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Abstract 

Fennoscandian forestry has in the past decades changed from natural regeneration of 

forests towards replantation of clear-cuts, which negatively impacts ectomycorrhizal 

fungal (EMF) diversity. Retention of trees during harvesting enables EMF survival, 

and we therefore expected EMF communities to be more similar to those in old 

natural stands after forest regeneration using seed trees compared to full clear-cutting 

and replanting. We sequenced fungal ITS2 amplicons to assess EMF communities in 

10-60 year-old Scots pine stands regenerated either using seed trees or through 

replanting of clear-cuts with old natural stands as reference. We also investigated 

local EMF communities around retained old trees. We found that retention of seed 

trees failed to mitigate the impact of harvesting on EMF community composition and 

diversity. With increasing stand age EMF communities became increasingly similar to 

those in old natural stands and permanently retained trees maintained EMF locally. 

From our observations we conclude that EMF communities, at least common species, 

post-harvest are more influenced by environmental filtering, resulting from 

environmental changes induced by harvest, than by the continuity of trees. These 

results suggest that retention of intact forest patches is a more efficient way to 

conserve EMF diversity than retaining dispersed single trees.  

 

Keywords: clear-cutting, seed trees, ectomycorrhizal fungi, high-throughput 

sequencing, retention trees, Pinus sylvestris  
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Introduction 

Disturbances, stress and competition between species are all selective pressures that 

shape biological communities. Human-induced disturbances often differ from the 

ones under which the ecosystems evolved (Steffen et al. 2015), which is why they 

frequently have particularly large impacts on biological communities (Shade et al. 

2012). Boreal forests have a history of frequent fires (c.f. Zackrisson 1977), although 

in northern Europe, the forest fires have mainly been of low-severity with surviving 

trees and only rarely resulting in complete stand-replacement (Kuuluvainen & Aakala 

2011). Biological communities in these forests may therefore have low resistance to 

stand-replacing disturbances. 

Industrialized clear-cutting was introduced in Fennoscandian forestry in the 

beginning of the 20th century and became common in the 1950s (Framstad et al. 2013; 

Lundmark, Josefsson & Östlund 2013). In Sweden, clear-cutting and planting has 

gradually replaced natural regeneration and is today the major forest regeneration 

method (Skogsstyrelsen 2016). Since stand-replacing disturbances have been 

historically rare in Fennoscandian forests, clear-cutting only partly resembles natural 

disturbances. It is one of the main reasons that almost 5000 forest-dwelling species 

are nationally red-listed in Fennoscandia (Rassi et al. 2010; ArtDatabanken 2015; 

Henriksen and Hilmo 2015).  

Ectomycorrhizal fungi (EMF) form symbiotic relationships with trees. When 

trees are harvested, the host supply of sugars ceases, leading to an immediate strong 

reduction in EMF species richness and a shift in EMF community composition 

(Högberg et al. 2001; Jones, Durall & Cairney 2003; Twieg et al. 2007; Wallander et 

al. 2010; Hartmann et al. 2012). However, it remains uncertain whether there are 

lasting impacts on EMF diversity throughout the length of a forest rotation, or if EMF 
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communities recover during stand development and become similar to those of an 

unharvested forest. Previous studies have indicated that relative abundances of EMF 

species may change during the development of regenerated stands, and that some 

genera, such as Tylospora and Thelephora, can be more common in young stands 

while other genera, like for example Cortinarius and Russula, increase in abundance 

with stand age (Twieg et al. 2007; Wallander et al. 2010; Kyaschenko et al. 2017).  

It seems that the post-harvest recovery of EMF communities towards a 

composition similar to unharvested stands takes several decades. Visser (1995) 

observed community stabilisation 41 years after stand-replacing wildfire. Varenius et 

al. (2016) observed an altered composition of EMF frequencies still 50 years after 

harvest, and Twieg et al. (2007) and Kyaschenko et al. (2017) found that 

communities tended to reach a composition similar to unharvested stands 60 years 

after clear-cutting. However, even though diversity and relative abundances of species 

differ, the set of common EMF species seems to be largely the same in harvested and 

unharvested stands (Byrd et al. 2000; Varenius et al. 2016). This indicates that the 

EMF community develops over time primarily through accumulation of species rather 

than species replacement, as suggested by Bradbury et al. (1998) and Kranabetter et 

al. (2005).  

