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Abstract 
 
Wallerman, J. 2003. Remote Sensing Aided Spatial Prediction of Forest Stem Volume. 
Doctoral dissertation. 
ISSN 1401-6230, ISBN 91-576-6505-2. 
 
Modern technology such as the Global Positioning System (GPS) and Geographical 
Information Systems (GIS) provide new opportunities for forest inventory. These 
technologies allow representation of forest variables using rasters with cell sizes on the 
order of 25 m. Such rasters can be estimated from remotely sensed data using models of the 
relationship between the image’s digital number and the forest variables. This thesis 
investigates the possibility of using estimation methods incorporating remotely sensed data 
as well as spatial similarity of neighbouring field measurements, to improve prediction 
accuracy compared to using only remotely sensed data.  

Two new spatial prediction methods are presented and evaluated: ordinary kriging using 
information about edges detected in remotely sensed images, and prediction using Markov 
Chain Monte Carlo (MCMC) simulation of a new Bayesian state-space model. In addition, 
ordinary kriging, stratified ordinary kriging, ordinary cokriging, collocated ordinary 
cokriging, simple kriging with varying local means, and spatial regression using the 
autoregressive response model, are also evaluated. The methods are applied to predict forest 
stem volume per hectare in boreal forest in northern Sweden (Lat. 64°14’N, Long. 19°40’E) 
using Landsat TM data and a large field sampled dataset. Prediction accuracy, as well as 
practical aspects of the methods, is evaluated. In particular, accuracy is compared with 
Ordinary Least Squares regression (OLS) using remotely sensed data. 

Spatial prediction was, with a few exceptions, more accurate than OLS regression. The 
largest improvement, 49% lower root mean square error (RMSE), was obtained for plot-
level predictions by ordinary kriging using information of edges detected in remotely 
sensed images, although the method is dependent on densely sampled field data. Promising 
results were also obtained by simple kriging with varying local means. This method 
performed well (26% lower RMSE than OLS regression for stand-level predictions), is 
rather straight-forward to apply in practice, and not as dependent on densely sampled field 
data. The Bayesian state-space model did not provide improved predictions compared to 
OLS regression. However, Bayesian modelling is promising for application of spatial 
models of higher complexity than possible with the other methods. 
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Introduction 
 
The development of computer technology has provided forest management with 
many new tools for data capture, data representation, and management planning 
applications. It is now easy to measure the position of survey plots, forest roads, 
and stand boundaries in the field within a few meters accuracy using standard 
Global Positioning System (GPS) equipment. The development in sensor 
technology has also enabled acquisition of remotely sensed data of the forest at a 
range of scales. Optical remote sensing data are available from satellite sensors 
providing images with spatial resolution on the order of 25 m (Landsat TM, 
Landsat ETM+, SPOT HRVIR) as well as 1 m or less (Ikonos, QuickBird) 
(Kramer, 2002). This thesis is focused on one possible application of Landsat TM 
data, as well as other remotely sensed data with similar spatial resolution, using 
models relating the digital number (DN) recorded by the sensor to forest variables 
measured on 10 m radius field plots. The analyses are made on stem volume of 
growing stock per hectare, which is one of the economically most important 
variables in forest management planning (Walter, 1998). This is a measure in 
cubic meters per hectare (m3ha-1) of tree volume including bark but excluding 
branches and stumps.  
 

Modern technology, including the database and spatial analysis capability of 
geographic information systems (GIS), provide opportunities to use different 
representations (i.e., spatial models) of forest data in forest management planning 
systems. The commonly used model in Sweden is to divide a forest holding (for 
forest companies in northern Sweden typically sized 5000-50000 ha) into 
administrative units (in general 0.5-10 ha large polygons) of forest with similar 
characteristics and collect and represent data by unit means. Such units are here 
referred to as stands, and the map of stands as a forest stand map. The model 
represents the forest in each stand as homogeneous with similar properties in each 
part, and the spatial structure is represented by the map of stand boundaries. This 
approach enables straight-forward database construction as well as natural units of 
forest for planning and application of silvicultural treatments.  However, this 
model has limitations. For example, the spatial variation in forest is often gradual, 
and it is not always easy to identify clear stand boundaries (Lowell, Edwards & 
Kucera, 1996; De Groeve & Lowell, 2001). Furthermore, the changes in forest can 
be different for different parts making stand boundaries less meaningful over time, 
and since data are acquired on a stand basis there will be problems when the stand 
delineation is changed (Lowell, Edwards & Kucera, 1996). Finally, it is often 
difficult to outline stands fulfilling the criteria of homogeneity. Several authors 
describe the forest, at the landscape level, as resembling a mosaic of patches 
(Lowell, 1994; Lowell, Edwards & Kucera, 1996; Gilbert & Lowell, 1997; Kleinn, 
2000). Lowell (1994) suggests that forest should be represented using fuzzy set 
methods, rather than using conventional thematic maps. Alternatively, the forest 
may be represented by a raster model where forest variables are modelled by 
rasters with very high spatial resolution, compared to the size of areas to which 
silvicultural treatments are applied to. Raster models of the forest have been 
investigated in a number of studies. For example, Hof & Joyce (1992, 1993) 
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address a forestry planning approach with multiple goals (wildlife and timber 
production) which is based on more flexible spatial units than fixed stands, 
including square cell division of forest. Holmgren & Thuresson (1997) and 
Gunnarsson et al. (1998) introduced and investigated a raster model for Swedish 
forest conditions, using spatial prediction to construct rasters of forest variables, 
aiming to dynamically define optimal treatment areas. Furthermore, Lu & Eriksson 
(2000), Lind (2000), and Öhman (2001) address methods to define optimal 
treatment areas based on such a raster model of the forest.  
 

Data capture, suitable for a raster-based forest model, can be made using 
objective sampling of field plots including accurately determined positions. These 
data can be used to produce raster estimates of forest variables by spatial 
interpolation or by using additional data sources such as remote sensing data. 
There are several additional benefits from using this kind of method. First, the data 
are objective and not subject to subjective errors such as surveyor dependent bias. 
Second, the dataset can be updated by new measurements directed to areas where 
new information is needed the most. Third, this approach enables estimation of 
any spatial area, ranging from a single raster cell to forest stands.  
 
Prediction of forest variables using remotely sensed data 
The raster-based model for forest management planning is dependent on methods 
to construct rasters with accurate estimates of forest variables. This may be 
achieved by predictions based on optical satellite image data similar to the image 
data provided by Landsat TM. The TM sensor capture data in seven spectral bands 
including the visible and infrared range of the electromagnetic spectrum, where 
measurements of each ground resolution cell (approximately the size of a pixel) 
represent the average spectral response from several trees. In contrast, sensors 
producing images with spatial resolution on the order of 1 m provide several 
measurements for each tree. Strahler, Woodcock & Smith (1986) define these two 
cases as L-resolution and H-resolution data, respectively. Compared to L-
resolution data, H-resolution data provide a high level of detail but require 
conceptually different models describing each tree, since each pixel recording is 
very dependent on the part of the tree crown from which it is acquired.  
 

Horler & Ahern (1986) studied the forestry information content in Landsat TM 
data, addressing classification applications, using data from boreal forest in 
Canada. The Landsat TM bands TM3 (red), TM4 (near-infrared), and TM5 (mid-
infrared) were the most useful bands for general forest-cover-type discrimination. 
Especially the mid-infrared region of the spectrum was identified to be the most 
sensitive to changes in stem volume, since the spectral response in this range is 
strongly related to canopy crown closure. Furthermore, the spectral response from 
the forest decreased with increasing age until 41-60 years after which the rate of 
change was small. Horler & Ahern (1986), De Wulf et al. (1990), and Ardö 
(1992) indicate shadowing to largely control the forest canopy spectral response.  
 

Using L-resolution data, for example Landsat TM and SPOT data, has proven 
feasible in forestry applications. Such data may be related to forest variables using 
inventory measurements made on similar spatial support. Using a model of this 
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relationship, prediction of a forest variable can be made for an entire raster. This 
approach has been applied using different modelling techniques: ordinary least-
squares (OLS) regression (Tomppo, 1988; Hagner, 1990; Ardö, 1992; Trotter, 
Dymond & Goulding, 1997; Dungan, 1998), artificial neural networks (Foody & 
Boyd, 1999; Foody, 2000; Tatem et al., 2001), the non-parametric Bartlett's 
grouping method (De Wulf et al., 1990; Trotter, Dymond & Goulding, 1997) and 
k Nearest Neighbour estimation (kNN) (Kilkki & Päivinen, 1987; Muinonen & 
Tokola, 1990; Tomppo, 1990; Nilsson, 1997; Holmström, 2001). However, 
according to Holmgren & Thuresson (1998), the practical value of optical satellite 
data for forest variable predictions may be too limited for operational forest 
management planning. 
 

