ENHANCING SUGAR BEET’S EARLY GROWTH AND ESTABLISHMENT BY USING PROTEIN-BASED BIOSTIMULANTS

Okanlawon Lekan Jolayemi

Introductory Paper at the Faculty of Landscape Architecture, Horticulture and Crop Production Science, 2019:2
Swedish University of Agricultural Sciences,
Alnarp, Sweden

October 2019
Enhancing sugar beet’s early growth and establishment by using protein-based biostimulants

Okanlawon Lekan Jolayemi

Place of publication: Alnarp, Sweden
Year of publication: 2019
Title of series: Introductory paper Faculty of Landscape Architecture, Horticulture and Crop Production Science
Number of part of series: 2019:2

Cover pictures: Naked (black), pelleted (brown) and coated (blue) sugar beet seeds (top left) and sugar beet plants under field condition (top right). Sugar beet plant with root (bottom)

Cover pictures by: Dr. Tobias Eklad (Maribo Hilleshög Research AB, Landskrona, Sweden) and Dr. Ali Hafeez Malik (Nelson Seed Development, Lund, Sweden)

Online publication: https://pub.epsilon.slu.se/

Keywords: Sugar beet, seed enhancement techniques, biostimulants, protein hydrolysates, amino acids

Swedish University of Agricultural Sciences
Faculty of Landscape Architecture, Horticulture and Crop Production Science
Department of Plant Breeding
Plant Product Quality Group
Abstract

Sugar beet is the only crop after sugar cane that produces sugar for human consumption and industrial usage. Sugar beet is adaptable to temperate climates between latitudes 30 and 60°N. This crop has been around for more than 2 centuries and several efforts have been made to improve its quality (in terms of sugar content) and vigour (seed germination, emergence and seedling establishment). Until now, sugar beet germination capacity has not been fully explored, a problem that has been linked with the presence of germination-inhibitors present on the pericarp. Sugar beet seeds require sophisticated seed enhancement techniques in order to improve their germination capacity, early growth and establishment. Some of the processes involved with sugar beet seed enhancement techniques include polishing, priming, pelleting and coating among others. Seed pelleting involves the addition of some substances to sugar beet seeds in order improve its shape and size for precision planting. Most of these additives are inorganic chemicals, which are dangerous to our environment. To reduce the effects of these inorganic additives on the environment, this paper considers the use of bio-based products (protein-based biostimulants) in seed enhancement techniques. The aim of this paper is to explore the available information on sugar beet seed enhancement techniques, biostimulants, and their impact on germination, emergence, early growth and establishment.
Table of content

Abstract | 3
List of tables | 5
List of figures | 6
1.0 Introduction | 7
2.0 History and production of sugar beet | 11
2.1 History of beet | 11
2.2 Environmental conditions of sugar beet cultivation | 11
2.3 Economic importance of sugar and sugar beet | 12
3.0 Botany of sugar beet | 16
3.1 Sugar beet plant morphology | 16
3.2 Sugar beet seed morphology | 16
3.3 Sugar beet seed germination physiology | 16
4.0 Seed Enhancement technologies | 18
4.1 Seed treatments | 18
4.1.1 Seed coating | 18
4.1.2 Seed pelleting | 18
4.1.3 Seed priming | 19
5.0 Biostimulants | 21
5.1 Agriculture and Biostimulants | 21
5.2 Benefits of Biostimulants | 21
5.3 Classification of Biostimulants | 22
5.3.1 Humic substances | 22
5.3.2 Protein-based biostimulants | 22
5.3.2.1 Protein hydrolysates | 22
5.3.2.2 Amino acids | 23
5.3.2.3 Plant physiology and metabolism of PHs and AA | 23
5.3.2.4 Plant defenses to biotic and abiotic stress | 24
5.3.2.5 Plant tolerance to heavy metals toxicity | 24
5.3.4 Seaweed extracts | 24
5.3.5 Plant-growth-promoting-bacteria | 24
6.0 Acknowledgement | 26
7.0 References | 27
List of tables

Table 1: Developmental stages (days) of sugar beet under different climate in production regions. 15
List of Figures

Figure 1: Global sugar production from 2009/2010 to 2018/2019 growing season. 9

Figure 2: Global production statistics for sugar beet (kind permission of www.knoema.com). 10

Figure 3: Sugar production in major producing countries classified by crop (kind permission of OECDiLibrary- https://www.oecd.org/termsandconditions/). 13

Figure 4: EU sugar reforms lead to lower quota production, fixed exports and rising imports (kind permission of OECDiLibrary- https://www.oecd.org/termsandconditions/). 14

Figure 5: Structure of mature fruits and seeds of Beta vulgaris (kind permission of Professor Gerhard Leubner, Seed Biology Place (http://www.seedbiology.de/structure.asp#beta). 20
1.0 Introduction

Table sugar (sucrose), a white crystalline substance, is a component of the human diet because of its sweetening, energy-giving and preserving properties (Colonna and Samaraweera, 2000; Colonna et al., 2006). Sugar has been available for human consumption over the past two centuries and the average annual consumption per person is about 23 kg (Biancardi et al., 2010). Sugar is produced globally in over 130 countries from either sugar cane or sugar beet and the two crops contribute 75 and 25% of the sugar produced in the world, respectively (Cooke and Scott, 1993; Zimmermann and Zeddies, 2002; Gurel et al., 2008; Biancardi et al., 2010). The average yearly global production of sugar is around 174 million metric tonnes (MT) for the last 10 years (Figure 1) out of which only about 50 million MT is available for international trade (Biancardi et al., 2010; Řezbová et al., 2013).