Individual EMF genets can extend over several square metres and become 

several decades or even centuries old (Bonello P., Bruns T. D., Gardes M. 1998; 

Dahlberg & Mueller 2011; Douhan et al. 2011), and sugars from connecting host 

roots can be distributed throughout large parts of the mycelial individual (Finlay and 

Read, 1986). Thus, trees retained through the clear-cut phase may act as a ‘lifeboat’ 

for EMF mycelia (Amaranthus & Perry 1987; Luoma et al. 2006; Rosenvald & 

Lõhmus 2008), enabling long-term local survival of EMF. The Swedish forestry 
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practice of “seed tree regeneration”, in which 50–150 trees per hectare are temporarily 

retained for ten years (Karlsson & Örlander 2004), should therefore have a major 

potential to enable survival of EMF, and maintenance of diversity. Previous 

observations that EMF communities on seedlings that were seeded or planted close to 

mature trees largely mirroring those of the mature trees support this idea (Jonsson et 

al. 1999; Cline et al. 2005; Heinonsalo et al. 2007). Seedlings planted in clear-cut 

areas originally harbour EMF species from the nursery (Leski et al. 2010; Menkis et 

al. 2016), which are later replaced, primarily by spore inflow from close-by 

surrounding forests (Dahlberg & Stenström 1991; Peay et al. 2012) and potentially, 

by a few species surviving the harvest as a dormant spore bank (Bruns et al. 2009; 

Nguyen, Hynson & Bruns 2012; Glassman et al. 2015).  

Permanently retained trees may lifeboat EMF through the clear-cut phase, 

although only within about 10 m from the tree (Cline et al. 2005; Luoma et al. 2006; 

Jones et al. 2008). In Swedish forestry the practice of permanently retaining some 

trees at harvest was introduced in the 1990s with the aim to mitigate negative effects 

of clear-cutting on biodiversity (Fedrowitz et al. 2014). Today, single trees or groups 

of trees corresponding to on average 8% of the basal forest area are permanently 

retained in Sweden (Skogsstyrelsen 2015). However, assuming a ten-meter radius of 

life-boated EMF around the few permanently retained trees, it seems unlikely that 

those trees have an influence on the overall EMF community in the entire stand. 

In this study we investigated the importance of seed tree regeneration for the 

composition of EMF communities during 60 years following harvest of Scots pine 

stands. In addition, we evaluated the local effect of permanently retained trees. We 

focused on the overall EMF community composition and abundances of dominant 

EMF species, since they are probably most important for major ecosystem functions. 
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We hypothesized (1) that EMF communities are less impacted by regeneration using 

seed trees than by clear-cutting and replanting, (2) that EMF communities in stands 

regenerated using seed trees return to a composition similar to communities in old 

natural stands faster than communities in stands that were replanted after clear-

cutting, and (3) that local EMF communities close to permanent retention trees mirror 

communities of old natural stands but differ from those in surrounding harvested 

areas. 

 

2. Materials and Methods 

2.1 Experimental design  

The study was repeated in three regions within the boreal zone of Sweden: Dalarna, 

Jämtland and Norrbotten located at increasing latitude, and differing in climate (Fig. 

1). In each region we selected five Pinus sylvestris (Scots pine) forest stands that had 

been replanted after clear-cutting, five stands that had been regenerated using seed 

trees and three old natural stands, totalling 39 stands. The regenerated stands had been 

harvested between 1960 and 2000 and were evenly distributed across stand ages 

(Table 1). The old natural stands (with 100–200-year-old trees) had a structure and 

dynamic that had not been significantly affected by humans, as defined by Rouvinen 

and Kouki (2008). In ten of the younger stands (4–26-year-old); (two stands in 

Dalarna, four in Jämtland and four in Norrbotten), occasional retention trees were 

permanently left during harvest. These trees were used to compare EMF communities 

close to retention trees with those of the surrounding harvested areas.  

 

2.2 Selection of stands 
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The stands were selected using information in stand databases provided by the 

principal forest owner in each region: Bergvik skog AB in Dalarna, SCA in Jämtland 

and Sveaskog in Norrbotten. Stands were selected based on the following criteria: (i) 

P. sylvestris constituted at least 70% of the basal area of the trees in the stand and (ii) 

the stand was located in a mesic environment with ground vegetation dominated by 

Vaccinium vitis-idaea L. (Table S1). The selected stands were located from about 1 

km apart to up to 20 km apart in Norrbotten and from about 1 km apart to up to 100 

km apart in the other regions. Regeneration methods (clear-cut or seed trees) were 

verified using detailed aerial photographs (scale 1:30.000; provided by Metria, state-

owned GIS company) of the stands taken 5–10 years before and after the reported 

years of harvest. The selected stands ranged from 1.6 to 56.6 ha in size.  

 

2.3 Sample collection 

Ten soil cores (3 cm in diameter, 10 cm in depth) were collected from each forest 

stand during July and August 2014. Sampling was performed at least 25 m from the 

stand edge along two transects located 25 m from each other. Five samples were 

collected along each transect, with 10 m between each of the sampling points (Fig. 1). 

Soil cores were divided into organic and mineral soil: the organic samples were kept 

separate since organic soil is known to harbour the majority of EMF (Lindahl et al. 

2007) whereas the mineral samples were pooled within transects. In stands with 

permanent retention trees (ten stands), three to five trees that were at least 25 m apart 

from each other were selected, and additional soil samples were collected 1 m north, 

east, south and west of each retention tree and pooled into one sample per tree. All 

samples were frozen at –18C on day of collection.  
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2.4 Sample preparation 

Sample preparation followed the procedure described by Clemmensen et al. (2016). 