Prediction accuracy for single raster cells is often low (Curran & Williamson, 
1985; De Wulf et al., 1990). Trotter, Dymond & Goulding (1997) used TM data 
and regression to predict stem volume of mature (stem volume in the range of 190-
810 m3ha-1) Pinus radiata plantations in New Zealand, and reported a root mean 
square error (RMSE) greater than 100 m3ha-1 (with a mean stem volume of 413 
m3ha-1) for cell predictions. Furthermore, the kNN method was applied by 
Holmström & Fransson (2003) to predict forest variables using a combination of 
SPOT-4 and low-frequency radar data from the airborne CARABAS system. The 
study by Holmström & Fransson (2003) was made using data from coniferous 
forest in the south-west of Sweden and reported RMSEs of 64% (of the mean) for 
plot-level predictions of stem volume using optical data, and 53% using the 
combination of optical and radar data. The stem volume of the sample plots (10 m 
radius) was in the range of 0-750 m3ha-1 with a mean value of 171 m3ha-1. Tokola 
et al. (1996) applied both regression and the kNN method on forest in the southern 
boreal vegetation zone in Finland using data from Landsat TM, SPOT, and the 
Finnish National Forest Inventory (i.e., relascope sample plots). They reported 
standard errors, obtained by cross-validation of a large number of plots, of stem 
volume prediction on the order of 70 to 80 m3ha-1 (>60% of the mean) for plot-
level predictions. 
 

Increasing the area to predict, from single plots to forest stands or larger areas, 
may improve the prediction accuracy. Hagner (1990) predicted forest variables at 
stand level in boreal forest in northern Sweden, using regression of Landsat TM 
data and field plot measurements. The reported prediction accuracies, in terms of 
RMSEs, were 26% (of the mean) for mean stem volume per hectare, 15% for 
mean diameter, and 21% for mean age. The mean values and stand sizes are not 
reported. Trotter, Dymond & Goulding (1997) also investigated stand predictions 
(approximately 40 ha large areas) using TM data, and reported RMSEs of less 
than 46 m3ha-1. In a study on coniferous forest in central Sweden, Fransson et al. 
(2001) applied regression of SPOT XS data and field measurements to predict 
stem volume of stands (5.2 ha mean size and stem volume in the range of 0-305 
m3ha-1) and reported a RMSE of 24% (of the mean 129 m3ha-1) at best. Holmström 
& Fransson (2003) also addressed stand level predictions of forest stem volume 
(in the range of 0-430 m3ha-1 with a mean value of 172 m3ha-1), using SPOT-4 and 
CARABAS data, and obtained about 30% RMSE for predictions of stem volume 
using SPOT-4 data and 22% using both data sources. Optical satellite data have 
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proven useful for county- and nation-wide forest mapping applications (Nilsson, 
1997; Reese et al., 2002; Tomppo et al., 2002; Reese et al., 2003).  
 
Spatial prediction of forest variables using remotely sensed data 
The accuracy of remote sensing based prediction methods can possibly be 
increased by incorporating spatially close field measurements of the predicted 
variable and nearby remote sensing data in each prediction, compared to 
prediction based on the remote sensing data of the predicted location only. This 
approach, spatial prediction using remotely sensed data, was addressed by 
Atkinson, Webster & Curran (1994), Dungan, Peterson & Curran (1994), Curran 
& Atkinson (1998), and Dungan (1998). There is a large field of statistical spatial 
models and prediction methods available in the literature, but very few studies are 
made on prediction of forestry relevant variables using spatial models. This thesis 
aims to increase the knowledge of remote sensing based spatial prediction of forest 
variables, through empirical evaluation of methods potentially applicable in 
operational forestry. In this context, practical application issues and required field 
sampling efforts are important aspects. 
 

It is meaningful to use spatial prediction only if the predicted variable is 
spatially dependent. Spatial dependence is said to be present when the value of a 
variable at one location exerts an influence on the value of the same variable in 
neighbouring locations (Legendre, 1993; Gilbert & Lowell, 1997). In particular, 
spatial prediction is only meaningful if the variable is spatially dependent 
conditional on the spectral features, i.e., the spectral data may describe the spatial 
structures very well and utilisation of spatially close field measurements will not 
increase accuracy. Furthermore, Gilbert & Lowell (1997) argued that the presence 
of spatial dependence does not necessarily imply the possibility of performing 
accurate spatial prediction.  
 
Spatial variation of forest variables 
The spatial structure of a forest is complex. It is the result of geographical 
variation in soil type, moisture and site index, physical disturbances such as fire 
and storm felling, as well as competition and pathogens (Czaplewski, Reich & 
Bechtold, 1994;  Kuuluvainen et al., 1996; Lowell, Edwards & Kucera, 1996; 
Gilbert & Lowell, 1997; Bellehumeur & Legendre, 1998; Wells & Getis, 1999; 
Kleinn, 2000; Stendahl, 2001). Furthermore, silvicultural treatments, such as 
cleaning, thinning, clear-cutting, and plantation, strongly affect the spatial 
structure of managed forest (Kuuluvainen et al., 1996). In Scandinavia, 
silvicultural treatments are commonly planned and performed on the basis of a 
forest stand map, which clearly affects the spatial structure of the forest. 
Treatments are usually applied to complete stands only and often with the specific 
aim to reduce the differences within each stand (Kuuluvainen et al., 1996). Thus, 
the stands structure, as well as the history of when and which stands have been 
selected for treatment, affects the spatial variation of the forest. 
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The spatial characteristics of forest have been addressed by many authors in the 
past. Among the first was Matérn (1947, 1960) whose concern was to optimise the 
field work in National Forest Inventories. Legendre (1993), Bellehumeur & 
Legendre (1998), and Koenig (1999) pointed out spatial variation and spatial 
dependence as important aspects of ecological modelling. Clearly, the concept of 
spatial dependence is only relevant in view of the addressed spatial scale (Hjort & 
Omre, 1994; Gilbert & Lowell, 1997; Bellehumeur & Legendre, 1998). That is, 
even though there is no discernable spatial dependence within a small limited area, 
(e.g., a forest stand), increasing the study area to a landscape probably reveals 
clear spatial structures. Furthermore, the spatial support of the addressed property 
is also of crucial importance. Properties of single trees will naturally have different 
characteristics than an average property of many trees aggregated over an area, 
such as a field plot. 
 
Within-stand variation 
There are many studies made on spatial patterns and dependence of single-tree 
characteristics, often within a specific stand. These studies mostly analyse 
ecological implications of single-tree patterns. Leemans (1991) studied the pattern 
of seedlings, saplings, and canopy trees in Swedish old-growth spruce (Picea 
abies) forest and found that the saplings were not randomly distributed in space, in 
contrast to seedlings and canopy trees. Similar results were obtained by Wells & 
Getis (1999) who studied the stand structure within one-hectare large plots of 
Pinus torreyana in California and found that positions of young trees tended to be 
more aggregated than old within the same stand. Stendahl (2001) analysed data 
from Swedish forest stands and observed dependence ranges between 10 and 170 
m for several properties, such as mean diameter and tree height. Basal area and 
stem density showed only weak dependence. Several authors described the within-
stand spatial structure of natural forest as a mosaic of patches, formed by 
regeneration within open patches created by disturbances such as storm felling 
(Hytteborn, Packham & Verwijst, 1987; Leemans, 1991; Kubo, Iwasa & 
Furumoto, 1996; Moeur, 1997; Kuuluvainen et al., 1998; Kuuluvainen, Syrjänen 
& Kalliola, 1998; Stendahl, 2001). Kuuluvainen et al. (1996) addressed 
differences for managed and primeval boreal spruce forest in southern Finland 
(two 50 by 50 m forest areas), where the positions of trees in the managed forest 
showed clear spatial dependence up to 12 m, while no dependence was detected 
for the pristine forest. The difference seemed to be caused by the understory 
present in the pristine forest but absent in the managed forest. However, analysing 
the large trees only showed dependence up to 15 m in the pristine forest. Spatial 
characteristics have also been incorporated in single-tree growth modelling (Fox, 
Ades & Bi, 2001).  
 



