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Abstract

Genomic selection has been extensively implemented in plant breeding schemes. Genomic

selection incorporates dense genome-wide markers to predict the breeding values for

important traits based on information from genotype and phenotype records on traits of

interest in a reference population. To date, most relevant investigations have been per-

formed using single trait genomic prediction models (STGP). However, records for several

traits at once are usually documented for breeding lines in commercial breeding programs.

By incorporating benefits from genetic characterizations of correlated phenotypes, multiple

trait genomic prediction (MTGP) may be a useful tool for improving prediction accuracy in

genetic evaluations. The objective of this study was to test whether the use of MTGP and

including proper modeling of spatial effects can improve the prediction accuracy of breeding

values in commercial barley and wheat breeding lines. We genotyped 1,317 spring barley

and 1,325 winter wheat lines from a commercial breeding program with the Illumina 9K bar-

ley and 15K wheat SNP-chip (respectively) and phenotyped them across multiple years and

locations. Results showed that the MTGP approach increased correlations between future

performance and estimated breeding value of yields by 7% in barley and by 57% in wheat

relative to using the STGP approach for each trait individually. Analyses combining genomic

data, pedigree information, and proper modeling of spatial effects further increased the pre-

diction accuracy by 4% in barley and 3% in wheat relative to the model using genomic rela-

tionships only. The prediction accuracy for yield in wheat and barley yield trait breeding,

were improved by combining MTGP and spatial effects in the model.

Introduction

Wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) are two of the earliest domesti-

cated crop species and are ranked as the first and fourth most-grown cereals worldwide,

respectively [1–4]. Approximately 75% of barley’s global production is used as an ingredient in

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0232665 May 13, 2020 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Tsai H-Y, Cericola F, Edriss V, Andersen

JR, Orabi J, Jensen JD, et al. (2020) Use of

multiple traits genomic prediction, genotype by

environment interactions and spatial effect to

improve prediction accuracy in yield data. PLoS

ONE 15(5): e0232665. https://doi.org/10.1371/

journal.pone.0232665

Editor: Aimin Zhang, Institute of Genetics and

Developmental Biology Chinese Academy of

Sciences, CHINA

Received: June 14, 2019

Accepted: April 20, 2020

Published: May 13, 2020

Copyright: © 2020 Tsai et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All genotyping data

used in the study with direct runnable format is

provided in the supporting information. All

phenotype collection is given in the supporting

information.

Funding: This study was funded by Danish Green

Development and Demonstration Program (Grant

No. 34009-12-0511) from the Danish Ministry of

Food and Agriculture, and Nordic Seed A/S. In this

http://orcid.org/0000-0001-9641-6657
https://doi.org/10.1371/journal.pone.0232665
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232665&domain=pdf&date_stamp=2020-05-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232665&domain=pdf&date_stamp=2020-05-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232665&domain=pdf&date_stamp=2020-05-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232665&domain=pdf&date_stamp=2020-05-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232665&domain=pdf&date_stamp=2020-05-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0232665&domain=pdf&date_stamp=2020-05-13
https://doi.org/10.1371/journal.pone.0232665
https://doi.org/10.1371/journal.pone.0232665
http://creativecommons.org/licenses/by/4.0/


animal feed with the remaining 25% used for alcoholic and non-alcoholic beverages and a vari-

ety of other foodstuffs. Due to barley’s diploid genome architecture and its ability to self-fertil-

ize, barley is considered an ideal model species for cereal genetic research [5]. Most wheat

varieties are tetraploid (durum) or hexaploid (bread), but a few diploid varieties also exist. Due

to their importance in food production, a high quality assembly of the entire genome sequence

for barley is publicly available [1]. In contrast, the first genome assembly for wheat became

available only recently [4], enhancing the opportunities for plant breeders to advance genome-

assisted crop improvements and discover quantitative trait loci (QTLs) of commercial interest.