Sugar beet (Beta vulgaris L.) is the most important sucrose-producing crop in the temperate regions of the world (Rady and Ali, 1999; OECD, 2015). Most of the sugar beet is grown between latitudes 30 and 60° N (Mahmoodi et al., 2008), as a summer or winter crop depending on the climate (Draycott, 1972). The crop is produced in more than 60 countries and provides globally more than 35 million MT of sugar per year (Draycott, 2005; Biancardi et al., 2010; Řezbová et al., 2013). The top ten sugar beet producing countries include Russia, France, U.S., Germany, Ukraine, Turkey, Poland, China, U.K. and Egypt (Biancardi et al., 2010; Řezbová et al., 2013) (Figure 2). Apart from its huge supply of sugar for human consumption, sugar beet has an outstanding ability for liquid biofuel production, giving a range of 100-120 l/t of bioethanol (Leroudier, 2002; Mahmoodi et al., 2008; Panella, 2010; Abts et al., 2013; Dohm et al., 2013; OECD, 2013).

Successful sugar beet cultivation is highly dependent on the supply of high quality seed (Kockelmann and Meyer, 2006). Seed quality is defined by a range of seed characteristics, which include; varietal/genetic and analytical purity, seed germination capacity, uniformity as well as seed health and vigour (McDonald, 1998; Boelt et al., 2018). Good seed quality results in high germination capacity, uniformity of field emergence and good vigour of sugar beet seedlings (Boelt et al., 2018). The above mentioned seed qualities have significant impact on the final yield of sugar beet, both in quantity (root yield) and quality (sugar yield) (Sliwinska and Jendrzejczak, 2002; Reyes et al., 2003; Ashraf and Foolad, 2005; Biancardi et al., 2010; Catusse et al., 2011; Kockelmann and Meyer, 2006; Abts et al., 2013; Vijaya-Geetha et al., 2014; Huang et al., 2016). Sugar beet is particularly sensitive to poor seed quality due to the common practice of precision sowing (drilling) to final stand density, i.e. assuming that close to 100% of the seeds germinate and produce plants (Ashraf and Foolad, 2005). Slow field emergence and establishment of sugar beet can still be a problem despite several improvements that have been made to the seed preparation process, including seed enhancement techniques (priming, pelleting, encrustation and coating) (Kockelmann and Meyer, 2006).

Seed enhancement techniques have led to uniform germination, increased germination speed, and allow the incorporation of active ingredients to protect the seeds and seedling from insects and diseases (Sliwinska and Jendrzejczak, 2002). Seeds enhancement also allows for the application of additional compounds on seed such as fertilizers and biostimulants in order to enhance seedling growth, establishment and ultimately yield and quality (Calvo et al., 2014). Biostimulants have been found to improve crops tolerance to drought and pathogens as well as

This introductory paper is aimed at in-depth exploration of literature about what has been done so far to enhance sugar beet germination, emergence, early growth and establishment by using biostimulants. The second aim was to explore how biostimulants can impact early growth and establishment of sugar beet seedling both in terms of shoot and root development.
Figure 1: Global sugar production from 2009/2010 to 2018/2019 growing season (Statista, 2019).
Figure 2: Global production statistics for sugar beet. With the green area being the world highest producers including Russia, France, U.S., Germany, Ukraine, Turkey, Poland, China, U.K. and Egypt.
2.0 History and production of sugar beet

2.1 History of beets
Sugar beet was grown as a garden vegetable more than 2000 years ago in Greece, Rome and Mesopotamia (Ford-Lloyd and Williams, 1975; De-Bock, 1986; Zohary and Hopf, 1974; Draycott, 2005; Biancardi et al., 2010; Dohm et al., 2013). Beta maritima (sea beet) is the wild ancestor or the progenitor of today’s sugar beet plant (OECD, 2006). By the end of the fifteenth century, beet was probably grown all over Europe (Deerr, 1950; Draycott, 2005). Red and yellow beets became popular as salad vegetables during sixteenth and seventeenth centuries (OECD, 2006). Beet was grown as field crop for the first time in the seventeenth century in Spain, although only as fodder for cattle (Cumo, 2013). Andreas Margraff (German chemist) in 1747 discovered the protocol for the extraction of sucrose from sugar beet. Franz Karl Achard (German Breeder and student of Margraff) in 1787 selected sugar beet variety with sucrose content of about 6% fresh root weight by evaluating 23 local sugar beet varieties (Draycott, 2005; OECD, 2006).

