Home About Browse Search
Svenska


Genome-wide association mapping for dominance effects in female fertility using real and simulated data from Danish Holstein cattle

Mao, Xiaowei and Sahana, Goutam and Johansson, Anna Maria and Liu, Aoxing and Ismael, Ahmed and Lovendahl, Peter and De Koning, Dirk-Jan and Guldbrandtsen, Bernt (2020). Genome-wide association mapping for dominance effects in female fertility using real and simulated data from Danish Holstein cattle. Scientific Reports. 10 , 2953
[Journal article]

[img] PDF
1MB

Abstract

Exploring dominance variance and loci contributing to dominance variation is important to understand the genetic architecture behind quantitative traits. The objectives of this study were i) to estimate dominance variances, ii) to detect quantitative trait loci (QTL) with dominant effects, and iii) to evaluate the power and the precision of identifying loci with dominance effect through post-hoc simulations, with applications for female fertility in Danish Holstein cattle. The female fertility records analyzed were number of inseminations (NINS), days from calving to first insemination (ICF), and days from the first to last insemination (IFL), covering both abilities to recycle and to get pregnant in the female reproductive cycle. There were 3,040 heifers and 4,483 cows with both female fertility records and Illumina BovineSNP50 BeadChip genotypes (35,391 single nucleotide polymorphisms (SNP) after quality control). Genomic best linear unbiased prediction (BLUP) models were used to estimate additive and dominance genetic variances. Linear mixed models were used for association analyses. A post-hoc simulation study was performed using genotyped heifers' data. In heifers, estimates of dominance genetic variances for female fertility traits were larger than additive genetic variances, but had large standard errors. The variance components for fertility traits in cows could not be estimated due to non-convergence of the statistical model. In total, five QTL located on chromosomes 9, 11 (2 QTL), 19, and 28 were identified and all of them showed both additive and dominance genetic effects. Among them, the SNP rs29018921 on chromosome 9 is close to a previously identified QTL in Nordic Holstein for interval between first and last insemination. This SNP is located in the 3' untranslated region of gene peptidylprolyl isomerase like 4 (PPIL4), which was shown to be associated with milk production traits in US Holstein cattle but not known for fertility-related functions. Simulations indicated that the current sample size had limited power to detect QTL with dominance effects for female fertility probably due to low QTL variance. More females need to be genotyped to achieve reliable mapping of QTL with dominance effects for female fertility.

Authors/Creators:Mao, Xiaowei and Sahana, Goutam and Johansson, Anna Maria and Liu, Aoxing and Ismael, Ahmed and Lovendahl, Peter and De Koning, Dirk-Jan and Guldbrandtsen, Bernt
Title:Genome-wide association mapping for dominance effects in female fertility using real and simulated data from Danish Holstein cattle
Year of publishing :2020
Volume:10
Article number:2953
Number of Pages:9
ISSN:2045-2322
Language:English
Publication Type:Journal article
Article category:Scientific peer reviewed
Version:Published version
Copyright:Creative Commons: Attribution 4.0
Full Text Status:Public
Subjects:(A) Swedish standard research categories 2011 > 4 Agricultural Sciences > 402 Animal and Dairy Science > Animal and Dairy Science.
URN:NBN:urn:nbn:se:slu:epsilon-p-107799
Permanent URL:
http://urn.kb.se/resolve?urn=urn:nbn:se:slu:epsilon-p-107799
Additional ID:
Type of IDID
DOI10.1038/s41598-020-59788-5
Web of Science (WoS)000560378500007
ID Code:17579
Faculty:VH - Faculty of Veterinary Medicine and Animal Science
Department:(VH) > Dept. of Animal Breeding and Genetics
Deposited By: SLUpub Connector
Deposited On:22 Sep 2020 12:00
Metadata Last Modified:22 Sep 2020 12:01

Repository Staff Only: item control page

Downloads

Downloads per year (since September 2012)

View more statistics

Downloads
Hits