Samples were freeze-dried and all material was then homogenized by grinding in a 

mortar. DNA was extracted from approximately 400 mg of material using the 

NucleoSpin® Soil kit (Macherey-Nagel, Düren, Germany) and DNA concentrations 

were checked using Nanodrop (Thermo Fisher Scientific Inc., Wilmington, Delaware, 

USA). Milli-Q water was extracted as a negative control. The internal transcribed 

spacer 2 (ITS2) region was PCR amplified with samples diluted to 0.25 ng/μl in a 50-

μl reaction volume (3 min at 95C; 25 cycles of 30 s at 95C, 30 s at 56C and 30 s at 

72C; 7 min at 72C) using the fungal-specific primer combination gITS7-

ITS4/ITS4arch (Ihrmark et al. 2012; Kyaschenko et al. 2017) with both primers fitted 

with sample-specific tags of eight bases (with minimum three bases difference 

between tags) designed using BARCRAWL (Frank 2009). Three PCR reactions for 

each sample were pooled. Milli-Q water was used for negative PCR controls. 

Amplification success was visually checked based on band intensity after gel 

electrophoresis. Bands assessed as too weak (not visible) or too strong (stronger than 

the ladder) were subjected to a new round of PCR with increased (at most 35) or 

decreased (at least 22) numbers of cycles (Lindahl et al. 2013). PCR products were 

cleaned using the AMPure kit (Beckman Coulter Inc., Brea, California, USA), and 

DNA concentrations were established using a Qubit fluorometer (Life Technologies, 

Carlsbad, California, USA). Equal amounts of DNA from each sample were pooled, 

and the pooled sample was purified using the E.Z.N.A.® Omega cycle pure kit 

(Omega Bio-tek, Norcross, Georgia, USA). Amplicon size distribution was pre-

checked using the Agilent 2100 Bioanalyzer system, and the composite sample was 

sequenced on the PacBio RSII platform by SciLifeLab, Uppsala. The PacBio platform 
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was chosen to minimize bias due to size variation in the amplicon pool, which is 

considerable for the fungal ITS2 region.  

 

2.5 Sequence analysis 

Sequences were filtered and clustered using the SCATA pipeline 

(scata.mykopat.slu.se) (Ihrmark et al. 2012). Sequences were quality checked to 

remove reads shorter than 100 bp, with mean quality scores lower than 20, with 

individual bases with a quality score of less than three, or with a missing 3’ or 5’ tag. 

Sequences were screened for the gITS7 and ITS4 primers, requiring a minimum 

match of 90%, and reverse complemented if necessary. Sequences that passed quality 

filtering (44% of the total) were clustered into species hypotheses (SHs) (Kõljalg et 

al. 2013) through pair-wise comparison by USEARCH (Edgar 2010) followed by 

single linkage clustering, with the maximum distance to the closest neighbour allowed 

to enter a cluster set at 1.5%. After clustering, singletons, samples with non-matching 

tags (presumably due to tag swapping) and samples with less than 100 reads were 

excluded from further analysis, leaving 367 individual humus soil samples, 73 pooled 

mineral soil samples and 44 retention tree humus soil samples for further analysis. 

 

2.6 Species assignment 

Representative sequences from SHs were compared against database references in 

UNITE (Kõljalg et al. 2013) using BLAST. Non-fungal SHs were discarded (15% of 

the high quality reads), and fungal SHs were annotated in order of declining 

abundance until at least 90% of all reads in each sample were annotated. The 

requirements for assigning SHs to species were at least 98.5% similarity and a 

BLAST score of at least 400 to a sequence validated by an expert taxonomist 
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(exceptions are described in Table S2). Nomenclature follows the Swedish 

Taxonomic Database (2016), except when Latin names are given with the naming 

authority. All identified SHs identified to species or genus were classified as “EMF” 

or “not EMF” and the remaining SHs as “unknown function”. The EMF classification 

was done based on published literature (Hallingbäck and Aronsson 1998; Tedersoo 

and Smith 2013). 

 

2.7 Data analysis 

2.7.1 Community composition 

All analyses were performed in R (R Core Team 2016). Relative abundances of all 

fungal SHs (proportion of SH reads out of the total number of fungal reads, including 

unknowns) were calculated for each individual sample and the resulting abundances 

were averaged per stand. EMF SH abundances were divided by the sum of all EMF 

relative abundances per stand, resulting in EMF SH abundances relative to the total 

EMF community, which were square root arc sine transformed in order to reduce 

heteroscedasticity. Differences in EMF community composition between stands were 

illustrated graphically by DCA (function decorana() in vegan). Potential factors 

explaining differences in EMF community composition were evaluated for statistical 

significance using CCA, applying the function anova(cca) in vegan, which 

implements an ANOVA like permutation test of the joint constraints of the CCA. 

