Fundova, Irena and Hallingbäck, Henrik and Jansson, Gunnar and Wu, Harry
(2020).
Genetic Improvement of Sawn-Board Stiffness and Strength in Scots Pine (Pinus sylvestris L.).
Sensors (Basel, Switzerland). 20
, 1129
, 2-19
[Research article]
![]() |
PDF
Available under License Creative Commons Attribution. 1MB |
Abstract
Given an overall aim of improving Scots pine structural wood quality by selective tree breeding, we investigated the potential of non-destructive acoustic sensing tools to accurately predict wood stiffness (modulus of elasticity, MOE) and strength (modulus of rupture, MOR) of sawn boards. Non-destructive measurements of wood density (DEN), acoustic velocity (VEL) and MOE were carried out at different stages of wood processing chain (standing trees, felled logs and sawn boards), whilst destructively measured stiffness and strength served as benchmark traits. All acoustic based MOE and VEL estimates proved to be good proxies (r(A) > 0.65) for sawn-board stiffness while MOETREE, VELHIT and resistograph wood density (DENRES) measured on standing trees and MOELOG and VELFAK measured on felled logs well reflected board strength. Individual-tree narrow-sense heritability (hi2) for VEL, MOE and MOR were weak (0.05-0.26) but were substantially stronger for wood density (0.34-0.40). Moreover, additive genetic coefficients of variation for MOE and MOR were in the range from 5.4% to 9.1%, offering potential targets for exploitation by selective breeding. Consequently, selective breeding based on MOETREE, DENRES or stem straightness (STR) could improve several structural wood traits simultaneously.
Authors/Creators: | Fundova, Irena and Hallingbäck, Henrik and Jansson, Gunnar and Wu, Harry | ||||||
---|---|---|---|---|---|---|---|
Title: | Genetic Improvement of Sawn-Board Stiffness and Strength in Scots Pine (Pinus sylvestris L.) | ||||||
Series Name/Journal: | Sensors (Basel, Switzerland) | ||||||
Year of publishing : | 2020 | ||||||
Volume: | 20 | ||||||
Article number: | 1129 | ||||||
Number of Pages: | 19 | ||||||
Publisher: | MDPI | ||||||
Language: | English | ||||||
Publication Type: | Research article | ||||||
Article category: | Scientific peer reviewed | ||||||
Version: | Published version | ||||||
Copyright: | Creative Commons: Attribution 4.0 | ||||||
Full Text Status: | Public | ||||||
Subjects: | (A) Swedish standard research categories 2011 > 4 Agricultural Sciences > 401 Agricultural, Forestry and Fisheries > Forest Science | ||||||
Keywords: | Structural timber, non-destructive testing, wood quality, modulus of elasticity, modulus of rupture, acoustic velocity, heritability, genetic correlation, tree breeding, genetic improvement | ||||||
URN:NBN: | urn:nbn:se:slu:epsilon-p-105304 | ||||||
Permanent URL: | http://urn.kb.se/resolve?urn=urn:nbn:se:slu:epsilon-p-105304 | ||||||
Additional ID: |
| ||||||
ID Code: | 16935 | ||||||
Faculty: | S - Faculty of Forest Sciences | ||||||
Department: | (S) > Dept. of Forest Genetics and Plant Physiology | ||||||
Deposited By: | SLUpub Connector | ||||||
Deposited On: | 26 May 2020 12:24 | ||||||
Metadata Last Modified: | 15 Jan 2021 19:21 |
Repository Staff Only: item control page