Previous researchers have indicated that most traits of commercial importance in barley

and wheat (e.g., yield) can likely be explained by many QTLs, each of which provide small con-

tributions to total genetic variance [6,7]. This architecture has significantly restricted the appli-

cation of traditional marker-assisted selection techniques, particularly for economically

important traits with a highly polygenic architecture. The concept of genomic selection (GS)

proposed by Meuwissen et al. [8] was developed to incorporate whole-genome marker data in

selection programs to accumulate single nucleotide polymorphisms (SNP) or haplotype effects

that can accurately predict future performance of potential new lines. As such, genomic pre-

diction (GP) is now utilized to predict the breeding values of individuals based on a sufficient

number of molecular markers and a training population (TP) that is genotyped and pheno-

typed for traits of interest. The performances of phenotypes in a validated population (VP) can

then be predicted by exploiting dense molecular markers (or QTLs) that are associated with

traits in the TP. For commercial breeding programs, large scale phenotyping and genotyping

of breeding lines in the TP can lead to the development of promising statistical models for var-

iance component estimation and for predicting breeding values using established approaches

(e.g., REML [9] and BLUP [10]). In contrast to animal breeding approaches, the utilization of

genomic approaches in plant breeding has been developed only recently [11].

Several methods in statistical genetics have been developed that benefit from genetic corre-

lations between traits [12–14]. Univariate analysis, also known as single trait genomic predic-

tion (STGP), is currently the most common method used in plant breeding schemes (e.g., in

cassava [15], wheat [16–18], barley [19], rye [20], and rice [21]). However, for most commer-

cial plant breeding programs, breeders have collected data on several phenotypes, which enable

them to take advantage of genetic and phenotypic correlations among traits. Such multiple

trait genomic prediction (MTGP) methods have recently been extensively examined

[15,17,18,22,23].

The MTGP approach was originally developed to exploit information gained from corre-

lated indicator traits [13]. Results have generally indicated that MTGP can increase the accu-

racy of genetic evaluations, especially when traits with high genetic correlations are involved in

the analyses [13,15,17,20,22–24]. These findings agree with expected advantages of indirect

selection [25]. Compared with traditional pedigree-based breeding methods and STGP,

MTGP will likely be able to provide an ideal alternative for characterizing a higher number of

candidate genes for selection and at lower cost, especially for traits that are labor intensive to

evaluate or require a long time before they are expressed (e.g., baking quality or resistance to

pests).

For several economic traits of spring wheat, studies have shown that correlations between

observed phenotypes and estimated breeding values are higher when the genomic prediction

model involves both genomic and pedigree information than when pedigree alone is used

[26]. In general, commercial plant breeders usually have phenotypic records across multiple

generations for traits of economic importance. In this study, we used data from multiple plots

of F5 generations and analyzed those results jointly with records from replicated experiments

of F6 generations from a variety of field locations. Because testing conditions are not
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necessarily identical for each generation, it may be necessary to treat records from different

generations as being different, but correlated traits. This approach might considerably increase

selection accuracy and further increase the genetic gain achieved per generation [15,17].

The major aims of this study were to: (1) compare the predictive ability for both genomic

information and spatial effect in breeding lines of winter wheat and spring barley, (2) evaluate

the prediction accuracy underlying STGP and MTGP methods, and (3) apply F5 and F6 data in

the MTGP analysis (as multiple training populations) to predict the future yield in breeding

lines of winter wheat and spring barley.

Materials and methods

Field experiment and phenotypes

Our field experiment was performed by Nordic Seed A/S (Galten, Denmark). In total, we

tested 1,317 spring barley (H. vulgare) and 1,325 winter wheat (T. aestivum) breeding lines.

We tested each line in two consecutive years and at three locations every year (Fig 1). The

three locations tested were Dyngby, Holeby, and Skive (for first year only) in Denmark.

We nested multiple trials within the three test locations, and tested plots using a random-

ized complete block design [27] within each trial and each trial contained the same number of

breeding lines. For barley, every trial comprised 22 lines and 3 checks, with 3 replicates in the

first year and 2 replicates in the second year. For wheat, every trial had 21 lines and 4 checks,

with 2 replicates in each year.