Large scale variation 
Belleheumeur & Legendre (1998) simulated surveys of 10 by 10 m plots using 
data from a completely measured 50 ha forest in Malaysia and found stem density 
(for such plot measurements) to be spatially dependent up to 50 m and weakly 
dependent up to 500 m. Gunnarsson et al. (1998) performed a stratified survey of 
clustered 10 m radius field plots at a 400 ha forest estate in southern Sweden and 
reported spatial dependence of many variables. For example, stem volume showed 
ranges of dependency between 80 and 250 m, total age 150 to 250 m, and basal 
area weighted mean diameter up to 200 m. Natural pine stands in Georgia were 
investigated by Czaplewski, Reich & Bechtold (1994), who analysed data on 
distances up to 150 km and detected spatial dependence in basal area growth. This 
was expected to have been caused by spatial variation of site conditions. 
Addressing a very large scale with data on distances up to 6000 km, Nekola & 
White (1999) studied presence and absence of species in North American spruce-
fir forest and Appalachian montane spruce-fir forest. They used data from 9 ha 
large sample plots and forest regions, and found significant spatial dependence 
(distance decay of similarity).  
 
Spatial models 
In this thesis, the applied spatial models are based on the assumption that data are 
observations of stochastic variables, Z, connected to a spatial location, x, in the d-
dimensional Euclidean space Rd. Cressie (1993) defined a general model of such 
data, here expressed for one-dimensional Z:  
 

dDDZ Rxx ⊂∈ },:)({                           (1) 
 

Depending on the definition of D, this general model can be used to describe data 
with different spatial characteristics: point pattern data, lattice data, and 
geostatistical (continuous space) data (see Cressie (1993)). Point process data are 
characterised by the location x being stochastic, i.e., the data are created by 
“events” occurring at random positions, and no Z is specified. D is then a point 
process in Rd or a subset of Rd. Furthermore, a marked point process is generated 
if there is a Z specified at location D∈x  (Penttinen, Stoyan & Henttonen, 1992; 
Cressie, 1993; Ver Hoef, Cressie & Glenn-Lewin, 1993). For lattice data, D is a 
fixed (regular or irregular) collection of countable many spatial sites of Rd. 
Geostatistical data resulting from D is a fixed subset of Rd, and Z(x) is a random 
variable at location D∈x (Cressie, 1993). 
 

Three approaches to spatial prediction of stem volume using Landsat TM data 
are investigated: using geostatistical models, spatial regression models defined on 
an irregular lattice, and Bayesian models defined on a regular lattice. 
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Geostatistical models 
The geostatistical framework originates from Matheron (1965), who developed the 
theory of regionalized variables, i.e., random variables connected to spatial 
positions. Geostatistical methods have been applied and developed in mining and 
mineral prospecting industry, soil science (Burgess & Webster, 1980a, b; Yost, 
Uehara & Fox, 1982a, b), forest inventory (Mandallaz, 2000), ecology (Rossi et 
al., 1992), and GIS applications (Oliver & Webster, 1990). Isaaks & Srivastava 
(1989), Deutsch & Journel (1992), Cressie (1993), and Goovaerts (1997) give 
fairly thorough descriptions of geostatistical theory. 
 

A central tool in geostatistical modelling is the semivariogram, a function 
describing the spatial dependence of the modelled variable. The semivariogram 
has been used in many remote sensing studies to determine spatial structures 
(Curran, 1988; Warren, Spies & Bradshaw, 1990; Walter & Brandtberg, 1997; 
Atkinson & Lewis, 2000). From a model of the variable, including a 
semivariogram, the geostatistical framework derives optimal (minimised mean-
squared prediction error) linear unbiased spatial prediction methods, called kriging 
predictors. In the simplest form, kriging provides predictions in unobserved points, 
based on surrounding observations (corresponding to spatial interpolation in 
deterministic modelling). The geostatistical framework also provides optimal 
prediction methods utilising additional data sources to possibly increase prediction 
accuracy, such as the cokriging predictor. 
 
Kriging prediction of forest variables 
Kriging has been applied to forest variables with varying success. Using circular 
plot measurements, Gilbert & Lowell (1997) applied kriging to predict stem 
volume in a 1500 ha balsam fir (Abies balsamea) dominated forest. Prediction 
based on 5.6 m and 11.3 m radius plots resulted in a prediction RMSE of 54% (of 
the mean) and 39-46%, respectively. Similar accuracy was obtained by prediction 
using the sample average only. Applying the dynamic forest management planning 
concept, Holmgren & Thuresson (1997) used kriging predictions based on 10 m 
radius plots and digitised aerial photography data to create rasters of stem volume 
and in-optimality losses for a forest estate (approximately 100 ha) in northern 
Sweden. The accuracy obtained was regarded acceptable for the addressed 
planning concept. In a study following the work of Holmgren & Thuresson 
(1997), Gunnarsson et al. (1998) applied stratified kriging prediction of stem 
volume, total age, annual stem volume increment, and site index, using 10 m 
radius plots at a 400 ha forest estate in southern Sweden. The kriging prediction 
showed poor accuracy, especially for prediction of stem volume of hardwoods. 
Grushecky & Fajvan (1999) obtained kriging predicted maps of canopy cover 
within a 18 ha hardwood stand in West Virginia but with little correspondence to 
the true cover. Stendahl (2001) used data from three completely measured stands 
of coniferous forest in southern Sweden to evaluate accuracy of kriging prediction 
of diameter and basal area within stands based on different sampling efforts. The 
data, including accurate position and measurements of each tree, were used to 
simulate sampling and perform kriging using the sampled data. Systematic 
samples of diameter and basal area measured on 100 and 200 m2 plots, with plot 
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spacing varying between 18 and 70 m, were simulated and used in kriging 
prediction. A similar approach, based on single tree sampling, was used for the 
variable tree height. The prediction accuracy was generally low, with not more 
than 30% of the stand variation explained for any variable. King (2000) analysed 
geostatistical stochastic simulation methods to locate areas of high-value 
commercial trees in Pennsylvania and found these alternatives superior to kriging.   
 
Cokriging prediction using remotely sensed data 
Several studies addressing geostatistical prediction using remote sensing data have 
been made, although forest applications are few. Dungan, Peterson & Curran 
(1994) and Dungan (1998) applied regression, cokriging, and a new stochastic 
simulation method, using synthetic remote sensing datasets to investigate which 
method to use for different data structures. The main feature of data structure 
addressed was the direct dependence (correlation coefficient) of the predicted and 
the explanatory variables. The lowest prediction errors were obtained with 
cokriging for datasets with a correlation coefficient lower than 0.89. For datasets 
with a higher correlation coefficient, better results were obtained using regression. 
Atkinson, Webster & Curran (1994) used airborne multispectral scanner data to 
predict green leaf area index of barley and biomass of a pasture using cokriging. 
They concluded that simple regression would have provided useless results and 
cokriging provided more accurate predictions than kriging.  
 
Spatial regression models 
Ordinary Least Square (OLS) regression is commonly applied for raster mapping 
of forest variables using remote sensing data. Spatial dependence present in the 
data is usually not identified, and is instead assumed absent. Then, OLS regression 
does not provide optimal parameter estimation (Upton & Fingleton, 1985; Anselin 
& Griffith, 1988). Furthermore, the opportunity to incorporate near-by 
measurements in prediction is not utilised. 
 