2.2 Environmental conditions for sugar beet cultivation
The current root yield of sugar beet (>100 t/ha) has been attributed to a combination of a breeding progress (selection for high yielding varieties) and optimal weather conditions in Europe (Hoffmann, 2017). Sugar beet is a sun-loving crop; it does not require too much rain and cloud (Finch et al., 2002). In Europe sugar beet is sown early during the spring in order to provide closed canopy for longer period of sunshine interception (Petkeviciene, 2002; Hoffmann and Kluge-Severin, 2011; Kirchhoff et al., 2012). Root yield loss of 300 kg ha$^{-1}$ and 50 kg ha$^{-1}$ of white sugar yield has been reported when sowing is delayed by average of one day (Petkeviciene, 2009). Sugar beet sowing time also depends on the cultivation technology and it is influenced by soil moisture (Romaneckas and Sarauskis, 2003; Petkeviciene, 2009). Fast sugar beet emergence is obtained when the soil moisture in the seedbed is 20–23%, and air and soil temperature ranges between 15–25°C (Copeland and McDonald, 2001; Hoffmann, 2017).

Most beets are grown on calcareous soils with a clay content between 10-25% and a high fertility level with neutral acidity (pH 7). Nitrogen is important for the sugar beet crop as it stimulates foliage canopy towards adequate solar interception (approximately 90% of the solar radiation) as soon after sowing as possible (Draycott and Christenson, 2003; Jaggard et al., 2009). However, nitrogen is not important at harvest, as it limits sugar extraction (Draycott and Christenson, 2003). Ideally, lime should be applied to the soil one year ahead of planned sugar beet cultivation. Fertile and deep soils are often reserved for sugar beet cultivation due to the high economic return (Olsson and Olsson, 2004; FAO, 2009). Days to maturity of sugar beet from the day of sowing range from 120-250 days depending on the region of cultivation and month of the year of planting (Table 1).
2.3 Economic importance of sugar and sugar beet

Sugar is politically and economically high-profile commodity for the major sugar producing countries in the world (AB Sugar, 2019). Globally, sugar is traded in both raw (brown sugar) and refined (white sugar) forms representing 55 and 45% of the international trade respectively (AB Sugar, 2019). The global sugar production is dominated by Brazil, India and the European Union (EU) (OECD/FAO, 2015) (Figure 3). The EU is the world’s leading producer of beet sugar with an average annual production of 17.7 million MT (OECD/FAO, 2015). The EU sugar reform between 2013 and 2017 has led to reduced production and exports as well as increased imports (OECD/FAO, 2010) (Figure 4).
Figure 3: Sugar production in major producing countries classified by crop (OECD/FAO, 2015)
Figure 4: EU sugar reforms lead to lower quota production, fixed exports and rising imports (OECD/FAO, 2010).
Table 1: Developmental stages (days) of sugar beet under different climate in production regions.

<table>
<thead>
<tr>
<th>Region</th>
<th>Sowing period</th>
<th>Sowing-emergence</th>
<th>Sowing-maximum canopy cover</th>
<th>Sowing-start canopy senescence</th>
<th>Sowing-Maturity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mediterranean</td>
<td>Nov</td>
<td>10-14</td>
<td>100-130</td>
<td>130-160</td>
<td>200-250</td>
</tr>
<tr>
<td></td>
<td>Feb</td>
<td>16-20</td>
<td>80-100</td>
<td>100-130</td>
<td>150-180</td>
</tr>
<tr>
<td>Northern Europe</td>
<td>Mar</td>
<td>18-22</td>
<td>80-100</td>
<td>100-120</td>
<td>160-190</td>
</tr>
<tr>
<td></td>
<td>Apr</td>
<td>18-22</td>
<td>70-90</td>
<td>90-120</td>
<td>150-180</td>
</tr>
<tr>
<td>India</td>
<td>Oct</td>
<td>8-12</td>
<td>40-60</td>
<td>60-80</td>
<td>120-140</td>
</tr>
<tr>
<td>USA</td>
<td>Sept</td>
<td>8-20</td>
<td>90-110</td>
<td>110-130</td>
<td>240-270</td>
</tr>
<tr>
<td></td>
<td>Mar</td>
<td>16-20</td>
<td>80-100</td>
<td>100-120</td>
<td>170-190</td>
</tr>
<tr>
<td></td>
<td>Jun</td>
<td>7-17</td>
<td>70-80</td>
<td>80-90</td>
<td>130-150</td>
</tr>
</tbody>
</table>

Rinaldi, 2012.
3.0 Botany of sugar beet

3.1 Sugar beet plant morphology
Sugar beet is a typical vegetative crop with a biennial life cycle, belonging to the family Amaranthaceae (Getz, 2000; Hermann et al., 2007). After sowing in spring, it produces leaf and root mass until harvest in autumn. Sugar beet leaf are ovate or cordate in structure depending on the varieties (Højland and Pedersen, 1994; OECD, 2006). As a result of secondary thickening, the storage root is made up of 15–20% sucrose contents (FAO 2009; OECD, 2015). Sugar beet enters its reproductive phase only after exposure to a long period of cold temperatures (<4°C) in the second year, which results in shoot elongation (bolting) and flowers are produced (Elliot and Weston, 1993; OECD, 2006). Each flower contains two stigmas (female parts), and the seeds are in clusters and enveloped in a woody covering (calyces) (OECD, 2006).

