, 2012; Ragnarsson and Lindberg, 2008; 2010; Luthersson, personal data; Kaldmäe et al., 2012a; 2012b.

(b) Netherlands, Germany, UK, France.
References: CVB, 2010; LUFA Nordwest, personal data; HorseHage, 2014; Tinsley et al., 2014; Dulphy et al., 1997a; Julliand, personal data; INRA, 2011.

(c) Italy, Spain, Portugal. References: Peiretti et al., 2001; Bergero et al., 2002; Bergero et al., 2005; Bergero and Peiretti, 2011; Clotet, personal data; Casamiglia et al., 2004; Dentinho et al., 2014; Fradinho et al., 2013; INIAV, not published
Summary of voluntary intake behaviour of horses fed various diets ad libitum with feed intake time over 24 hours (ADF – Acid detergent fibre; Wet Matter – WM; Dry Matter-DM; ± s.d. STB – Standardbred, TB - Thoroughbred)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Horses/Ponies</th>
<th>Feed (24 hr observations unless stated otherwise)</th>
<th>WM intake 500 kg horse</th>
<th>Average DM Intake in %BW</th>
<th>Intake* Rate (min/kg)</th>
<th>Mean Feed Intake Time (hrs/24hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van Dierendonck et al. (1996)</td>
<td>Przewalsky</td>
<td>Mongolia steppe grass (18 hrs)</td>
<td></td>
<td></td>
<td></td>
<td>12 ± 3.6</td>
</tr>
<tr>
<td>Magnusson et al. (1994)</td>
<td>Icelandic</td>
<td>Iceland Grass Plains</td>
<td></td>
<td></td>
<td></td>
<td>14 ± 2.5</td>
</tr>
<tr>
<td>Berger et al. (1999)</td>
<td>Przewalsky</td>
<td>Nature Reserve, D</td>
<td></td>
<td></td>
<td></td>
<td>11 ± 4.4</td>
</tr>
<tr>
<td>Ferreira et al. (2013)</td>
<td>Galiciano</td>
<td>Western Asturias, June Heathland Sep</td>
<td>5.3</td>
<td>22</td>
<td>2.7</td>
<td>12 ± 0.8</td>
</tr>
<tr>
<td>Osoro et al. (2015)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12 ± 0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean Free-ranging, semi-feral horses on grass</td>
<td>12.4 ±2.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Houbiers and Smolders (1990)</td>
<td>12 TB Trotters</td>
<td>Fresh cut summer grass (long, DM 16%)</td>
<td>80</td>
<td>2.1</td>
<td>10</td>
<td>13.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fresh cut spring grass (short DM 14%)</td>
<td>84</td>
<td>2.3</td>
<td>8</td>
<td>11.16</td>
</tr>
<tr>
<td></td>
<td>12 Warmblood</td>
<td>Fresh cut summer grass (long, DM 16%)</td>
<td>85</td>
<td>2.1</td>
<td>10</td>
<td>14.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fresh cut spring grass (short DM 14%)</td>
<td>90</td>
<td>2.4</td>
<td>8</td>
<td>11.95</td>
</tr>
<tr>
<td>Chenost and Martin-Rosset (1985)</td>
<td>TB</td>
<td>Fresh cut hybrid ryegrass (DM 20%)</td>
<td>52</td>
<td>2.6</td>
<td>12</td>
<td>10.36</td>
</tr>
<tr>
<td>Dulphy et al. (1997a)</td>
<td>Light horses</td>
<td>Fresh forages (n=16)</td>
<td>63</td>
<td>2</td>
<td>10</td>
<td>10.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean Barn/Stabled horses with cut Fresh Forages/Grass (DM 14 – 20%)</td>
<td>75.6</td>
<td>2.3</td>
<td>9.67</td>
<td>12 ±1.5</td>
</tr>
<tr>
<td>Bergero et al. (2002)</td>
<td>Ponies</td>
<td>Early cut (DM 56%)</td>
<td>19</td>
<td>2.7</td>
<td>30</td>
<td>9.36</td>
</tr>
<tr>
<td></td>
<td>Maintenanc e</td>
<td>Light cut (DM 63%)</td>
<td>17</td>
<td>2.8</td>
<td>30</td>
<td>8.52</td>
</tr>
<tr>
<td></td>
<td>Light Work</td>