Using this approach we tested the effect of (1) regenerated vs. old natural stands; (2) 

regeneration method within regenerated stands; and (3) stand age within regenerated 

stands (region was partialled out using option “Condition” in the CCA). CCA 

permutation tests were also performed for pairwise comparisons of EMF communities 

in stands less than 30 years old, 30–60-year-old stands and old natural stands, in order 
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to detect stand-age specific effects that may be lost in the overall ordination. Organic 

and mineral soil samples were analysed separately. In order to capture the spatial 

structure of the EMF communities, frequencies of the number of samples in which a 

SH were present out of the ten soil cores collected from each stand were calculated, 

based on a threshold of >1% of the total fungal reads for a SH being classified as 

present. Differences between regenerated and old natural stands were determined 

using a CCA permutation test (with region as the Condition). In order to determine 

whether EMF communities in regenerated stands become increasingly similar to old 

natural stands as they age, an “average old natural EMF community” was obtained by 

averaging the relative abundances of each SH among all old natural stands. Similarity 

in community composition of each regenerated stand to the “average old natural EMF 

community” was calculated as the Sørensen index (1-Bray Curtis dissimilarity, 

vegdist function, method “bray” in the vegan package). In order to determine whether 

the similarity to the “average old natural EMF community” changed depending on 

regeneration method, stand age or region, these variables were included as 

explanatory variables in a linear regression model (function lme in the lme4 package 

with region as a random variable when not tested specifically). CCA permutation tests 

were also performed in order to pairwise compare EMF communities close to 

retention trees with those in surrounding harvested areas, and with those in old natural 

stands (with region as the Condition).  

 

2.7.2 Individual species test and indicator species  

Differences in abundances of individual SHs, present in at least ten soil cores, were 

tested post hoc with generalized linear mixed models of the number of sequence reads 

in individual organic samples, using the function glmer in package lme4, assuming a 
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Poisson distribution with log-transformed total fungal reads as offset and the forest 

stand within a region as a random factor. The models were applied in order to 

determine: (1) differences between old natural and regenerated stands; (2) differences 

between regeneration methods; (3) the effect of regenerated stand age; and (4) 

differences between retention trees, surrounding harvested areas and old natural 

stands. SHs were also collapsed to the level of genera, and for each genus, generalized 

linear mixed models were used to test differences in abundance between old natural 

and regenerated stands. Indicator species analyses were also performed on square root 

arc sine transformed EMF mean relative abundances per stand (function multipatt in 

the indicspecies package). Comparisons were made between: (1) old natural and 

regenerated stands and (2) retention trees, surrounding harvested areas and old natural 

stands. 

 

2.7.3 Proportion and species richness of EMF 

To obtain comparable numbers of species richness per stand, the total fungal sequence 

data was pooled within stands, rarefied (function rrarefy in the vegan package) to 

lowest total number of fungal reads (2121), after which EMF SH richness was 

calculated. Species richness was related to old natural and regenerated stands, 

regeneration methods and stand age, using linear mixed models (function lme in the 

nlme package) with region as a random factor. The same tests were also performed 

for the average proportion of EMF reads per stand (out of the total fungal reads) with 

the same explanatory variables. 

 

3. Results 

3.1 Sequencing output  
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Sequencing, quality filtering and clustering resulted in 130,572 reads and 1,786 SHs 

from the 367 organic samples, of which 13,777 reads (11%) and 112 SHs (6%) were 

assigned to EMF (Table 2, Table S3). In total 17,392 reads and 741 SHs were 

obtained from the 44 retention tree samples, of which 1,987 reads (11%) and 63 SHs 

(9%) were assigned to EMF (Table 3, Table S4). The five most common EMF SHs in 

the organic soil (retention trees included) were Suillus variegatus (16% of EMF 

reads), Piloderma sphaerosporum (13%), Piloderma olivaceum (9%), Cenococcum 

geophilum (7%) and Cortinarius semisanguineus s.l. (7%). In total, 23,835 reads and 

815 SHs were obtained from the 73 transect mineral samples, of which 1,855 reads 

(8%) and 78 SHs (10%) were assigned to EMF. In general, the same EMF SHs were 

detected in the mineral samples as in the organic samples (Table S5).  

 

3.2 Comparing old and regenerated stands as well as regeneration methods 

3.2.1 EMF community composition 

Within regenerated stands the EMF community composition differed marginally 

depending on stand age (P = 0.05) but was not significantly influenced by 

regeneration method (seed trees or clear-cut) (P = 0.2) (Fig. 3). The EMF community 

composition was significantly different depending on region (P = 0.001) and differed 

between old natural and regenerated stands both in terms of relative abundances (P = 

0.001, Fig. 2) and frequencies (P = 0.004, Fig. S1). When grouping the regenerated 

stands in “0-30-year-old” and “30-60-year-old”, EMF composition differed 

significantly between the groups (P = 0.009) as well as between each group and old 

natural stands (P = 0.001 and P = 0.01). EMF communities in regenerated stands 

became more similar to those in old natural stands (Sørensen index) with increasing 

stand age (P = 0.001, Fig. 3) and more dissimilar to those in old natural stands with 
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higher latitude (P = 0.001); however, the regeneration method had no detectable 

effect (P = 0.9). The results were similar for mineral samples (Fig. S2). 