In spatial regression, the regression model is extended by incorporating the 
autocovariance matrix of the lattice structure in the estimation of the model 
parameters. Spatial regression is a general tool in econometrics (Paelinck & 
Klaassen, 1979; Ancot, Paelinck & Prins, 1986; Anselin, 1988), but has also been 
applied in epidemiology to model the spatial distribution of lung cancer 
(Richardson, Guihenneuc & Lasserre, 1992) and in zoology to model habitat 
selection (Upton & Fingleton, 1985). These studies aimed to obtain optimal 
parameter estimates in the presence of spatial dependency. By making different 
assumptions about the elements of the autocovariance matrix, different variants of 
spatial regression are obtained. In the simplest form the spatial dependence 
structure in spatial regression is modelled by spatial weights determining the 
degree of dependence. For any fixed spatial object, the neighbouring objects are 
assigned non-zero weights and the other objects are assigned zero weights. The 
spatial weights are determined prior to estimation of model parameters. This 
requires a suitable neighbourhood structure on the lattice. For spatial objects in the 
form of polygons, such as counties, post number regions or other administrative 
units, it is common to define the weights based on the relative length of common 
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borders between neighbouring polygons (Upton & Fingleton, 1985). Common 
formulations of the covariance matrix using spatial weights are through the 
conditional autoregressive (CAR) model and the simultaneous autoregressive 
(SAR) model (Richardson, Guihenneuc & Lasserre, 1992; Cressie, 1993). Upton 
& Fingleton (1985) presented the autoregressive response model (AR), which is in 
essence an approximation of the SAR model. Long (1998) used the AR model as 
an alternative to OLS regression to analyse wheat yield data using digital aerial 
imagery, in order to take spatial dependence into consideration. There was a clear 
difference in parameter significances obtained by the model approaches.  
 
Bayesian models 
Adding the spatial dimension to statistical models is not trivial. It may be difficult 
to define a model which describes the spatial features well without being very 
complex. In particular, the analytic derivation of efficient parameter estimators is 
often very difficult. An alternative approach is provided by Bayesian statistics in 
combination with Markov Chain Monte Carlo (MCMC) stochastic simulation 
methods (Hjort & Omre, 1994; Gilks, Richardsson & Spiegelhalter, 1996; 
Gamerman, 1997). The Bayesian statistical approach is based on the assumptions 
that model parameters are random variables as well as data observations. The 
distribution of the parameters before data are observed is modelled by the prior 
distribution. Parameter inference is based on the distribution of the parameters 
conditional on the observed data: the posterior distribution (Gilks, Richardsson & 
Spiegelhalter, 1996; Gamerman, 1997). Practical applications of the Bayesian 
approach have previously been limited to models where the posterior distribution 
is available analytically from the prior distribution, often in the form of conjugate 
distributions. The work of Geman & Geman (1984) led to the introduction of 
MCMC into mainstream statistics via the articles by Gelfand & Smith (1990) and 
Gelfand et al. (1990). The MCMC methods provide alternative inference methods 
of the posterior distribution using stochastic simulation of cleverly constructed 
Markov Chains (Gilks, Richardsson & Spiegelhalter, 1996; Gamerman, 1997).  
 

Bayesian and MCMC methods have been used in many forestry and remote 
sensing relevant applications, often as a method to utilise several conceptually 
different sources of information. Geman & Geman (1984) and Besag, York & 
Mollié (1991) used Bayesian methods to restore noisy images, modelling the 
image as a spatial Markov random field. Ståhl, Carlsson & Bondesson (1994) and 
Nyström & Ståhl (2001) used Bayesian modelling of parameter distributions, 
rather than parameter point estimates, to determine the optimal point in time to 
update the forest stand database using a new survey. Forestry planning was also 
addressed by Alho & Kangas (1997) and Kangas et al. (2000) who used a 
Bayesian approach for decision support systems in multiple-objective forestry. 
Green & Strawderman (1992) compared hierarchical and empirical Bayes methods 
and introduced the MCMC method Gibbs sampler for forestry applications as well 
as addressed simultaneous estimation of multiple means, a common problem in 
forestry.  
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Utilising the Bayesian approach and MCMC methods, Teterukovskiy (2001) 
presented a method to detect vehicle tracks in remotely sensed images. The 
method is based on apriori information of the structure of tracks and showed 
positive results when applied to digitised aerial photographs (1 m pixel size) of 
Swedish alpine vegetation. Furthermore, in a simulation study, Teterukovskiy 
(2001) used a MCMC method to reclassify the results from standard non-
contextual classification methods (quadratic discriminant analysis and the kNN 
classification), in order to improve classification accuracy using the spatial 
autocorrelation in the image. The results indicate that the applied approach has the 
potential to improve classification accuracy. 
 

Vehtari & Lampinen (2000) used Bayesian Multi-Layer Perceptron (MLP) 
neural networks to locate tree trunks in digital images taken from the ground (from 
a harvester or similar), for robotic vision applications. Bayesian methods have also 
been used in ecological spatial modelling applications, such as modelling 
probability of lichen occurrence on trees by logistic regression with tree properties 
as covariates (Riiali, Penttinen & Kuusinen, 2001).  
 

Spatial point process models have also been addressed using Bayesian statistics 
in combination with MCMC methods. Wolpert & Ickstadt (1998) used doubly 
stochastic Bayesian hierarchical models to account for uncertainty and spatial 
variation in the underlying intensity measure for point process models, addressing 
a forest ecology problem. Another example is Heikkinen & Arjas (1999) who used 
a non-parametric Bayesian approach to model a non-homogeneous Poisson forest 
affected by concomitant variables, where the information of the latter was limited. 
 

Besag, York & Mollié (1991) addressed Bayesian spatial statistics and showed 
the framework of Bayesian image restoration to be useful for a broad class of 
spatial models. The work demonstrated applications in archaeology (irregular 
point measurements), epidemiology (measurements of administrative zones), and 
in medical images (ordinary raster images). Besag et al. (1995) presented the class 
of pair-wise prior distribution functions and examples of applications to spatial 
statistics. This class of models was expected to be useful in modelling spatial 
dependence using the prior distribution.  
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Objectives 
The main objective of this thesis is to empirically evaluate the accuracy 
improvement by including spatial data in remote sensing based prediction. Also 
addressed are the practical applicability and influence of field sampling intensity 
on the studied methods. Accuracy evaluation is based on prediction of stem 
volume per hectare at a 5917 ha test site of boreal forest using a large sample of 
objectively measured field plots and multispectral optical data from the Landsat 5 
TM satellite sensor.  
 

The specific objectives of the studies described in papers I-IV are listed below. 
 

I. To introduce and evaluate a new search strategy for data, based on edge 
detection in remote sensing data, to improve accuracy of ordinary kriging 
prediction. The method is designed to adapt to the presence of sharp edges 
in the forest. The new method is compared with ordinary kriging and 
stratified ordinary kriging, using stratification of remote sensing data. 

II. To evaluate geostatistical methods suitable for utilising with remotely 
sensed data. Two cokriging methods and simple kriging with varying local 
means are compared with OLS regression predictions. Effects of sampling 
intensity are also addressed. 

III. To evaluate the spatial autoregressive response model for spatial prediction. 
The effects of neighbourhood size and spatial weights definition as well as 
sampling intensity are addressed. 

IV. To introduce a Bayesian state-space model for spatial simulation of forest 
variables using Gibbs sampler simulation. The model is applied to spatial 
prediction of stem volume and the prediction accuracy is investigated. 

 

The studies were carried out within the framework of a project aiming to 
develop methods for dynamic forest management planning systems, i.e., systems 
not based on a traditional stand delineation of the forest. 
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Material 
 
Field data 
The analyses made in the papers I-IV are based on data from the Brattåker forest 
estate (Lat. 64°14’N, Long. 19°40’E) outside the town of Vindeln in the north of 
Sweden. The 5917 ha large estate consists of boreal forest and is owned and 
managed by the forest company Holmen Skog AB. The forest is fairly 
homogeneous and rather intensively managed. The elevation varies between 160 
and 400 m above sea level. Two objectively performed field data collections on 
the estate were used: a stratified survey of 2604 sample plots, and a field survey of 
51 stands selected from the company’s stand database.  
 