<td>Med. Work</td>
<td>19</td>
<td>3.1</td>
<td>30</td>
<td>9.3</td>
</tr>
<tr>
<td></td>
<td>Med. Work</td>
<td>Late cut (DM 65%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean Stabled, Haylages /Dry Silage (DM 56-65%)</td>
<td>23.2</td>
<td>2.8</td>
<td>30</td>
<td>9 ± 0.5</td>
</tr>
<tr>
<td>Martin-Rosset and Dulphy (1987)</td>
<td>Heavy horse</td>
<td>Hay medium quality</td>
<td>12</td>
<td>2</td>
<td>40</td>
<td>7.75</td>
</tr>
<tr>
<td></td>
<td>Yearlings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermorel et al. (1997)</td>
<td>STB</td>
<td>Hay late cut</td>
<td>10</td>
<td>1.7</td>
<td>40</td>
<td>6.42</td>
</tr>
<tr>
<td>Study</td>
<td>Species</td>
<td>Type</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td>Value 4</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------------------</td>
<td>-----------------------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Dulphy et al. (1997b)</td>
<td>Light horses</td>
<td>Lucerne hay (n=12)</td>
<td>13</td>
<td>2.2</td>
<td>45</td>
<td>9.55</td>
</tr>
<tr>
<td>from various authors</td>
<td></td>
<td>Grass hay (n=38)</td>
<td>13</td>
<td>2.2</td>
<td>35</td>
<td>7.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Straws (n=6)**</td>
<td>7</td>
<td>1.3</td>
<td>50</td>
<td>5.88</td>
</tr>
<tr>
<td>Pearson et al. (2001)</td>
<td>Ponies</td>
<td>Oat straw</td>
<td>12</td>
<td>2.2</td>
<td>45</td>
<td>9</td>
</tr>
<tr>
<td>Staniar et al. (2014)</td>
<td>Quarter Horses</td>
<td>Teff Hay (40% ADF)**</td>
<td>9.1</td>
<td>1.7</td>
<td>45</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stabled: Mean Hays (DM 85%)</td>
<td>12 ± 1.4</td>
<td>2.0 ±0.2</td>
<td>40 ± 5</td>
<td>8 ±1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stabled: Mean Straws/High ADF** (DM 88% +)</td>
<td>10 ± 3.5</td>
<td>1.7 ±0.6</td>
<td>48 ±2.2</td>
<td>7.3 ± 4.1</td>
</tr>
<tr>
<td>Argo et al. (2002)</td>
<td>Ponies</td>
<td>Total Chaff-Pellet Mix</td>
<td>25</td>
<td>4.4</td>
<td>18</td>
<td>7.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>As above – pelleted</td>
<td>25</td>
<td>4.4</td>
<td>18</td>
<td>7.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Day 26 Max intake pelleted</td>
<td>28</td>
<td>4.9</td>
<td>18</td>
<td>8.4</td>
</tr>
<tr>
<td>Dugdale et al. (2011)</td>
<td>Ponies</td>
<td>Complete Chaff Diet</td>
<td>12</td>
<td>2.3</td>
<td>60</td>
<td>11.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean Concentrate: minimum 50% Chaff Diets</td>
<td>16.5</td>
<td>2.75</td>
<td>25-60</td>
<td>10 ± 1.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean Concentrate: Pellets</td>
<td>26.39</td>
<td>4.64</td>
<td>18</td>
<td>8 ± 0.7</td>
</tr>
</tbody>
</table>

*Feed Intake Time as per author or estimated according to Ellis, 2010
** High ADF content: only volume limiting forage, which if overruled by intake behaviour can lead to compaction colics
References for Table S1 and S2

Bergero D, Peiretti PG and Cola E 2002. Intake and apparent digestibility of perennial ryegrass haylages fed to ponies either at maintenance or at work, Livestock Production Science 77, 325-329.

Houbiers HJ and Smolders EA 1990. Opname van vers gras van verschillende opbrengsten (Intake of fresh grass from various harvests). In Praktijkonderzoek Paardenonderzoek 1990