For each trial, lines from any given family were sown in a randomized order, in each repli-

cate, next to each other in the field. Based on the size of the family, a trial consisted of one or

more families, and if the last family to be sown was more numerous than the remaining avail-

able plots, they were sown in the next trial. Therefore, many families had members in at least

two different trials. In general, there were 3–5 full-siblings in each trial.

Yield data for the F5 and F6 generations were collected in this study. Every year, we made a

new set of crosses and every set contained approximately 330 unique single seed descent lines

Fig 1. Trial plan of spring barley and winter wheat field growth experiments. ‘B’ is the number of lines in spring barley in each corresponding set

and ‘W’ is the number of lines in winter wheat. Each set contains data from two consecutive years. For instance, set 1 contained data from 2013 to 2014,

set 2 contained data from 2014 to 2015, and so on. The green box represents data we included in the test, whereas the white box in Set 4 represents data

still under collection at time of analysis, and not yet included in the test. The figure was adapted from and originally drawn by Andrea Bellucci (pers.

comm.).

https://doi.org/10.1371/journal.pone.0232665.g001
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in F5, which were then used to produce the F6 line. The number of recorded plots in F6 were

slightly different in spring barley and winter wheat, as details in Table 1. The yield data were

measured as kg grain per 8.25-m2 plot in both spring barley and winter wheat breeding lines

for F5 and F6, respectively.

The phenotypes of trait and pedigree information of every line were recorded by Nordic

Seed A/S (Galten, Denmark). The three farms used are owned by Nordic Seed A/S, and they,

therefore did not need any further permission to use the land. The three farms are legal for

farming use, and not located on any national parks or other protected areas of land or sea.

Genotypes

We used the Illumina 9K barley SNP-chip and the 15K wheat SNP-chip to genotype all breed-

ing lines. After quality control procedures, 4,056 SNPs in spring barley and 11,154 SNPs in

winter wheat remained for analysis using the following two filters: (1) a minor allele frequency

of<0.01 and (2) a missing SNP frequency per line value of>0.02. There were 2,841 SNPs in

spring barley and 9,290 SNPs in winter wheat mapped to existing linkage groups according to

the genome assembly [1,4], whereas 1,215 SNPs in spring barley and 1,864 SNPs in winter

wheat had unknown positions in the genome.

Statistical methods

Pedigree relationship matrices were constructed based on the pedigree information of spring

barley and winter wheat using the tabular approach [28,29], which assumed that parental lines

have nine cycles of self-fertilization. Genomic relationship matrices (G) were generated for

spring barley and winter wheat, using the first method of VanRaden (2008) [30], with G = ZZ’

/ 2∑pj (1-pj), where the matrix Z was calculated as (M–P). M is a matrix of minor allele counts

(0, 1, and 2) with m columns (one for each marker) and n rows (one for each line). P is a

matrix containing allele frequencies, with column j defined as l2(pj − 0.5), wherein l is a vector

of ones, and pj is the frequency of the second allele at corresponding locus j. After quality con-

trol procedures, the percentage of missing values was about 1% for both species in the geno-

type file before the genomic relationship matrices were constructed. The mean imputation

approach was then applied to assign any missing genotypes [30]. All the missing genotypes

were imputed while constructing the genomic relationship matrices. We performed a principle

coordinate analysis (PCoA) (Fig 3) on the genomic relationship matrix using the built-in R

function [31]. We used univariate and multivariate linear mixed models to obtain REML esti-

mates of the variance components of traits using the DMU multivariate mixed model package

[32].

Model used for yield traits of F5 and F6 generations

We developed the following models for the analyses. Model 1 was developed for yield for both

F5 and F6 generations using only genomic information (G). As yield data were both available

Table 1. Descriptive statistics for spring barley and winter wheat phenotypic records.

Species Trait Units No. of Plots Mean (SD) Min. Max.

