Skip to main content
SLU publication database (SLUpub)
Research article - Peer-reviewed, 2017

Evaluating preprocessing methods of digital elevation models for hydrological modelling

Lidberg, William; Nilsson, Mats; Lundmark, Tomas; Agren, Anneli M.

Abstract

With the introduction of high-resolution digital elevation models, it is possible to use digital terrain analysis to extract small streams. In order to map streams correctly, it is necessary to remove errors and artificial sinks in the digital elevation models. This step is known as preprocessing and will allow water to move across a digital landscape. However, new challenges are introduced with increasing resolution because the effect of anthropogenic artefacts such as road embankments and bridges increases with increased resolution. These are problematic during the preprocessing step because they are elevated above the surrounding landscape and act as artificial dams. The aims of this study were to evaluate the effect of different preprocessing methods such as breaching and filling on digital elevation models with different resolutions (2, 4, 8, and 16m) and to evaluate which preprocessing methods most accurately route water across road impoundments at actual culvert locations. A unique dataset with over 30,000 field-mapped road culverts was used to assess the accuracy of stream networks derived from digital elevation models using different preprocessing methods. Our results showed that the accuracy of stream networks increases with increasing resolution. Breaching created the most accurate stream networks on all resolutions, whereas filling was the least accurate. Burning streams from the topographic map across roads from the topographic map increased the accuracy for all methods and resolutions. In addition, the impact in terms of change in area and absolute volume between original and preprocessed digital elevation models was smaller for breaching than for filling. With the appropriate methods, it is possible to extract accurate stream networks from high-resolution digital elevation models with extensive road networks, thus providing forest managers with stream networks that can be used when planning operations in wet areas or areas near streams to prevent rutting, sediment transport, and mercury export.

Keywords

breaching; culverts; digital elevation model; LiDAR; preprocessing; roads

Published in

Hydrological Processes
2017, Volume: 31, number: 26, pages: 4660-4668
Publisher: WILEY