3.2 Sugar beet seed morphology
Sugar beet seeds are small irregular star-shaped of about 10 mg per seed in weight (OECD, 2006). The sugar beet seed is classified as a fruit, which is referred to as achene (OECD, 2006; Hermann et al., 2007). Achene is a “small, dry, indehiscent fruit, with their seeds not adhering to the carpel and do not split open when ripe” (Hermann et al., 2007; Marzinek et al., 2008). The sugar beet fruit consists of a fruit cavity and a pericarp which is the outermost layer covering the operculum or fruit cap (Orzeszko and Podlaski, 2003; Hermann et al., 2007; Abts et al., 2013) (Figure 4).

3.3 Sugar beet seed germination physiology
Seeds germination in sugar beet like every other crop, is largely controlled by temperature and availability of water if oxygen is present (Gummerson 1986; Sadeghian and Yavari, 2004). Sugar beet seed do not germinate evenly, and this uneven germination is mostly related to some inhibitory substances reportedly found on the seed pericarp (Tolman and Stout, 1940; Battle and Whittington, 1969). These inhibitory substances have been identified and they include: free ammonia from the pericarp (Stout and Tolman, 1941); osmolytes in the seed coat (Duym et al., 1947); and unsaturated yellow oil. Unsaturated yellow oil has been reported in other crops and can be removed by prolonged washing (De-Kock and Hunter, 1950). Another germination–inhibitor of sugar beet is the presence of salt crystals on the thick-wall sclereids of the pericarp, which form an osmotic solution with low water potential in the presence of water (Orzeszko-Rywka and Podlaski, 2003; Hermann et al., 2007).

Sugar beet seeds germination is improved by the removal of the soft outer part of the pericarp, through the process called polishing. The aim of polishing is to reduce the irregular shape/size of the seed to an optimal grade suitable for pelleting (Kockelmann and Meyer, 2006). However, during the process of polishing, germination-inhibitors that are present on the seed pericarp are also removed thereby allowing improved germination of the sugar beet seed (Kockelmann and Meyer, 2006; Abts et al., 2013). Nevertheless, polishing must be done gently to avoid cracks in the pericarp and embryo damage, especially to the radicle. The pericarp also serve as
physical barrier for water and oxygen uptake in addition to the presence of germination-inhibitors, thereby retarding germination (Abts et al., 2013).
4.0 Seed enhancement techniques

4.1 Seed treatments
Seed treatments is defined by the International Seed Federation (ISF), as “the application of biological, physical and chemical agents to seed that provide protection to seeds and plants and improve the establishment of healthy crops” (Sharma et al., 2015). A number of seed treatment methods have evolved over the years ranging from physical seed treatment (PT) (hot water treatment, dry heat treatment, aerated heat treatment and radiation treatment) to chemical and biological seed treatment (CBT). The CBT includes different seed immersion techniques, as well as seed priming, seed pelleting and seed coating (Sharma et al., 2015). Seed treatments have been used on many crop seeds for a variety of purposes including alleviation of stresses associated with soil environment (biotic or abiotic) and improving plant growth. For instance, Avelar et al., (2012) reported treatment with systemic chemicals to control plant pathogens within the plant system. Seed treatment with beneficial microorganisms, which help to fix Nitrogen and enhance uptake of nutrients, is also possible. Another example is seed physical treatments to control seed-borne pathogens and seed coatings or pelleting to improve seed shape for planting or provide other benefits (Avelar et al., 2012). Taylor and Harman, (1990) also cited examples of physiological seed treatments that enhance germination rate and plant performance. There are treatments that affect seed moisture relationships and result in improved seed storability or performance (Taylor and Harman, 1990).

4.1.1 Seed priming
Sugar beet seeds are frequently subjected to priming as a pre-treatment exercise. Priming contributes to an improvement of germination characteristics, especially to speed and uniformity of emergence under stressful conditions (Kockelmann and Meyer, 2006). The seed priming technique includes a partial seed hydration to initiate germination-metabolic processes without actual germination thereafter a re-drying of the seed to close to their original weight to permit routine handling (Mahmood et al., 2016). A range of compounds have been used in priming of different crops species, namely; osmotic compounds (polyethyleneglycol- PEG), water (hydropriming) and various biological compounds (biopriming) (Kockelmann and Meyer, 2006; Mahmood et al., 2016).