Barley Yield F6 kg grain /8.25m2 per plot 15376 6.60 (0.8) 4.2 9.4

Yield F5 1317 6.11 (1.0) 3.7 8.0

Wheat Yield F6 13329 8.62 (0.9) 3.9 14.8

Yield F5 1325 9.68 (1.8) 4.1 13.4

https://doi.org/10.1371/journal.pone.0232665.t001
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for F5 and F6 in spring barley and winter wheat, the univariate and multivariate analyses were

applied using Model 1:

y ¼ Xbþ Z1gþ e ð1Þ

The b is the fixed factor comprising year, location, and trial (YLT), whereas the g is the

genomic information. In addition, to estimate effects from pedigree information and spatial

effects, we also developed Model 2 for F5 and F6 yields. The b and g terms are described by

Model 2:

y ¼ Xbþ Z1aþ Z2gþ
Xn

i¼1
Zisþ e ð2Þ

where the a term corresponds to additive genetic effects using pedigree information for the

covariance structure, the s term is a spatial effect variable to account for local spatial variation

of experiments in the field.

For the models described above, where y is a vector of observations for one trait, X is a

design matrix for the fixed effect, and the b term is the vector of fixed effects, including com-

bined effects of year, location, and trial (YLT). Zn comprises the design matrices of random

effects and the g term is a vector of additive genetic effects with g � Nð0;Gs2
gÞ, wherein s2

g

represents genomic variance and G is the genomic relationship matrix. The distribution of

a � Nð0;As2
aÞ, then s2

a represents the additive genetic variance and A is the pedigree relation-

ship matrix. The s term is a vector of spatial effect with s � Nð0; Is2
s Þ, which contains the X

and Y coordinates of plots in the F5 test (n = 2), and eight surrounding plots and plot itself in

the F6 test (n = 9), as illustrated in Fig 2. The e term is a vector of random residuals with

e � Nð0; Is2
eÞ.

Fig 2. Illustration of spatial effects employed in the F5 and F6 test. In the F5 test, we fitted X- and Y-coordinates as

the spatial effect in the model, whereas for the F6 test, we included its eight surrounding plots as well in the spatial

effect (as a moving average). The figure was adapted from and originally drawn by Andrea Bellucci (pers. comm.).

https://doi.org/10.1371/journal.pone.0232665.g002
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For multivariate analysis, we modeled two traits together to estimate all effects, including

the marker effects. The testing combinations are detailed in Fig 4. Taking Model 1 as an exam-

ple, y1 represents yield for F6 and y2 represents yield for F5. The year, location, and trial (YLT)

serves as a fixed factor represented by bn in the model. The terms Xn and Zn are the designed

matrices of the fixed factor and random factor, respectively. The gn term is the genomic infor-

mation, as described in the statistical model section. We assumed the residual covariance to be

zero because yield in F5 and F6 generation were statistically independent (as they were col-

lected from different years and generations).

y
1

y
2

" #

¼
X1 0

0 X2

" #
b1

b2

" #

þ
Z1 0

0 Z2

" #
g

1

g
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" #

ð3Þ
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s2
g1
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sg12 s2
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" #

, wherein H is the variance and covari-

ance matrix of the genomic breeding values of the two traits, and for
e1

e2

" #

� Nð0; I� RÞ with

R ¼
s2
e1 se12

se12 s2
e2

" #

, R is the residual variance and covariance matrix of the two traits. Residual

co-variance did not exist when we performed yield calculations for F5 and F6 generations,

because the traits were collected from different years. When there were missing data for one of

the traits, the residual variance was equal to s2
e for the observed trait.

We used the variances to estimate the heritability of line means. The total phenotypic vari-

ance (σ2
p) of line means was:

s2

p ¼ dðGÞs2

g þ
nss

2
s

r1

þ
s2
e

r2

ð4Þ

Heritability was estimated as:

h2
¼ dðGÞs2

g=s
2

p ð5Þ

Fig 3. Principal coordinate analysis of (a) spring barley and (b) winter wheat.

https://doi.org/10.1371/journal.pone.0232665.g003
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where d(G) is the mean diagonal element of the genomic relationship matrix, ns is the number

of surrounding plots considered in the spatial effect, rn is the number of replicates of corre-

sponding effects for each genotype when estimating line heritability, and rn was one (1.0)

when estimating the narrow-sense plot heritability [33] based on the data of a single plot. The

narrow-sense plot heritability was used to consider the random effects from the plot itself,

whereas the line heritability was used to calculate the mean of effects from records across all

replicates based on the same breeding line [6]. Line heritability is higher than plot heritability

when there are more replicates in the experiment.