 

3.2.2 Individual species tests and indicator species 

Two Cortinarius SHs were significantly more abundant in old natural stands than in 

regenerated stands (Table 2, Table S3), and two Cortinarius SHs increased in 

abundance with increasing age of regenerated stands, as did Suillus variegatus, 

Piloderma sphaerosporum, and Rhizopogon rosoleus. Rhizopogon evadens was 

significantly more abundant after seed tree regeneration than after clear-cutting and 

replanting, although this result should be treated with caution since overall 

community composition was not significantly different. The genera-based analysis 

revealed that Cortinarius was significantly more abundant in old natural stands, while 

Lactarius and Thelephora were more abundant in regenerated stands. Six Cortinarius 

SHs, Hydnellum ferrugineum and an unidentified Piloderma (sp1.) were identified as 

indicator SHs for old natural stands (Table S3). Thelephora terrestris was the only 

indicator for regenerated stands, was significantly more abundant in regenerated 

stands than in old natural stands, and also declined significantly in abundance with 

increasing age of regenerated stands. 

 

3.2.3 Proportion and species richness of EMF  

EMF species richness was marginally higher (P = 0.05) in old natural stands (on 

average 15 SHs per stand) than in regenerated stands (13 SHs). However, EMF 

species richness in seed-tree-regenerated stands (12 SHs) did not differ significantly 

(P = 0.1) from that of clear-cut stands (14 SHs) but increased with stand age among 

the regenerated stands (P = 0.03) (Fig. S3). The proportion of EMF of the total fungal 

community did not differ significantly between old natural stands (on average 12%) 
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and regenerated stands (10%) (P = 0.3), nor between seed-tree-regenerated stands 

(9%) and clear-cut stands (11%) (P = 0.4), but increased with the age of the 

regenerated stands (P = 0.004) (Fig. S4).  

 

3.3 Comparing EMF communities around retention trees with those in surrounding 

harvested areas and in old natural stands  

3.3.1 Community composition 

EMF communities around retention trees did not differ significantly from those in old 

natural stands (P = 0.5, Fig. 6), but differed from communities in the surrounding 

harvested areas (P = 0.03). The reported P values were obtained after partialling out 

the effect of region, which had a significant effect (P = 0.001). 

 

3.3.2 Individual species tests and indicator species 

Six SHs (four Cortinarius SHs, S. variegatus and C. geophilum,) were significantly 

more abundant close to retention trees than in the surrounding harvested areas (Table 

3, Table S4). By contrast, T. terrestris and Tylospora fibrillosa were significantly 

more abundant in harvested areas than around retention trees. Indicator SHs for 

retention trees were Cortinarius obtusus and Cortinarius stillatitius s.l., and for 

harvested areas T. terrestris (Table S4). 

 

4. Discussion 

In this study we investigated whether natural regeneration using seed trees results in 

an EMF community composition that is more similar to old natural stands than that 

obtained after replanting clear-cuts. According to our results regeneration method did 

not influence the EMF community composition. However, permanently retained trees 
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seemed to maintain EMF communities of old natural stands locally but had no effect 

in the surrounding harvested areas. EMF communities in regenerated stands became 

increasingly similar to those of old natural stands with increasing stand age, but 

significant differences remained still 30–60 years after harvest. Even though relative 

abundances differed, the pool of common species was largely the same in all stand 

categories.  

4.1. Regeneration method 

In contrast to our hypothesis, we found that the ten-year retention of seed trees failed 

to affect EMF community composition relative to full clear-cutting and replanting. 

Since EMF survival has been observed within a radius of 10 m from retained trees 

(Cline et al. 2005; Luoma et al. 2006; Jones et al. 2008), 50-100 temporarily retained 

seed trees per ha should suffice to ensure that a majority of the area is covered by 

roots of mature trees, potentially enabling life-boating of EMF. Therefore we 

expected that seed trees regeneration would result in more diverse and less impacted 

EMF communities compared to those in clear-cut and replanted stands. Our result 

shows that the observations of lack of effect of regeneration method on EMF 

community composition made by Varenius et al. (2016), based on a single field 

experiment of 50-year-old stands, also holds true in a larger geographical context and 

throughout stand development. 