4.1.2 Seed pelleting
Seed pelleting was basically developed to increase the apparent seed size and weight and to alter seed shape for precision seed planting (Taylor et al., 2001; Sharma et al., 2015). Seed pelleting is the most sophisticated seed treatment technique (Sharma et al., 2015). Many crops have small and irregular shaped-seeds, which does not permit accurate metering by mechanical planting equipment (Taylor and Harman, 1990). Seed pelleting therefore has the following advantages; (i) drilling to final stand, (ii) homogeneity of drilling, (iii) application of active ingredients (including biostimulants) without the risk of phytotoxicity (Kockelmann and Meyer, 2006). Sugar beet seed as well as vegetable and flower seed companies have developed and employed pelleting technique on a commercial scale (Taylor et al., 1997). The focus of pelleting is to allow only one seed per pellet and to prevent seeds from sticking to one another.
The pellet general include, the seed mass wrapped up within two components, a binder (or adhesive) and an inert filler thereby increasing the seed weight by 100-5000% of the original seeds weight (Taylor et al., 1997). Freshly produced seed pellets are usually wet since water is required to hydrate the binder, and therefore the pelleted seeds must be dried to desired moisture content before storage (Taylor et al., 1997). Taylor and Harman (1990), have reviewed the use of various binders used for seed pelleting and described the use of gum arabic, gelatin, starch, methyl-cellulose, polyvinyl alcohol, polyoxyethylene glycol-based waxes, and carboxymethyl cellulose. Fillers or particulate matters used for pelleting include calcium carbonate, limestone, gypsum, talc, vermiculite, diatomaceous earth, kaolin clay, bentonite, zeolite and peat. Sachs et al., (1981) and Sachs et al., (1982) have reported that clay and sand pellets acted as physical barrier to water and oxygen diffusion and mechanical barrier to radicle protrusion of sweet pepper seeds. Durrant and Loads, (1986) also found out that clay pellet applied to sugar beet seeds reduced emergence when sown in wet soil conditions, whereas more porous pelleting materials gave 5-10% greater stand than the clay pellet. Therefore, the composition of the pellet can have a direct influence on germination, especially under adverse soil conditions. In order to escape the adverse effect of soil moisture on germination of pelleted seeds, moist pellets have also been developed. Seeds treated as moist-pellet (quick pill) should be stored at 4°C and must be sown within 14 days (Taylor and Harman, 1990). Moist pelleting system is necessary for biological organisms that are desiccation-intolerant or that need high moisture levels for optimum performance (Taylor and Harman, 1990).

4.1.3 Seed coating
Seed coating includes any process for the direct application of a material to seeds without changing its general size or shape (Taylor et al., 1998, Taylor et al., 2001; Avelar et al., 2012). Active ingredients both in the form of dry powders and as slurry have been applied to seeds to form coatings around the seeds. However, dry powder materials do not generally adhere well to the seed surface thereby resulting in poor loading, lack of uniformity, and dust problems (Khan et al., 1980). Application of slurries instead often improves the uniformity and helps in overcoming other problems associated with dry powder application. Slurry treatments include adhesives (stickers, glues, or binders) to improve retention of materials applied to seeds. Adhesives used for this application include methyl-cellulose, dextran, gum arabic, vegetable or paraffin oils and a range of synthetic binders (Halmer, 1988; Sharma et al., 2015).
Figure 5: Structure of mature fruits and seeds of *Beta vulgaris*. (A–H) Visible events during the incubation of sugar beet fruits in water: (A) Dry fruit. (B, E) Operculum opening; note that the radicle tip is still enclosed by the micropylar endosperm and the inner testa. (C, D, F–H) Radicle emergence through the seed covering layers (testa and endosperm) is the completion of germination. (I, J) Seed germination studied with depopculated fruits. The sugar beet seed has a lentil-like structure (about 3 mm diameter and 1.5 mm thick) and occupies a horizontal position within the fruit. (J) Radicle emergence through the seed covering layers (testa and endosperm) is the completion of germination. (K) Microscopic section through a dry fruit showing the radicle tip enclosed by the covering layers. (L) Distinct stages of sugar beet seed germination: isolated dry seed (1, 2); note that the testa was removed in (1) to make the embryo and perisperm visible. Imbibed seed showing rupture of the outer testa (3) and radicle protrusion through all the seed covering layers (4–6). (M) Section through a mature sugar beet fruit. The curved embryo completely encloses the perisperm, which is dead starch storage tissue localized in the seed centre. (N) Drawing of a sugar beet seed; modified from Bennett and Esau (1936) and reproduced by the kind permission of the United States Department of Agriculture. Based on the peripheral location of the embryo, the sugar beet seed can be structurally classified as being perispermic and P-type (Hermann *et al.*, 2007).
5.0 Biostimulants

5.1 Agriculture and Biostimulants
The use of chemical fertilizers and pesticides, a result of the green revolution in the 1960s, have partly contributed to the environmental pollution we see today (Canellas et al., 2015). Both minerals and chemical compounds can be washed off the field or drained into water bodies or ground water resources, thereby polluting air and water (Halpern et al., 2015). Also, the industrial production of these compounds is energy-intensive, thereby contributing to global greenhouse gas emissions. Modern agriculture is aimed at reducing inputs without reducing the yield and quality in an organic, sustainable or environmental friendly systems (Bulgari et al., 2015). This goal is achievable by breeding programs it will however be species-specific and time-consuming.