Fig 4. Comparison of MTGP and STGP approaches for predicting yield in the F6 generation of winter wheat and

spring barley. For MTGP, we used a training population, including F5 as Trait I, Sets 1, 2, 3 for yield by F6 as Trait II,

and Set 4 to predict yield of F6 (as a validation population). For STGP, we used Sets 1, 2, and 3 for yield by F6 data as

the training population to predict Set 4 for yield by F6 (as a validation population). Fig 4c shows the corresponding

models used for MTGP and STGP, respectively. The corresponding models are described in statistical model section in

material and methods.

https://doi.org/10.1371/journal.pone.0232665.g004
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Cross-validation and predictive ability

For our multivariate analysis (MTGP) of the F5 and F6 yield dataset in particular, we used four

sets (Sets 1, 2, 3, and 4) in F5 as the first trait, and Sets 1, 2, and 3 in F6 as the second trait to pre-

dict the yield performance of Set 4 in F6. This strategy helped us test the feasibility of using a

multivariate analysis for predicting future traits of interest in the coming year. For univariate

analysis (STGP), we used Sets 1, 2, and 3 for yield by F6 data as the training population to pre-

dict Set 4 for yield by F6 (as a validation population). We estimated the predictive ability for

future yield performance [ρ(ӯc, ĝ)] by calculating the correlation between the average of phe-

notypic records corrected for the fixed effect (ӯc) and genomic predicted breeding values (ĝ).

The accuracy of predicting additive breeding values we calculated as the predictive ability

divided by the square root of heritability of line means: ρ(ӯc, ĝ)/h.

Results

Genomic relationship analysis among breeding lines

The first two principal components of PCoA explained 69% (Axis 1) and 13% (Axis 2) of the

total variance in genomic relationships for spring barley, and 83% (Axis 1) and 10% (Axis 2)

for winter wheat (Fig 3). In general, most lines were highly genetically associated with others.

Based on genomic information, PCoA indicated that there were clearly identifiable groups in

spring barley and winter wheat, implying that certain lines were from the same groups. For

example, there were some lines from Set 2 segregating in the left area of the PCoA plot in bar-

ley, whereas Set 3 also segregated in left area of the PCoA plot in wheat. However, in general,

although the PCoA plot showed that there were only two major genetic clusters in both spe-

cies, we also found that certain lines came from different crosses, sets, and parents. The heat-

map of genomic relationship (using a similar dataset) also highlights the same results for both

grain species [6,7].

Descriptive statistics and variance components

We studied yield traits in spring barley and winter wheat commercial breeding lines. The

number of plots and phenotype statistics for each trait are listed in Table 1. The heritability

and variance component estimates of traits are given in Table 2. Heritability (using the geno-

mic-based method) of yield in F5 was 9% for spring barley and 41% for winter wheat, whereas

the heritability of yield in F6 was 24% for spring barley, and 33% for winter wheat (Table 2).

Table 2. Variance components, narrow-sense plot heritability, and correlation estimation of traits using model 1. The column for s2
g and s2

e are given by 10−2 as base

unit.

Species Traits σ2
g(x 10−2) σ2

e (x 10−2) plot
1 h2 line h2 Cor_G3

Barley Yield F5 0.3 6.6 0.09 0.09 0.7

Yield F6 1.7 5.7 0.24 0.75

Wheat Yield F5 2.9 7.8 0.41 0.41 0.72

Yield F6 7.6 22.8 0.33 0.76

1 The plot heritability. For yield F5, we only have one plot in F5, so rn in the denominator is always one (see Model 4) and the plot heritability is equal to line heritability.