Tree harvesting results in changed soil chemistry, humidity and temperature 

(Jones, Durall & Cairney 2003). A possible scenario is that EMF species adapted to 

conditions in old natural stands (e.g. certain Cortinarius spp.) could not cope with the 

overall new environmental conditions induced by the harvest, no matter whether seed 

trees were retained or not, or were not present in the immediate surroundings to 

produce sufficient amount of spores that could disperse into and establish in the 
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logged areas. Thus, these species decreased in abundance and frequency in relation to 

more generalist species. Our results thus indicate that environmental filtering might 

have a larger effect on the overall EMF community composition after harvest than 

regeneration method and tree continuity. It is therefore reasonable to assume that, 

when aiming to conserve an EMF community similar to an unharvested forest, 

retention of intact forest patches is probably more efficient than retention of evenly 

distributed trees. In support of this idea, Jones et al. (2008) observed that EMF 

communities in retention patches as small as 5 m in diameter mirrored those of the 

unharvested forests, while the effect of the retention patch disappeared 10 m into the 

harvested area. Kranabetter, De Montigny and Ross (2013) observed reduced 

abundance of particular dominant EMF species 10 years after harvest along the entire 

gradient of patch sizes (single trees to 0.12 ha) and suggested a patch size of at least 

0.2 ha. Since our results confirm the lack of impact of dispersed retention trees, 

retaining 0.2 ha forests patches seems like an efficient approach for local preservation 

of EMF communities that are similar to those of old, natural stands. 

 

4.2. Permanent retention trees 

The EMF communities of old natural stands were partly maintained within one meter 

of permanent retention trees, but not in the harvested areas surrounding the retention 

trees. This result together with the lack of effect of seed tree retention indicate that 

retaining single dispersed trees should be viewed upon as a way to life-boat EMF 

mycelia directly associated with the retained trees but not as a way to maintain EMF 

diversity throughout an entire stand. This is further supported by the observations by 

Cline et al. (2005), who found that EMF communities of seedlings planted 6 m from 

mature trees had a composition more similar to the mature trees than seedlings 
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planted 16 m from the trees, and Luoma et al. (2006), who observed a 50% decline in 

number of EMF taxa 8-25 m from retention trees.  

EMF communities are, like most biological communities, composed of 

relatively few dominant species and many rare ones (Horton and Bruns 2001). The 

majority of the EMF species occurring in the studied stands, e.g. red-listed species, 

are too infrequent to be captured by our study design, simply because the probability 

of finding rare species at levels suitable for statistical analysis is low when sampling 

soil randomly, as discussed by Varenius et al. (2016). These EMF are preferably 

instead monitored using sporocarp surveys or through analyses of soil from known 

fruiting areas (van der Linde et al. 2012; Gordon and van Norman 2014). However, 

since our results indicate that permanent retention trees enable local survival of some, 

relatively common EMF, it is reasonable to conclude that also rare species may 

survive in such refuges. Although unfeasible in ordinary management, at sites of 

particular interest, pre-harvest sporocarp inventories could be to carried out, followed 

by targeted retention of their host trees as a way to maintain EMF species of specific 

conservation interest. However, certain EMF species require conditions that can only 

be found in old natural stands, and even if their host trees are retained they may not 

cope with the environmental changes induced by harvest.   

 

4.3. Regenerated stands vs. old natural stands 

We found that regenerated stands differed in EMF community composition 

from old natural stands still several decades after harvest. Furthermore, as expected, 

EMF communities in regenerated stands became increasingly similar to communities 

in old natural stands with increasing stand age, and EMF species richness and the 

proportion of EMF out of the total fungal community also increased. These results 
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corroborate several previous reports (Twieg et al. 2007; Wallander et al. 2010; 

Varenius et al. 2016; Kyaschenko et al. 2017).  

Since regeneration method did not matter, it seems like the long-term shift in 

EMF community composition after clear-cutting is mainly induced by changes in soil 

chemistry, e.g. elevated pH and increased levels of inorganic nitrogen (Jones, Durall 

& Cairney 2003; Kyaschenko et al. 2017). Priority effects could enable generalist 

species, established after the disturbance, to persist in high abundance for several 

decades and delay establishment of more diverse communities (Kennedy, Peay & 

Bruns 2009; Peay et al. 2012). Also, the importance of a few species potentially 

surviving harvest as a dormant spore bank in the soil is uncertain (Bruns et al. 2009; 

Nguyen, Hynson & Bruns 2012; Glassman et al. 2015).  

Six Cortinarius SHs were indicator species for old natural stands, and the 

Cortinarius genus was significantly more abundant in old natural stands, similar to 

previous observations (Twieg et al. 2007; Kyaschenko et al. 2017). The Cortinarius 

genus can access complex nutrient pools and is increasingly being appreciated to take 

part in the turn-over of organic carbon and nitrogen pools in nitrogen-limited boreal 

forest soils (Lindahl & Tunlid 2015; Clemmensen et al. 2015; Kyaschenko et al. 

2017). Many Cortinarius species prefer low levels of inorganic nitrogen (Lilleskov et 

al. 2002). Thus, the low abundance of Cortinarius species in younger forests could be 

a result of increased nitrogen mineralization by saprotrophic fungi, induced by the 

tree harvest (Kyaschenko et al. 2017).  Our results from a large-scale survey highlight 

the threat that large-scale clear-cutting forestry involve to many Cortinarius species 

and their potentially unique function in boreal forest ecosystems. 

 Thelephora terrestris, which is known to be a pioneer species (e.g. Colpaert 

1999), was, not surprisingly, more abundant in regenerated stands compared with old 
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natural stands and was the only indicator SH for those stands. It was similarly 

observed in young Douglas fir stands (Twieg et al. 2007) and is common on nursery-

grown seedlings (Menkis et al. 2016).  