The 2604 circular plots (10 m radius) were surveyed in 1996 using systematic 
and stratified sampling (Figure 1) (Wallerman, 1998). Stratification was made 
using Landsat TM data and aimed to allocate a higher sampling intensity to older 
(more economically valuable) forest than to young and regenerating forest. The 
strata were defined by a combination of segmentation and unsupervised 
classification of a precision corrected Landsat TM scene (path 194, row 014) with 
an image acquisition date of June 13, 1995. First, the area was segmented into 
spectrally homogeneous areas of size 0.5-5 ha using directed-tree clustering 
followed by region growing (Hagner, 1990). Then, independent of the 
segmentation, the image was classified into 25 classes by pixel-wise unsupervised 
clustering. These 25 classes were subjectively merged into 5 major forest types. 
Finally, the sampling strata were defined by the segmentation where each segment 
was assigned the majority class of the pixels within it. The general forest 
characteristics of the sampling strata are presented in Table 1. A majority of the 
plots (2101 plots) was laid out in a systematic grid design with stratum-unique 
grid spacing. In addition, 503 plots were used to assess the spatial dependency at 
distances shorter than the systematic grid spacing. One such additional plot was 
allocated close to each 6th systematic grid plot in stratum 1, to each 7th in stratum 
2, to each 2nd in strata 3 and 4, and to all plots in stratum 5. The allocation was 
random in eight directions and at 25 m, 50 m or 75 m distances from the selected 
regular grid plot. Sampling was made using the sampling and estimation routines 
of the Forest Management Planning Package (Jonsson, Jacobsson & Kallur, 1993). 
In particular, each tree within a plot was callipered and several additional variables 
were measured on a sub-sample of trees in order to estimate stem volumes 
accurately. Each plot centre was positioned using the mean coordinates of real-
time differentially corrected GPS measurements. On average, 36 measurements 
were used for each plot position. Some of the plots were not used due to obvious 
errors in the position or loss of part of the survey data. 
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Fifty-one evaluation stands (0.5-22 ha) were surveyed in the year 2000. The 
selection of stands was random and stratified on the stem volume per hectare 
according to the forest company’s stand database in order to provide a set of 
stands ranging from low to high stem volume. Each stand was surveyed using 
systematic sampling with on average nine field plots of 10 m radius, and the 
sampling routines previously described (Jonsson, Jacobsson & Kallur, 1993). Only 
the estimated stand means, corrected for four years of growth to reflect the forest 
state in 1996, were used from this survey. The estimated stem volume of the 
surveyed stands ranged from 13 m3ha-1 to 294 m3ha-1 with an average of 160 m3ha-

1. The average standard error of the estimated stand stem volumes was 11% of the 
mean.  
 

The sample plot survey data were used as prediction data as well as to evaluate 
plot-level prediction accuracy. This was made by dividing the complete plot 
survey dataset (dataset C) in two parts: the prediction dataset (dataset P) and the 
evaluation dataset (dataset E). The 2101 systematically spaced sample plots were 
assigned to dataset P, and the 503 extra plots were assigned to dataset E. This 
approach was used since the errors of spatial prediction methods are expected to 
decrease the closer a predicted location is to a measured location. Then, a feasible 
sampling design is a regular grid of plots, possibly denser in areas with high 
variation, and is a design most likely to be applied in practice. The focus of this 
thesis is to evaluate the accuracy of methods applied on such a regular dataset, 
leaving the extra plots an evaluation dataset. The data from the stand survey were 
used to evaluate stand-level prediction accuracy.  
 
Remote sensing data 
The analyses were based on a multispectral optical Landsat 5 TM satellite scene 
(path 193, row 015) with an image acquisition date of August 11, 1996. The TM 
sensor provides 8-bit data from measurements of the electromagnetic spectrum in 
seven spectral bands, from the visible spectrum; TM1: 0.45-0.52 µm (blue), TM2: 
0.52-0.60 µm (green), TM3: 0.63-0.69 µm (red), to the infrared (IR) spectrum; 
TM4: 0.76-0.90 µm (near IR), TM5: 1.55-1.75 µm (mid IR), TM7: 2.08-2.35 µm 
(mid IR), and TM6: 10.4-12.5 µm (thermal IR) (Lillesand & Kiefer, 2000). The 
scene was geometrically precision-corrected to the Swedish National Grid (RT90) 
and re-sampled to 25 m pixels by the Swedish company SSC Satellitbild. The 
geometric processing of the image is based on orbital modelling together with a 
library of ground control points of Sweden, and typically results in a geometrical 
accuracy of one-half of a pixel. The scene is cloud-free over the study area and 
contains no shadows cast by topographic effects. Radiometric and atmospheric 
corrections were not applied since the area of interest is fairly small, contained no 
visible variations in atmospheric conditions, and since the methods applied do not 
require absolute reflectance measurements. Image data for each surveyed plot 
were extracted using cubic convolution sampling.  
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Descriptive statistics 
The surveyed plot dataset is influenced by the stratification, which assigned more 
samples to older forest. Table 2 and Figure 2 show statistics and histograms for the 
complete dataset (dataset C) and a reduced dataset (dataset R, 1155 plots). Dataset 
R was constructed from dataset C, to reduce the effects of the preferential 
sampling introduced by the stratification. This was made by randomly thinning 
strata one to three to the spatial sampling intensity used in stratum four. It was not 
regarded useful to thin the data to the lowest sampling intensity (stratum five), to 
obtain equal sampling intensity in all parts, since stratum five was very sparsely 
sampled. The relationship between the stem volume data and Landsat TM bands 
TM4 and TM5 is not linear (Figure 3). Applying a logarithmic transformation, 
ln(volume+1), to the stem volume data results in a near-linear relationship to the 
image data (Table 3, Figure 3).  
 

Figures 4 and 5 show exploratory spatial descriptions of dataset C. Figure 4 
shows estimated covariance of plot measured stem volume observations separated 
by distances from 0 to about 2000 m, for datasets C and R. The ranges, i.e., the 
distance at which the covariance has declined to approximately zero, are similar 
for the datasets but the variances (the covariance at distance 0 m) are not. Figure 5 
shows visualisations of the spatial distribution of stem volume in the study area. 
The images in Figure 5 are constructed by spatial smoothing of dataset C, using 
moving-window averages and inverse distance weighting interpolation (Isaacs & 
Srivastava, 1989). 
 
 
Table 2. Descriptive statistics of sample  plot data 
 

V ariable Dataset Unit Min Max Mean Median s 

Stem volume C m3ha-1 0 479 130 127     97.4    
Stem volume R m3ha-1 0 479 100 81 95.8 
Transformed stem volume C ln(m3ha-1) 0 6.17 4.25 4.85 1.54 
Transformed stem volume R ln(m3ha-1) 0 6.17 3.69 4.41 1.77 
Transformed stem volume P ln(m3ha-1) 0 6.17 4.31 4.87 1.50 
Transformed stem volume E ln(m3ha-1) 0 6.06 3.98 4.71 1.70 
TM4 C DN 25.8 84.6 48.1    46.1 9.78    
TM4 P DN 25.8 80.7 47.9    45.9    9.51    
TM4 E DN 27.4 84.6 48.9   46.6   10.8   
TM5 C DN 17.5 92.9 39.9   35.6 13.7    
TM5 P DN 18.4 92.9 39.2   35.0   13.2    
TM5 E DN 17.5 90.3 42.5 38.0 15.1   
 
 
 



Table 3. Correlation coefficients of plot measured stem volume data and Landsat TM4 and 
TM5 data, based on the complete dataset (dataset C) 
 

 Stem  
volume 

Transformed 
stem volume 

TM4 TM5 

 
Stem 
volume 

     1 0.82 -0.52 -0.62 

Transformed 
stem volume

      1 -0.56 -0.79 

TM4         1   0.61 
TM5           1 
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Figure 2. Histograms of plot measured stem volume data. Top: complete dataset (dataset C, 
n=2604), bottom: reduced (de-stratified, n=1155) dataset (dataset R). Left: stem volume, 
right: logarithmically transformed stem volume. 
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Figure 3. Scatterplots of Landsat TM data, extracted using cubic convolution, to plot 
measured stem volume data (left) and logarithmically transformed plot measured stem 
volume data (right). The scatterplots are based on the complete dataset (dataset C). 
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Figure 4. Spatial covariance of the logarithmically transformed plot measured stem volume 
data. Left: covariance based on the complete dataset (dataset C), right: covariance of the 
thinned (de-stratified) dataset (dataset R). 
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Figure 5. Visualisations of the spatial structure of the plot measured stem volume data 
(dataset C). Top: image created by moving-window average using 225 by 225 m window 
size. Bottom: image created by inverse distance weighting using the ten closest plots and 
power of two. 
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Methods 
 
Geostatistical models (Papers I and II) 
In papers I and II, the variable stem volume is modelled as a random function 
Z(x), where x is a position in the two-dimensional Euclidean space R2: 
 