Developing crops with robust root systems and higher nutrient-uptake efficiency may combat the above challenge (Halpern et al., 2015). Such crops can be enhanced by the application of biostimulants to crop leaves, seeds, or soil in order to stimulate general plant growth and development (Canellas et al., 2002; Khan et al., 2009; Zandonadi et al., 2007), activates several physiological processes that enhance efficient nutrients uptake (Pinton et al., 1999), beneficial microbial populations and allowing the reduction of fertilizers consumption (Chen, 2006; Vessey, 2003). All these activities in turn lead to increased crop yield (Kunicki et al., 2010). Biostimulants is defined as “substances or materials, with the exception of nutrients and pesticides, which, when applied to plants, seeds, or growing substrates in specific formulations, have the capacity to modify physiological processes in plants in a way that provides potential benefits to growth, development, or stress response” (Halpern et al., 2015; Wilson et al., 2018). Protein hydrolysates and other plants and animal products as well as some beneficial microorganisms have been found to enhance plant growth (Rouphael and Colla, 2018). These organic substances are termed biostimulants. Other N-containing compounds, humic and fulvic acids, botanicals, chitosan and other biopolymers are also included in this category (Tanou et al., 2017). Biostimulants are normally used in the seed industry as post-harvest treatment on seed prior to sowing (Wilson et al., 2018), through seed enhancements techniques. The market of biostimulants has been rapidly growing since the last 10 years (Rouphael and Colla, 2018), and it is currently at 2 billion USD with an estimated 50% increase by 2021 (Rouphael and Colla, 2018).

5.2 Benefits of biostimulants
The beneficial effects of biostimulants has been attributed to auxins and gibberellin metabolism, enhanced nitrogen uptake as well as reactive-oxygen/nitrogen species and hormonal signaling (Tanou et al., 2017). Biostimulants are believed to be interacting with plant signaling processes thereby improving plant tolerance to stresses and so improving plant productivity (Brown and Saa, 2015). Some of the effects of biostimulants include; positive changes in soil structure or nutrient solubility, root morphology, plant physiology, and symbiotic relationships (Nardi et al., 2016). One of the major challenges of the use of biostimulants is the determination of their function, which is due to the variations in the sources of the materials, which is as a result of different industrial manufacturing processes.
5.3 Classification of Biostimulants

Biostimulants are categorized into four major groups namely:

- a. humic substances (HS),
- b. protein-based biostimulants
 - i. protein hydrolysates (PHs) and
 - ii. amino acid formulations (AA),
- c. seaweed extract (SE), and
- d. plant-growth-promoting microorganisms.

5.3.1 Humic substances (HS)

Humic substances (HS) are byproducts of microbial metabolism of dead organic matter that are formed in the soil (Nardi et al., 2016; Canellas et al., 2015). HS are very common and make up 60% of the organic matter in the global soils (Muscolo et al., 2007). HS are made up of many small organic molecules that are held together by hydrophobic interactions and hydrogen bonds (Sutton and Sposito, 2005; Halpern et al., 2015). The sources of HS include peat, soil, manure compost, green waste compost, brown coal and earthworm casts (Rose et al., 2014; Halpern et al., 2015). HS sustain plant growth and terrestrial life in general. Their functions include; regulation of both soil carbon and nitrogen cycling, growth of plants and microorganisms, the fate and transport of anthropogenic-derived compounds and heavy metals, and the stabilization of soil structure (Piccolo, 1996; Canellas et al., 2015). HS can be applied to crops foliage, or through irrigation water as well as direct application to soil (Salman et al., 2007; Yildirim, 2007; Katkat et al., 2009).

Rose et al., (2014) have reported that exogenous application of HS increased shoot and root dry weights of different plant species by about 22%. The most critical factors regulating the effect of HS on plant growth and physiology are application rate, sources of HS and plant type (Canellas and Olivares, 2014). Canellas et al., (2015) reported that monocot respond to exogenously applied HS better than dicots, although the reason is unclear.

5.3.2 Protein-based biostimulants (PBB)

The use of protein-based biostimulants to improve crop growth and physiology have been reviewed (Nardi et al., 2016). PBBs are hydrolyzed products of protein-based wastes usually from Agro-allied (animal or crop) industries (Schiavon et al., 2008). Protein-based biostimulants are either protein hydrolysates (PHs) consisting of mixture of different categories of peptides and individual essential and non-essential amino acids from animal/plant origin (Calvo et al., 2014; Colla et al., 2014; Nardi et al., 2016).