For other traits, we have multiple plots from the same breeding line, so we obtained more information based on the same breeding line. Therefore, line heritability is

higher than plot heritability. See more descriptions in Model 4.
2 Line heritability.
3 The environmental correlation was set as independent between yield F6 and F5 because their records were collected in different years and locations. Therefore, only

genetic correlations (Cor_G) are provided for yield traits.

https://doi.org/10.1371/journal.pone.0232665.t002
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STGP versus MTGP

For multiple trait analysis, we used yield in F5 as the first trait and yield in F6 as the second

trait to predict the future yield performance for the spring barley and winter wheat breeding

lines. Overall, the prediction accuracies of bivariate analyses were higher than for univariate

analyses in all scenarios (Fig 4). In using a bivariate analysis, we improved predictive accura-

cies by about 7% in spring barley and by about 57% in winter wheat varying from STGP and

MTGP. The MTGP model that combined pedigree, the genomic relationship matrix, and spa-

tial effects showed higher prediction accuracy than using the genomic relationship matrix

only.

Discussion

The goal of this study was to utilize pedigree information, genomic information, and genetic

covariance between associated traits to increase the accuracy of prediction of economically

important traits in cereal breeding programs. Our main findings were that the prediction accu-

racy of yield performance clearly increased when we modeled both yield F5 and F6 data simul-

taneously in the analysis. Furthermore, the prediction accuracy calculated from test data

involving both pedigree, genomic and spatial information was clearly higher than data

obtained from genomic information.

Genetic correlation is critical for improving accuracy in MTGP

Theoretically, genetic correlation can arise mainly by pleiotropy or, less commonly, by linkage

disequilibrium [34]. A high genetic correlation between two traits does not imply that both

traits are highly heritable, but neither does a high phenotypic correlation [25]. Several studies

using both real and simulated data have suggested that the genetic correlation between geneti-

cally-linked traits is important for multivariate genomic selection to be advantageous

[13,15,20,23,25,35]. Therefore, genetic correlations between traits of interest have been

recently exploited to increase the statistical power for detecting segregating QTLs [36,37] and

to improve accuracy in genomic predictions in plant breeding programs [20,23,35].

To date, there have been only a few published multiple trait studies using field data for

plant breeding [15–17,20,23,38]. In a simulation study, Jia and Jannink [23] reported that for

two traits with no genetic correlation, the prediction accuracy of STGP was equivalent to or

even better than the accuracy of MTGP. In the current study, the genetic correlation between

yield in F5 and in F6 data was approximately 0.7 in both spring barley and winter wheat breed-

ing lines. Because we collected phenotypes from different years and locations, the environmen-

tal effects on yield in F5 and F6 were independent. Our results showed that MTGP

outperformed STGP by 7% of yield in spring barley and 57% in winter wheat. A similar

improvement rate (60%) using MTGP was also reported from pine breeding data [23]. Nota-

bly, the predictive ability for spring barley was generally higher than it was for winter wheat,

but the relative improvement was not as dramatic as it was for winter wheat. For winter wheat,

the predictive ability for yield was 0.23 for F6 generation in our single trait analysis, and 0.37

using yield data from F5 and F6 generations in the multiple trait analysis. Because the predic-

tive ability for spring barley was 0.48 using yield data from F6 with the STGP model, but 0.51

using MTGP, the result clearly shows that, for estimating yield performance, the prediction

accuracy of the STGP model for the spring barley line was better than was the MTGP model

for the winter wheat breeding lines.
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Yield heritability difference between F5 and F6

For spring barley and winter wheat, our results showed that the heritability of yield in F5 and

F6 differed slightly. One reason to cause the differences could be due to the smaller plot size

and lower sowing density for F5. In addition, the F5 data were tested on one location with one

replicate only (compared with F6, there were multiple tested locations and plots), this may

cause that the genetic effects included both general additive genetic effects plus specific addi-

tive genetic effects due to GxE effect between genotypes and the one location used. These

effects cannot be separated for F5 data, compared with F6 data. As such, the above reason

cloud lead to the heritability difference between yield F5 and F6.