2),()()( Rxxxx ∈+= εmZ                          (2) 
 

In Equation 2, m(x) is a deterministic mean structure and ε(x) is a spatially 
dependent random deviation, assumed second-order stationary with isotropic 
semivariogram γ(h): 
 

γ(h) = ½Var[Z(xi) - Z(xj)], h = | xi - xj |                   (3) 
 

From Equations 2 and 3, the geostatistical framework derives kriging predictors, 
which are methods to predict Z in an unobserved location, x0. Kriging predictors 
are optimally weighted linear combinations of the available observations, such as 
the ordinary kriging predictor (Cressie, 1993): 
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The weights λi are derived to minimise the mean-squared prediction error (optimal 
prediction) and provide unbiased prediction. Depending on the model, such as the 
structure of m(x), many different kriging predictors are available. For example, the 
ordinary kriging predictor (Equation 4) is based on assuming m(x) to be unknown 
and constant in space (m(x)=m), or constant at least within a limited 
neighbourhood of the predicted point. In contrast, the simple kriging predictor 
assumes m(x) to be known. Simple kriging possibly provides a way to enhance 
prediction accuracy by incorporation of additional data. This can be done by 
estimation of m(x) using the additional data sources, such as optical remote 
sensing data, and use of SK to predict the spatially dependent residual.  
 

Data from an additional source (a secondary variable), available at every 
prediction location and dependent on the predicted variable (the primary variable), 
can also be used in cokriging prediction. Regarding the secondary variable as a 
random function, Y(x), the ordinary cokriging predictor is formed by extending the 
ordinary kriging predictor to incorporate secondary data (Cressie, 1993): 
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The weights λZ
i and λY

j are determined similarly to the kriging weights using the 
semivariogram of Z(x), γZ(h), and the semivariogram of Y(x), γY(h), as well as a 
model of the spatial cross-dependence structure, the cross-semivariogram γZY(h) 
(Cressie, 1993):  
 

γZY(h) = ½Var[Z(x) - Y(x+h)].                       (6) 
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Spatial regression models (Paper III) 
Spatial regression may provide a means to incorporate spatial structures in 
regression. The spatial regression model addressed here is the autoregressive 
response model (AR) (Upton & Fingleton, 1985; Kelejian & Prucha, 1997). This 
model is essentially an approximation of the simultaneous autoregressive model 
(SAR) (Richardson, Guihenneuc & Lasserre, 1992; Cressie 1993).  
 

Let Z be the (n×1) vector of n forest variable observations Zi, X the (n×k) design 
matrix with 1’s in the first column and the corresponding values of the (k-1) 
independent variables in the other columns, b the (k×1) vector of unknown model 
parameters, e the (n×1) vector of unobserved random errors, and I the (n×n) unit 
matrix. Then, the AR model is (Upton & Fingleton, 1985) 
 

Z = ρWZ + Xb + e, e ~ N(0, σ2I),                      (7) 
 

where spatial dependence is modelled by the term ρWZ, where ρ is an unknown 
spatial correlation parameter and W is a (n×n) spatial weight matrix defining the 
pre-determined neighbourhood of each observation i. For observation i, each 
neighbouring observation, j, is assigned a non-zero weight in position (i, j) of W, 
for i ≠ j. Thus, the aim is to arrive at independent residuals. A drawback is the pre-
requisite of a known spatial weight matrix, which must be properly defined for 
each application. A predictor of an unobserved Yn+1 is proposed:  
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The predictor is based on the estimated model parameters ρ̂ and , the k-1 
independent variables X and weights w(n+1),i corresponding to the location n+1. 

β̂

 
Bayesian state-space models (Paper IV) 
The Bayesian approach is based on the assumption that parameters, θ, as well as 
the data, x, are generated by stochastic processes. The joint distribution, f(θ, x), is 
the distribution over all random quantities (Gilks, Richardsson & Spiegelhalter, 
1996) and comprises two parts: a prior distribution π(θ) and a likelihood  f(x | θ). 
The prior distribution describes the uncertainty of the parameters before data are 
observed, and the likelihood describes the sampling distribution of the data. 
Inference on the parameters is made using the distribution of parameters 
conditional on the observed data, the posterior distribution f(θ | x). Specifying the 
prior and the likelihood (Gilks, Richardsson & Spiegelhalter, 1996) 
 

f(θ, x) =  f(x | θ) π(θ) ,                           (9) 
 

the posterior is available using Bayes theorem,  
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The presented model has, due to the spatial setting, high dimension (one 
parameter per raster cell) and it is very difficult to analyse the posterior 
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distribution analytically. Instead, parameter inference is made using a MCMC 
stochastic simulation method, the Gibbs sampler. The Gibbs sampler is based on 
iterative simulation of a Markov Chain constructed such that the posterior 
distribution appears as the stationary distribution of the chain. Often it is sufficient 
to be able to draw random samples from the full conditional distributions (i.e., the 
distribution of each parameter conditional on the remaining parameters and the 
data) to apply MCMC inference. Furthermore, it is often sufficient to know the 
shape of the full conditional distribution function. Parameter inference is made 
using ergodic sample statistics of a large number of simulations from the chain. 
 
 

Results 
 
Summary of Paper I 
This paper presents a new method to perform ordinary kriging predictions using 
information derived by edge detection in remotely sensed imagery. The new 
method is designed to adapt to the complex spatial variation of forest, especially 
managed forest. Managed forests are expected to show a mix of gradual 
transitions, caused by gradual variation in site conditions, and sharp edges, caused 
by logging operations (Lowell, Edwards & Kucera, 1996; Gunnarsson et al., 
1998). Although complete stand polygons are homogeneously thinned or clear cut, 
the varying evolution within stands may eventually cause a stand to have 
boundaries with less pronounced, or indistinguishable, parts as well as distinct 
parts. Then, it is not expected to be efficient to represent the sharp spatial 
transitions with closed polygons, but rather with open-ended lines – edges. If the 
edges are known, ordinary kriging prediction may be improved by using only 
sample plots located on the same side of any known edge as the predicted point. 
This paper explores the possibility of improving the accuracy of ordinary kriging 
prediction of stem volume using Landsat TM data to detect the presence of sharp 
transitions. Two different approaches are utilised. First, edge detection of TM data 
is used to estimate the presence and strength of edges. These edges are used in 
each kriging prediction to select only sample plots located on the same side of any 
edge as the predicted location. Second, the TM data are used to define 
homogeneous strata and each stratum is predicted separately. These approaches, 
stratified ordinary kriging and ordinary kriging with edges, were applied to predict 
stem volume and the results were compared with ordinary kriging without any 
additional information.   
 

The new method performed better than ordinary kriging and stratified ordinary 
kriging. Using the detected edges resulted in 41% prediction RMSE (in per cent of 
the mean stem volume) of cells, stratified ordinary kriging in 45%, and ordinary 
kriging in 58%. 
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Summary of Paper II 
The geostatistical framework provides possibilities to incorporate remote sensing 
data in the model of stem volume, Z(x). Two different approaches are evaluated, 
using remote sensing data to model the mean structure, m(x), or treating the 
remote sensing data as a random function, Y(x), dependent on Z(x) (a secondary 
variable). Prediction based on the former approach was made using simple kriging 
with varying local means (SK) (Goovaerts, 1997). Ordinary cokriging (CK) and 
colocated ordinary cokriging (CCK) were used for prediction based on the latter 
approach. The accuracy of stem volume prediction obtained was compared with 
accuracy obtained by OLS regression and ordinary kriging (OK) prediction. 
Furthermore, the effects of sampling intensity for the dataset used in prediction 
were addressed. This was made by applying the methods on the complete dataset 
as well as on two reduced datasets. SK and OLS were applied using data from 
TM4 and TM5, an approach expected to extract most of the information present in 
the remote sensing data. CK and CCK were only applied using TM5 data due to 
the complex co-regionalisation model required for utilisation of more than one 
secondary variable. To enable comparison, SK and OLS were applied using TM5 
only, as well as using the combination of TM4 and TM5.  
 