Even though abundances of species differed significantly between different 

types of forests, the ten most common species were present in all stand categories. 

Together with the observed increase in EMF species richness with age of regenerated 

stands, this indicates that the EMF community after harvest develops through species 

accumulation and altered competitive balances rather than by full successional 

replacement of species (Bradbury et al. 1998; Kranabetter et al. 2005).  

The overall low proportion and richness of EMF observed in this study is 

expected given the location of the stands in the northern part of Sweden and the 

relatively low fertility of the stands supported by the results of Sterkenburg et al. 2015 

observing increasing EMF relative abundance with increasing soil fertility.  

As in most fungal community studies, the proportion of explained variation in 

EMF community composition was generally low, approximately 5% for forest 

management or stand age and 10% when including the effect of region, indicating 

large spatial variation.  
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Figure 1. Study design, location of stands and sampling strategy. The study was replicated in three 

regions (Norrbotten, Jämtland and Dalarna). In each region, 13 forest stands were sampled, of which 

three were old natural stands (filled group of trees) and 10 were stands that had been regenerated 

between 1960 and 2000, either by seed-tree regeneration (unfilled trees, five stands) or by replanting 

after clear-cutting (short vertical lines symbolising stumps, five stands). Ten soil samples (crosses) 

were collected from each stand along two transects at least 20 m from the stand edge (dashed line) and 

25m apart. Samples (crosses) were also collected from ten of the (10–30 year-old) stands (stars) (four 

in Norrbotten, four in Jämtland and two in Dalarna) at a distance of 1 m from three to five permanently 

retained trees (filled trees). 

 

  



 29 

Figure 2. Detrended correspondence analysis (DCA) of ectomycorrhizal fungal (EMF) community 

compositions in the organic layer of thirty 10-60-year old stands regenerated either by replanting after 

clear-cutting or naturally using seed trees in comparison with those in nine old natural stands. Each 

symbol represents the composition of 112 EMF species hypotheses average relative abundances (in 8–

10 humus samples) in a stand.  Light grey = 0-30 year-old stands, dark grey = 30-60 year-old stands, 

black = >100 year-old stands, triangle = stands regenerated by replanting clear-cuts, circle = seed tree 

regenerated stands, and rhomb = old natural stands. 
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Figure 3. Similarity (Sørensen index) in ectomycorrhizal fungal (EMF) community composition of 

112 species hypotheses between stands regenerated either by replanting after clear-cutting or by seed 

trees and the average EMF community in nine old natural stands, plotted against stand age. Dark grey 

= seed-tree-regenerated stands, light grey = stands regenerated from clear-cuts, triangle = Dalarna, 

square = Jämtland, and circle = Norrbotten. The average similarity between communities from 

individual old natural stands and the average old natural stand community is marked with a dotted line 

and the linear regressions of the similarity of replanted clear-cut stands (P = 0.02) and seed tree 

regenerated stands (P = 0.02) when plotted against stand age are shown as dashed-dotted and dashed 

lines respectively.  
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Figure 4. Detrended correspondence analysis (DCA) of ectomycorrhizal fungal community 

composition in the organic layer close to permanently retained trees (stars) compared with surrounding 

harvested areas (rhombs) in ten 10-30 year-old stands in comparison with those in nine old natural 

stands (circles). Each symbol represents the composition of 103 EMF species hypotheses average 

relative abundances. Dashed lines connect samples from the same stand. 
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Table 1. Stand age of the studied Pinus sylvestris (Scots pine) stands in the three regions, Norrbotten, 

Jämtland and Dalarna. “r” denotes stands in which permanent retention trees were sampled. 

 Stand age (years) 

Region Old natural Seed trees Clear-cut 

Norrbotten 123, 124, 136 10r, 26r, 35, 42, 58 6r, 23r, 32, 44, 54 

Jämtland 103, 111, 132 12r, 22r, 26, 43, 56 4r, 18r, 30, 37, 48 

Dalarna 136, 138, 184 10, 26r, 28, 37, 50 10r, 24, 32, 41, 55 
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Table 2. Individual species abundance tests and average relative abundances (‰ of all fungal reads) 

for ectomycorrhizal fungal (EMF) species hypotheses (SHs) occurring among the 20 most common 

EMF SHs in either old natural stands (O), stands regenerated using seed trees (S) or by replanting after 

clear-cutting (C)). The post hoc tests of individual SH abundances were comparing the number of reads 

of each SH in all individual soil cores and analysing whether a certain SH were more present in old vs. 

regenerated stands (O vs. S&C) and if the abundance of the SH increased or decreased with age of 

regenerated stands (Age +/- 10-60). The two regeneration methods only differed significantly for one 

SH (*). Letters denoting test results are explained below. 

SH SH name 

O vs. 