Genomic information boosts the prediction accuracy

To our knowledge, there are only few major QTLs segregating identified (such as, the Mlo
locus), at least for the economically important traits we investigated in this study. A review by

Bernardo [39] stated that approximately 10,000 QTLs have been identified by QTL mapping

experiments on twelve major crop species. However, only a few QTLs have been exploited in

marker-assisted selection in practical breeding schemes, which indicates that most economi-

cally important traits in spring barley and winter wheat are highly polygenic in nature. Thus, if

sufficient genomic information is available (e.g., segregated SNPs across an entire genome),

then genomic predictions can be an efficient tool for capturing genetic variances, much more

efficient than relying on pedigree records in plant breeding. Previous studies that applied

genomic-based BLUP (GBLUP) approaches show consistent prediction accuracies across vari-

ous genetic architectures under simulated scenarios [40]. Additionally, Jia and Jannink [23]

indicated that multiple trait GBLUP performed equally as well as Bayesian models (Bayes A

and Bayes Cpi) when the traits were controlled by a polygenic genetic architecture. Both

authors suggested that BLUP is likely an ideal option for modelling the traits we investigated.

In this study, our model involved both genomic and pedigree information, the prediction

accuracies were slightly higher than using genomic information only. This result suggests that

our evaluation involving pedigree information was less accurate than using a genomic-based

method. On the other hand, GBLUP is potentially not as robust as the Bayesian model when

there are outliers involved (e.g., the disease traits in spring barley investigated in this study

deviated from the normal distribution). The prediction accuracy reported in this study was

sufficiently high (e.g., prediction accuracy> 0.5) for genomic breeders to make selection deci-

sions on favored traits earlier in the breeding cycle, which would enable them to maximize

genetic gains [17].

Clear genetic grouping observed in commercial spring barley and winter

wheat breeding lines

Although our principal components analysis (PCoA) indicated that the genetic relationship

and degree of variation between all lines in both species we examined differed slightly, the

PCoA clearly showed that there were some segregating groups among all breeding lines, thus

implying that many lines had strong genomic relationships in certain genetic clusters.

Future perspectives

Simulation studies based on STGP have suggested that when a high SNP marker density is

used, a substantial improvement in prediction accuracy can be expected in genomic evalua-

tions [41]. Our study used a full set of marker genotypes as well as the total available popula-

tion in the MTGP model. However, genotyping cost is still a major concern in plant breeding,
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especially for commercial breeders. Therefore, although our approach has been tested using

simulation scenarios [13], the effect of marker density and optimization of TP size may require

further investigation based on real data. In addition, non-standard phenotypes, such as those

obtained from metabolomics data, may assist practitioners in boosting correlations in MTGP.

For example, some investigations have involved metabolomics data in multiple trait analyses,

aiming to improve accuracy in plant breeding schemes (and in animal breeding) [17,42–45].

Although STGP usually achieves a predictive ability similar to MTGP in some cases (e.g., soy-

beans [38], bread wheat [17], durum wheat [18], and African cassava [15]), our study suggests

that the predictive ability of certain traits can be improved using MTGP (based on winter

wheat and spring barley breeding lines and the large number of lines we included in our

study). As such, cereal breeders can apply MTGP, combined with GxE effect, to improve pre-

dictive ability for selecting high yielding cultivars with improved resistance and quality by

exploiting genetic correlation between the traits.

Conclusion

Our study showed that the MTGP approach is better than STGP for predicting yield traits in

spring barley and winter wheat breeding lines when we included yield in F5 and yield in F6 in

the evaluation. We also found that a model fitting pedigree, genomic and spatial information

will have better prediction accuracy than using genomic information only. To conclude, pre-

diction accuracy clearly increased in both species when we modelled yield data from F5 and F6

generations with MTGP, GxE, and spatial effects in the model. Thus, breeders can use the

genetic relationship between traits to predict future trait performance, with considerably

improved accuracy, by including genetically related traits using multivariate genomic predic-

tion approaches.
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