The SK and CK predictors showed, in most cases, higher accuracy than OLS 
regression and OK predictions of stem volume. CCK predictions were not 
successful. Accuracy in terms of RMSE at stand level was 36% (of the mean) for 
SK using TM5 as well as when applied using TM4 and TM5, 37% for CK using 
TM5, 48% for OLS regression using TM5 and 46% when applied using TM4 and 
TM5, and 40% for OK, when applied on the full dataset. Reducing the dataset to 
50% and 25% of the number of sampled plots resulted in approximately no 
difference in performance ranking for the methods. The SK method showed 
similar, or higher, stand level prediction accuracy compared to CK. Thus, SK is 
expected to be a useful method to utilise several additional data sources, since SK 
is easier to apply than CK and provides equal accuracy. OK performed 
surprisingly well for plot-level prediction, 58%, when applied on the full dataset, 
to be compared with spatial prediction methods using image data: 71% for SK 
using TM5 and 67% when applied using TM4 and TM5. Due to the spatial 
structure of the expected error from spatial prediction, most attention should be 
directed to the ranking of accuracy obtained from stand level predictions. 
 
Summary of Paper III 
The autoregressive response model (AR) (Upton & Fingleton, 1985) may provide 
a useful spatial prediction approach. It is an intuitive approach, being essentially 
an extension of OLS regression to incorporate spatial properties. The AR model is 
expected to provide a straight-forward way to incorporate several remote sensing 
data sources. The AR model was applied, using one as well as several bands of 
Landsat TM as explanatory data, using a weight matrix defined from spatial 
dependency in residuals from OLS regression. The influences of neighbourhood 
definition (size and weighting model) as well as sampling intensity are addressed. 
The AR method showed up to 8% increase in prediction accuracy (RMSE) of stem 
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volume at plot and stand level compared to OLS regression. The model fit showed 
deficiencies, since the residuals were not independent. Compared to OLS 
regression, the AR residuals showed on average 53% (29-100%) lower spatial 
dependency (measured by the Moran’s I index (Upton & Fingleton, 1985; Cressie, 
1993)) compared to OLS regression residuals. Clearly, this may be caused by 
inoptimal specification of the spatial weight matrix. 
 
Summary of Paper IV 
A regular lattice is a natural space definition for raster prediction methods. In 
combination with Bayesian models, it may be possible to define flexible spatial 
models of forest and remote sensing data. In particular, spatial dependence can be 
modelled using spatial weighting of neighbouring cells. Here, the aim is to assess 
the forest stem volume in each lattice cell using field measurements of a subset of 
cells and remote sensing data for each cell. Thus, the model is defined with the 
unknown cell values as the parameter vector. The spatial properties were modelled 
using the conditional autoregressive (CAR) model as prior distribution, and 
remote sensing data and field measurement data were incorporated through the 
posterior distribution. Predictions from this high dimensional model were made 
using ergodic averages of a large number of Gibbs sampler simulations. 
 

Applied on the data, each simulation showed mean and variance as well as 
spatial covariance as expected from field measurement data. Furthermore, the 
spatial structure was clearly influenced by the spectral data. On the other hand, the 
accuracy obtained, 76% RMSE (in per cent of the mean) for plot predictions and 
60% RMSE for stand predictions, was not an improvement compared to OLS 
regression. 
 
Comparison of results 
The spatial methods addressed in the four papers were applied and empirically 
evaluated using the same dataset, with some minor exceptions. Figures 6 and 7 
present the most important results from the studies.  
 

Highest plot level accuracy was obtained by OK using no image data and by OK 
using information of edges detected in TM imagery (Figure 6). Compared to OLS 
regression, OK predictions showed at the most 28% lower RMSE, while OK using 
edge information was even more accurate, with 49% lower RMSE than OLS 
regression. The results from stand level predictions show a different accuracy 
ranking of the methods. Simple kriging with varying local means (SK) performed 
the best. The RMSE of predictions made by SK using TM5 was 26% lower than 
the RMSE obtained by OLS regression on TM5 (Figure 7). Using TM4 together 
with TM5 reduced the difference to 21%.  
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Figure 6. Accuracy of plot level predictions of stem volume, in relation to the sampling 
intensity of the dataset used for prediction. OLS=OLS regression, SK=simple kriging with 
varying local means, CK=ordinary cokriging, CCK=colocated ordinary cokriging, 
OK=ordinary kriging, AR=autoregressive response model using exponential weight 
function and 600 m neighbourhood size, OK(Strat.)=stratified ordinary kriging, 
OK(Edges)=ordinary kriging using detected edges, BSSM=Bayesian state-space model, and 
Sample avg.=prediction using the sample average. Additional data sources utilised, such as 
Landsat TM bands, are stated in parentheses. 
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Figure 7. Accuracy of stand level predictions of stem volume, in relation to the sampling 
intensity of the dataset used for prediction. OLS=OLS regression, SK=simple kriging with 
varying local means, CK=ordinary cokriging, CCK=colocated ordinary cokriging, 
OK=ordinary kriging, AR=autoregressive response model using exponential weight 
function and 600 m neighbourhood size, BSSM=Bayesian state-space model, and Sample 
avg.=prediction using the sample average. The Landsat TM bands utilised are stated in 
parentheses. 
 
 

The stratification of the dataset increases the influences of the older forest on the 
results. This sampling design was chosen in order to be representative for an 
applied case of forest management planning, and the results should be interpreted 
with this in mind. The stratification probably reduced the benefits from using 
remotely sensed data, since older forest corresponds to the optical spectrum where 
optical remote sensing data contributes less about forest stem volume. 
Furthermore, the prediction biases reported are determined by the difference in 
means of the prediction and evaluation datasets (datasets P and E, respectively). 
This is due to the method used to correct logarithmic bias (Holm, 1977).  
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Discussion 
 
Incorporation of spatial information in remote sensing based predictions improved 
the accuracy compared to OLS regression for most methods, when applied to stem 
volume. The new OK method using information of detected edges performed well, 
although the method is dependent on a dense field sampling of data. A dense 
sampling is required because there should not be any area isolated from all field 
data by the edges detected. With some exceptions, there were no large differences 
in prediction accuracy between the different remote sensing based spatial 
prediction approaches applied. The methods differ mainly in the ease of practical 
application and modelling flexibility. Utilising Landsat TM data in the predictions 
directly, i.e., using the methods ordinary cokriging (CK), collocated ordinary 
cokriging (CCK), simple kriging with varying local means (SK), using the 
autoregressive response model (AR), and the Bayesian state-space model (BSSM), 
was not as successful as ordinary kriging (OK) using information about detected 
edges. An important result is that the SK approach performed at least as well as 
the more complex method CK. Applying CK requires construction of a co-
regionalisation model from the data, which may be a difficult task especially if 
several secondary variables are used. The ranking of the geostatistical methods 
corresponds fairly well to those reported by Dungan (1998). That is, OLS 
regression was inferior to kriging methods, given the same spatially dependent 
data, for the degree of correlation present. Even more straight-forward to apply 
than SK is the AR method, an approach which may be seen as a spatial extension 
of OLS regression. The AR approach did provide more accurate (8% less RMSE) 
predictions than OLS regression, indicating the potential of the method. Further 
investigations are necessary, though, regarding how to define the spatial weights 
from data, and which statistical properties the applied predictor has. The Bayesian 
method applied in this thesis showed the potential of the flexible framework 
provided by Bayesian models and Markov Chain Monte Carlo (MCMC) 
simulation to address highly complex spatial models. The model provided realistic 
simulations of stem volume although the predictions were not an improvement 
over OLS regression. Clearly, the model can be improved further by incorporation 
of parameters in the simulation and possibly also by utilising the pair-wise prior 
models described by Besag et al. (1995). 
 

The OK method produced more accurate plot predictions than methods utilising 
image information (Figure 6), but SK and CK were more accurate than OK for 
stand predictions. It is not intuitive to obtain higher accuracy using OK compared 
to a method incorporating more information (i.e., image data). Since the 
differences in performance of all methods are small, this result may be due to 
random variation. Errors in image rectification and measurements of plot positions 
may also result in reduced accuracy at the plot level. That is, predictions are based 
on image data acquired from a slightly different location than the predicted plot. 
Such errors affect plot level accuracy but cancel out when predicting a stand. It 
may also be a result of the method used for plot level accuracy evaluation. 
Accuracy was evaluated on plots often close to one of the regularly spaced plots 
used as prediction data. The influence of the data plot is then high, and image data 
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may not provide very much additional information. Furthermore, the 
semivariogram and the cross-semivariogram models were estimated using image 
data extracted by cubic convolution, a method which may provide data not closely 
reflecting the spatial variance of the image data. In this case, prediction will be 
made by slightly in-optimal weights and the consequences may be high at 
predictions close to data plots where the difference in weights is large. With these 
considerations in mind, the stand prediction results are expected to provide the 
most reliable performance ranking of the methods. 
 