5.3.2.1 Protein hydrolysates (PHs)

Protein hydrolysates are derived mainly from chemical and/or enzymatic hydrolysis of proteins of crops (seeds, hay) and animals (leather, viscera, feathers, blood) origin (Maini, 2006, Schiavon et al., 2008). There are reports of PHs stimulating root and leaf biomass when applied to crops (Zhang et al., 2003; Ertani et al., 2009; Cristiano et al., 2018). PHs applied to plant foliage or roots have been effective to increase Fe and N metabolism, nutrient uptake, water and nutrient use efficiencies for both macro and microelements (Cerdán et al., 2009; Ertani et al., 2009; Halpern et al., 2015). Improved nutrients uptake in PH-treated plants
have been attributed to; (i) increased soil microbial activity and soil enzymatic activities, (ii) improved micronutrient (Fe, Zn, Mn and Cu) mobility and solubility, (iii) modifications in the root architecture (root length, density and number of lateral roots) of plants and (iv) increase in nitrate reductase, glutamine synthetase and Fe (III)-chelate reductase activities (Colla et al., 2014). PHs contained specific peptides and amino acids (e.g. tryptophan- precursors of phytohormone biosynthesis), which help to influence plant development (Colla et al., 2014). PHs widely varied in their protein/peptides and free amino acid contents, ranging from 1 to 85% (w/w) and 2–18% (w/w), respectively (Calvo et al., 2014). Animal-derived PHs usually contain a higher amount of total amino acids than plant-derived PHs (Ertani et al., 2009). Plant-derived PHs contain other compounds that can contribute to the biostimulant action in addition to amino acids and peptides. These compounds include fats, carbohydrates, phenols, mineral elements, phytohormones and other organic compounds (e.g., polyamines). Corte et al., (2014) has debunked the fear around the safety of animal-protein hydrolysates. They confirmed that chemically or enzymatically hydrolysed animal protein showed no toxic effects on the ecosystems (Calvo et al., 2014).

5.3.2.2 Amino Acids (AA)
Amino Acids (AA) are organic compounds containing an amine functional group and a carboxylic acid functional group (Huang et al., 2011). In addition to the 20 common amino acids used for protein biosynthesis, there are 250 more AA (non-protein amino acids) that are known to be involved in different other plant functions (Huang et al., 2011; Vranova et al., 2011; Calvo et al., 2014). The functions include tolerance to stresses (biotic and abiotic), signaling, N storage, and chelation of metals as phytosiderophores (Huang et al., 2011; Vranova et al., 2011). AA can be absorbed directly by plant roots into the xylem (Biernath et al., 2008), through specific transporters in the roots (Nasholm et al., 2009) or through diffusion into the leaves (Kolomaznik et al., 2012; Pecha et al., 2012). Halpern et al., (2015) reviewed the application of AA on crops and its effect on the morphology and physiology of crops which include; increased biomass production (Shehata et al., 2011), tolerance to biotic and abiotic stresses (Cohen and Gisi, 1994; Maini, 2006; Polo et al., 2006) and increase the antioxidant content of the leaves (Ardebili et al., 2012). The mechanisms by which AA improves soil processes is similar to PHs (Halpern et al., 2015).

5.3.2.3 Plant physiology and metabolism of PHs and AA
PHs have been reported to increase nitrogen assimilation by stimulating carbon and nitrogen metabolism (Calvo et al., 2014). It has also been shown that activities of several enzymes, including NAD-dependent glutamate dehydrogenase, nitrate reductase, malate dehydrogenase, isocitrate dehydrogenase, citrate synthase, nitrite reductase, glutamine synthetase, glutamate synthase and aspartate aminotransferase in the tricarboxylic acid (TCA) cycle as well as N reduction and assimilation of maize were enhanced following application of PHs (Maini 2006; Schiavon et al., 2008; Calvo et al., 2014).

Application of glutamate (AA) has been found to promote root growth of Arabidopsis. This result suggests the signaling role for glutamate for root growth (Walch-Liu et al., 2006; Forde and Lea, 2007).
5.3.2.4 Plant defenses to biotic and abiotic stress
The application of PHs and specific AA (e.g. proline) has led to improved plant defense mechanisms to abiotic stresses, including salinity, drought, and oxidative conditions (Ashraf and Foolad 2007; Chen and Murata 2008; Calvo et al., 2014). Kauffman et al., (2007) showed that there was increase in photochemical efficiency and cell membrane integrity compared to control in perennial ryegrass with foliar application of PH (animal hydrolysate) exposed to prolonged high air temperature stress. Apone et al., (2010) have reported the expression of three stress marker genes, two of which enhance the tolerance of cucumber plants to oxidative stress when a mixture of AA-peptide-sugar was applied (Apone et al., 2010). PH applied to maize grown in hydroponic condition under salinity stress showed increase in plant biomass and favorable physiological parameters (Ertani et al., 2013).