S&C 

Age +/- 

10-60 ‰ fungal reads 

    O S C 

10 Suillus variegatus   + 23 21 12 

18 Piloderma sphaerosporum   + 14 12 18 

30 Russula decolorans   8 4 4 

26 Cortinarius semisanguineus s.l.  +  7 4 9 

34 Cortinarius biformis   5 6 8 

60 Cortinarius cf obtusi s.l. sp. 1  o + 7 3 <1 

21 Piloderma olivaceum   5 8 14 

40 Cenococcum geophilum   5 4 9 

25 Lactarius rufus   5 3 15 

160 Cortinarius cf obtusi s.l. sp. 2   3 <0.1 <1 

130 Cortinarius caperatus    3 1  
65 Cortinarius obtusus   3 <1  
93 Piloderma byssinum   5 <0.1 <1 

301 Cortinarius causticus    1 <1  
126 Russula vinosa   1 <0.1 <0.1 

64 Russula paludosa   3 5 <0.1 

193 Cortinarius testaceofolius  o  3 <0.1 <1 

171 Tylospora sp. 1   2 <1 <1 

98 Cortinarius mucosus   3 2 2 

330 Cortinarius obtusus s.l.   1   
92 Tylospora fibrillosa   1 2 2 

134 Tylospora asterophora   1 1 1 

85 Cortinarius brunneus   <1 2 2 

198 Rhizopogon mohelnensis Velen.   <1 <0.1 1 

188 Cortinarius armillatus   <1 <1 1 

255 Hebeloma sp. 1   <1 <1 1 

132 Rhizopogon evadens A.H. Sm. (*)   <0.1 2 <1 

146 Thelephora terrestris s&c – <0.1 <1 1 

312 Cortinarius pholideus   <0.1 <1 <1 

162 Suillus bovinus    2 <1 

189 Cortinarius clarobrunneus    1 <0.1 

1116 Phellodon tomentosus     <0.1 

358 Cortinarius croceocristallinus s.l.     1 

o  SH significantly more abundant in old natural (100+ years) than in regenerated stands (10-60 

years). 

s&c SH significantly more abundant in regenerated stands (10-60 years) than in old natural (100+ 

years). 

+/–  SH significantly increasing (+) or decreasing (–) with the age of the regenerated stands (10-60 

years).  

* SH with significantly more abundant in stands regenerated using seed trees compared to clear-

cuts. 
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Table 3. Individual species abundance tests and average relative abundances (‰ of all fungal reads) 

for ectomycorrhizal fungal (EMF) species hypotheses (SHs) occurring among the 20 most common 

SHs in either old natural stands (O), around permanent retention trees (R), or in the surrounding 

harvested areas (H). The post hoc tests of individual SH abundances were comparing the number of 

reads of each SH in all individual soil cores and anlysing whether a certain SH differed in abundance 

when comparing retention trees with old natural stands and with harvested areas. Letters denoting test 

results are explained below.  

SH SH name 

Pairwise 

test ‰ fungal reads 

   O R H 

10 Suillus variegatus  rh oh 23 20 4 

21 Piloderma olivaceum   5 12 12 

40 Cenococcum geophilum rh 5 9 5 

26 Cortinarius semisanguineus s.l. rh 7 10 3 

65 Cortinarius obtusus   3 11 <0.1 

18 Piloderma sphaerosporum  or 14 6 8 

60 Cortinarius cf obtusi s.l. sp. 1 rh oh 7 5 <1 

25 Lactarius rufus  5 3 4 

30 Russula decolorans   8 4 3 

34 Cortinarius biformis  5 2 2 

90 Cortinarius stillatitius s.l.  <1 4  

92 Tylospora fibrillosa  rh 1 1 1 

286 Cortinarius traganus   <1 2 <0.1 

238 Cortinarius lux nymphae    2 <1 

184 Pseudotomentella tristis  <1 1  

130 Cortinarius caperatus  3 3  

126 Russula vinosa   1 1 <0.1 

146 Thelephora terrestris  rh oh <0.1 1 2 

64 Russula paludosa  3 1 <1 

188 Cortinarius armillatus  <1 <1 <1 

85 Cortinarius brunneus  rh <1 1 <1 

171 Tylospora sp. 1  2 1 1 

160 Cortinarius cf obtusi s.l. sp. 2  3 <1 <0.1 

162 Suillus bovinus    <1 1 

132 Rhizopogon evadens A.H. Sm.  <0.1 <1 1 

98 Cortinarius mucosus   3 <1  

93 Piloderma byssinum   5 <0.1  

301 Cortinarius causticus   1 <0.1  

193 Cortinarius testaceofolius  oh or 3 <0.1 <1 

330 Cortinarius obtusus s.l.  1   

494 Tomentella badia  <1  <1 

1116 Phellodon tomentosus    <0.1 

284 Lactarius mammosus    <1 

rh  SH with significantly different abundance around retention trees and in harvested areas.  

oh SH with significantly different abundance in old natural stands and in harvested areas. 

or  SH with significantly different abundance in old natural stands and around retention trees. 
 