Prediction based on remote sensing data only, using the OLS regression 
approach, showed poor accuracy, and only limited improvement from prediction 
by the sample average. Hagner (1990) performed stand level predictions of stem 
volume, in an area close to the study area in this thesis, and reported a RMSE of 
26% (of the mean) of stand stem volume predictions made by OLS regression 
using Landsat TM and 24% using subjective field methods. The accuracy obtained 
here is lower, at the most 36-41% depending on the sampling intensity. On the 
other hand, this thesis addresses the possibility of enhancing remote sensing based 
predictions using spatial as well as spectral data. Thus, the methods were applied 
to enable comparison between spatial methods and OLS regression using similar 
data, i.e., the field surveyed plots and TM4 and TM5. Furthermore, the methods 
were also applied using TM5 only to enable basic application of CK and CCK 
without the inherent problems of estimating complex co-regionalisation models for 
several secondary variables. There may be an opportunity to enhance the accuracy 
by more complete utilisation of the remote sensing data, using enhanced models 
and possibly principal component analysis. On the other hand, the most 
information of stem volume is expected to be present in TM4 and TM5.  
 

Today, data capture for forest management planning is commonly made by 
stereo aerial photography interpretation (Åge, 1985) to preliminary delineate 
stands and estimate stand level variables. Each stand is then visited in the field, to 
correct preliminary boundaries and estimates. The accuracy of this method was 
investigated by Ståhl (1992) who reported a standard error of about 12% for stand 
estimates of stem volume. Furthermore, Ståhl (1992) reported 20% standard error 
from subjective field estimation, without support of any measurements. Thus, 
using TM data, the methodology applied in this thesis did not produce as accurate 
estimations as required in forest management planning. However, the 
methodology is general and applicable to other sources of remotely sensed data 
than Landsat TM, sources possibly providing higher forest information content. 
Furthermore, the results of the present thesis show that, using spatial prediction 
methods, it is possible to account for low information content of the remotely 
sensed data by increasing the field sampling intensity.  
 

Analyses were made on the forest variable stem volume per hectare only. This 
variable shows a very complex spatial structure influenced by management 
activities. In particular, the spatial structure is influenced by sharp edges and forest 
stand structures. In light of the spatial scale addressed (approximately 5000-50000 
ha), stem volume in managed forests is expected to be similar within each stand, 
but often clearly dissimilar between different stands. Thus, spatial prediction of 
this particular variable may be most successful in natural forests without man-
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made stand structures. On the other hand, the methods applied here are expected to 
use, to some degree, the information of the forest spatial structure present in the 
image data, including sharp edges. The method presented in Paper I was designed 
specifically to adapt to sharp edges and proved successful. The other methods used 
local spectral data and thus may be expected to adapt to the spatial structure 
implied by the image, including sharp edges. The tendency to do so is clearly 
connected to the direct dependency between the predicted variable and the image 
data, which is a dependency that is not very strong for TM data and stem volume. 
The results obtained here suggest, using intensively field sampled data, the TM 
image data were more useful as description of the spatial structure of the forest 
than as explanatory data in pixel level prediction models of stem volume.  
 

 The dataset utilised is unique in several ways. The estate is intensively sampled 
and the dataset provides a large amount of objectively field measured data. The 
forest is managed by a forest company and it is expected to be less heterogeneous 
than privately owned forest. For example, there are only small amounts of 
deciduous forest at the estate. The spatial prediction approach is expected to be 
most useful in homogeneous forest and may not perform as well in, for example, 
privately owned Swedish forests. Furthermore, the terrain at the test site is fairly 
hilly for Swedish conditions and may cause poor results in remote sensing based 
estimates where slope effects are not considered. Zuba (2002) analysed these 
effects on the TM scene and field dataset used here, in the scope of improving 
classification and OLS regression predictions of stem volume. The result showed 
improvements from application of the most common terrain normalisation 
methods. An important characteristic of the dataset is also the stratified sampling 
design, which allocated more sample plots to the older forest. That is, to forest 
with fairly closed canopy where TM data contains the least information about stem 
volume.  
 

Conclusions 
Incorporation of spatial information was useful for increasing accuracy of Landsat 
TM based remote sensing predictions of stem volume, although the benefits were 
clearly dependent on the field sampling intensity. In particular, spatial prediction 
provided means to increase the accuracy by increasing the field sampling intensity, 
which the OLS regression method did not. 
 

The new ordinary kriging method incorporating information about edges 
detected in the Landsat TM image provided an efficient way to utilise the remote 
sensing data in spatial prediction, especially with densely sampled field data. More 
generally, simple kriging with varying local means (Goovaerts, 1997) is proposed 
as a suitable method for forestry applied spatial prediction. Utilisation of highly 
complex spatial models is also possible, using Bayesian models.  
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Future research 
 
There are other promising remote sensing technologies which may provide data of 
more use for forestry applications than Landsat TM, such as the high-resolution 
satellite sensors Ikonos and QuickBird, and airborne laser and low-frequency 
radar systems. The future technology development and implementation in forestry 
is also expected to provide intensively sampled field data with accurately 
determined positions, for example harvester data and data collected using hand-
held computers with integrated GIS and GPS resources. With these considerations 
in mind, spatial prediction methods should provide a beneficial framework for 
many applications, including implementation of a raster forest model. 
Furthermore, spatial prediction will possibly be useful in operational applications 
of a raster forest model to provide predictions of forest variables other than stem 
volume. In particular, the range of spatial prediction approaches applied here may 
provide solutions for most cases, from the straight-forward utilisation of a single 
spectral band in cokriging or several bands in simple kriging with varying local 
means, to prediction of forest variables requiring complex models merging 
conceptually different data sources in Bayesian models. 
 

Spatial models applied using remote sensing data are expected to provide new 
opportunities for optimal sampling design in forestry applications. Image data may 
provide information about forest spatial structure and enable optimal spatial 
allocation of field sampling efforts. For example, image data of a forest stand 
describe the heterogeneity of the stand and should aid in optimal allocation of field 
sample plots or provide optimal weighting of already surveyed plots. Furthermore, 
using image data in spatial models can be an efficient way to provide real-time 
sampling support to forest surveyors in the field, using accurate GPS positioning. 
Then, sampling efforts can be directed, given the samples made, to areas where 
new samples benefit the most. This task can possibly be efficiently addressed 
using Bayesian methods, since the distribution (uncertainty remaining, given the 
observed data) of all random quantities are available directly through the model. 
Furthermore, Bayesian modelling in combination with Gibbs sampling may 
provide a tool to evaluate sampling strategies by simulation, using a large number 
of simulated realisations of forest variables. Simulations of the forest variable can 
be made conditional to suitable remotely sensed image data in order to provide 
realistic spatial structure of the simulations. MCMC methods may also provide 
multivariate simulations, where the dependence structure in the data is preserved, 
yet easily provide a large number of simulations to enable thorough evaluation of 
the analysed sampling method. 
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Figure 1. Overview of the Brattåker test site (top) and a more detailed portion 
showing Landsat TM (bottom). The centre of each field plot is marked by a dot 
(top) or a white cross (bottom), lakes are shaded in grey and the area 
corresponding to the detailed portion is marked by a dashed box in the overview. 
Landsat TM image produced by Satellus/Metria. 
 
Table 1. Strata characteristics, descriptive statistics of sample plots within each stratum at 
the Brattåker estate 
 

Stratum 
No. 

General forest 
type 

Area 
[ha] 

No. of 
plots 

Mean
age 
[yrs] 

Mean 
density 
[stems/ha] 

Proportion [%] 
Pine, Spruce, 
Broadleaf  

1 Sparse forest 1391 880  87    967 43, 49, 8 
2 Dense forest 2029 964  64  1124 44, 38, 18 
3 Pine heath   524 328  96    769 79, 18, 3 
4 Young forest 1627 386  22  1619 42, 32, 26 
5 Regenerating / 

clear-cut forest 
  346   46    8  1523 60, 34, 6 
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