Beta-aminobutyric acid (BABA) and gamma-aminobutyric acid (GABA) which are non-protein amino acids have been reported to increase plant resistance to abiotic and biotic stresses (Shang et al., 2011; Calvo et al., 2014).

5.3.2.5 Plant tolerance to heavy metals toxicity
The role of PHs and AA to plant tolerance heavy metals toxicity has been reviewed by Calvo et al., (2014). Plants subjected to heavy metal stress and some metal-tolerant plants exhibit increase accumulation of proline (Sharma and Dietz, 2006). Proline acts as osmoregulator in plant exposed to heavy metal stress by counteracting water deficit and by chelating metal ions within plant cells (Calvo et al., 2014). Another AA that is associated with Nickel-hyperaccumulation in plants is histidine (Calvo et al., 2014). Histidine is said to be involved in Ni-transport from root to shoot (Krämer et al., 1996; Kerkeb and Krämer 2003). Other AAs and peptides (e.g. glutamine and glutathione respectively) have also been reported as important chelates of metal ions such as Zn, Ni, Cu, As and Cd (Sharma and Dietz, 2006; Sytar et al., 2013; Calvo et al., 2014).

5.3.4 Seaweed extracts (SE)
Seaweed extracts may be considered the oldest biostimulants, as it has been used for many centuries (Calvo et al., 2014). SE has been applied directly to crops for improved crop productivity or used as soil-compost to promote soil structure and fertility (Khan et al., 2009; Craigie, 2011). Several researchers have established the positive effects of SE as biostimulants in enhancing seed germination and establishment. SE, like other biostimulants also improve plant vegetative and reproductive phases, as well as improve tolerance to abiotic and biotic stresses (Rayorath et al., 2008; Khan et al., 2009; Craigie, 2011; Mattner et al., 2013; Michalak et al., 2015). Other roles of SE to plant health include, heavy metal-chelation and nutrient-use-efficiency (Tarakhovskaya et al., 2007; Calvo et al., 2014).

5.3.5 Plant-growth-promoting Bacteria (PGPB)
PGPB are biological agents, which are as effective as pure chemical in managing abiotic and biotic stresses in plants (Maheshwari, 2011). They help to enhance plant growth (Dardanelli et al., 2009; Figueiredo et al. 2010) by direct and/or indirect mechanisms which include; (i) minerals solubilization and availability to plants, (ii) improving plants tolerance to abiotic stresses like drought, salinity and metal toxicity and (iii) tolerance to disease-causing organisms.
by producing some metabolites (Glick, 1995; Jha et al., 2013) and consequently increasing crop yield (Figueiredo et al. 2010). A large number of PGPB are commonly found in the plant rhizoplane (roots), and/or the plant rhizosphere (around the roots), generally up to 1 mm from the root surface (Dardanelli et al., 2009). The main groups of PGPR belong to the phyla Cyanobacteria, Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria (Figueiredo et al. 2010). The role of specific strains of PGPB and rhizobia in plant-growth promotion include; N-fixation, biofertilizer activities, and biological control (Dardanelli et al., 2009). Rhizospheric bacteria (Azospirillum and Azotobacter) have been used for root induction of micropropagated jojoba (Simmondsia chinensis), photinia and ornamental grasses (Carletti et al., 1998; Larraburu et al., 2007; Dardanelli et al., 2009). PGPR therefore has the possibility of replacing all or at least some synthetic plant hormones used in plants in vitro cultures (Dardanelli et al., 2009). PGPB inoculants promote plant growth through at least one of the following mechanisms: (i) suppression of plant disease (bioprotectants), (ii) improved nutrients acquisition (biofertilizers) and (iii) phytohormone production (biostimulants) (Figueiredo et al., 2010). Examples of PGPB include; Bacillus, Streptomyces, Pseudomonas, Burkholderia, and Agrobacterium, being the biological control agents predominantly studied and increasingly marketed (Tenuta, 2003).
6.0 Acknowledgements

My sincere appreciation goes to Professor Eva Johansson (SLU, Alnarp) and Dr. Ali Hafeez Malik (Nelson Seed Development AB, Lund) for considering me in the first place, for this PhD position. I also sincerely appreciate other members of my PhD supervisory committee, Professor Marie Olsson (SLU, Alnarp), and Dr. Tobias Ekblad (Maribo Hilleshög, Landskrona). Thank you all for your prompt response to critically review of this paper in order to give it this nice shape. Dr. Tobias Ekblad (Maribo Hilleshög, Landskrona), invited me to Maribo Hilleshög for a study visit and facility tour. Professor Eva Johansson through Trees and Crops for the Future (TC4F) and Partnership Alnarp provided the funds for the PhD project.
7.0 References

CUMO, C. 2013. Encyclopedia of cultivated plants: from acacia to zinnia. ABC-CLIO Publication, Santa Barbara, California, USA.

