Skip to main content
SLU publication database (SLUpub)
Research article - Peer-reviewed, 2020

Just how big is intraspecific trait variation in basidiomycete wood fungal fruit bodies?

Dawson, Samantha; Jönsson, Mari

Abstract

As the use of functional trait approaches is growing in fungal ecology, there is a corresponding need to understand trait variation. Much of trait theory and statistical techniques are built on the assumption that interspecific variation is larger than intraspecific variation. This allows the use of mean trait values for species, which the vast majority of trait studies adopt. We examined the size of intra- vs. inter-specific variation in two wood fungal fruit body traits: size and density. Both coefficients of variation (CV) and Trait Probability Density analyses were used to quantify trait variation. We found that intraspecific variation in fruit body density was more than twice as variable as interspecific variation, and fruit body size was hugely variable (CVs averaged 190%), although interspecific variation was larger. Further, there was a very high degree of overlap in the trait space of species, indicating that there may be little niche partitioning at the species level. These findings show that intraspecific variation is highly important and should be accounted for when using trait approaches to understand fungal ecology. More data on variation of other fungal traits is also desperately needed to ascertain whether the high level of variation found here is typical for fungi. While the need to measure individuals does reduce the ability to generalise at the species level, it does not negate the usefulness of fungal trait measurements. There are two reasons for this: first, the ecology of most fungal species remains poorly known and trait measurements address this gap; and secondly, if trait overlap between species more generally is as much as we found here, then individual measurements may be more helpful than species identity for untangling fungal community dynamics. (C) 2019 The Authors. Published by Elsevier Ltd.

Keywords

Fungi; Interspecific; Mean trait value; Saprotrophic

Published in

Fungal Ecology
2020, Volume: 46, article number: 100865