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Improved farm soil mapping using near infrared reflection 
spectroscopy 

Abstract 
Information on soil texture, soil organic matter content (SOM), nutrient status and 
pH is fundamental for efficient crop production and for minimising negative effects 
on the environment. Farmers obtain this information, on which decisions on 
fertiliser and lime requirements are based, through farm soil mapping. Although 
there is a general awareness that within-field and within-farm variations might not 
be adequately captured using conventional sample point density, simply increasing 
the number of sample pointes would increase the cost to unacceptable levels. 

In this thesis, near infrared reflection (NIR) spectroscopy was used to obtain 
more accurate information on within-field or within-farm variations in a number of 
soil properties. One central objective was to estimate the within-field variation in N 
mineralisation, to allow for improved N fertilisation strategies. Another was the 
development of economically feasible strategies for increasing sample point density 
in conventional farm soil mapping for improved decision support in precision 
agriculture. 

The results presented here show that NIR spectroscopy can be used to estimate 
N mineralisation (measured as plant N uptake) in fields with large variations in 
SOM, and that the additional predictive capacity of NIR compared with SOM is 
related to variations in soil texture. 

The results also demonstrate that it is possible to make small farm-scale 
calibrations with a very limited number of calibration samples for clay and SOM 
content, producing information at a considerably higher density than conventional 
farm soil mapping. Within-field calibrations for pH and easily available P, K and 
Mg-AL also proved possible, but more calibration samples were needed. Predictions 
for silt failed regardless of the number of calibration samples. 
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DSM Digital soil mapping 
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K Potassium 
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MIR Mid infrared 
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NIR Near infrared reflectance 
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PCR Principle component regression 
PLSR Partial least squared regression 
RMSD Root mean squared deviation 
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RPD Ratio of performance to deviation 
SEC Standard error of calibration 
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Introduction 

Farm soil mapping is the main source of information available to farmers on 
soil nutrient status, texture and soil organic matter (SOM) content, to act as 
decision support for fertilisation and liming strategies. The advance of 
precision agriculture or site-specific farming over the last 20 years, with 
global navigation satellite systems (GNSS) technology and the development 
of geographical information systems (GIS) and variable rate technology, has 
increased the requirements on farm soil mapping to provide reliable 
information on e.g. plant nutrient contents at a high spatial resolution.  

Nitrogen (N) is one of the most important plant nutrients and is often 
limiting in agriculture ecosystems (Hopkins, 1995). However, an excessive 
supply of N enhances the risk of decreased yields and yield quality due to 
lodging (Gooding & Davies, 1997) and losses to the surrounding 
environment, primarily through leaching, adding to eutrophication of 
surface waters (Carpenter et al., 1998). It is therefore important both 
economically and environmentally to match N supply with crop demand. 
The fertiliser demand is dependent on potential yield and N supplied by the 
soil (Delin et al., 2005). Nitrogen is present in the soil mainly as soil organic 
matter (SOM). Normally about 5% of the SOM is organic N, and between 
1 and 4% of the organic N is mineralised during the growing season, thus 
becoming plant-available (Havlin et al., 1999). However, the net 
mineralisation can vary widely within fields and years. For example, 
differences of over 100 kg N ha-1 during a growing season have been 
reported within one single 15 ha field (Delin & Lindén, 2002).  

There are a variety of methods for estimating potential N mineralisation, 
including laboratory incubation experiments, assessments of microbial 
biomass and activity as well as chemical soil extraction procedures. 
However, the practical applications for fertilisation recommendations on 
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farms are limited (Olfs et al., 2005). Estimations of N mineralisation are not 
included in farm soil mapping in Sweden. 

According to existing practice, the conventional sample point density in 
farm soil mapping in Sweden is one bulked sample per hectare and more 
expensive analyses such as soil texture and SOM content are only analysed 
on every second or third sample or not at all. Since soil properties can vary 
greatly within fields (e.g. van Vuuren et al., 2006) this is often not enough 
for decision support in site-specific farming, which requires detailed 
resolution and a sufficient number of samples for the use of geostatistical 
techniques (Webster & Oliver, 1992). However, increasing the number of 
conventional laboratory analyses would be too expensive for farmers to 
implement, demonstrating a need for new methods allowing for denser soil 
sampling. 

Near infrared reflection (NIR) spectroscopy has attracted interest among 
soil scientists as a possible technique for improved soil analyses owing to 
rapid, non-destructive, cheap measurements as well as possibilities to 
determine several soil properties simultaneously (Viscarra Rossel et al., 
2006). A number of studies have shown the potential of NIR to predict soil 
texture (e.g. Islam et al., 2003; Shepherd & Walsh, 2002; Chang et al., 2001; 
Ben-Dor & Banin, 1995b) as well as soil organic carbon (C) and SOM (e.g. 
Udelhoven et al., 2003; Chang et al., 2001; Reeves et al., 1999; Sudduth & 
Hummel, 1991). Other soil mapping properties such as plant mineral 
nutrients and pH have been estimated with NIR in a number of studies 
with promising, though varying, results (e.g. Christy, 2008; McCarty & 
Reeves, 2006; Viscarra Rossel et al., 2006; van Groenigen et al., 2003; Dunn 
et al., 2002). These soil properties are more or less spectrally featureless, but 
might be estimated indirectly due to correlations to more spectrally active 
properties (Chang et al., 2001; Ben-Dor & Banin, 1995a). NIR has also 
been related to potentially mineralisable N derived from aerobic and 
anaerobic incubations (Fystro, 2002; Shepherd & Walsh, 2002; Chang et al., 
2001; Dunn et al., 2000) and has been used with promising results to 
estimate N uptake in crops (Stenberg et al., 2005; Dunn et al., 2000; 
Börjesson et al., 1999). 

The NIR technique requires calibration against values from conventional 
analyses. In the majority of the published field-scale NIR calibrations, a 
substantial amount of samples were included in the calibrations, sometimes 
corresponding to more than five samples per ha (e.g. He et al., 2007; 
McCarty & Reeves, 2006; Viscarra Rossel et al., 2006). Compared with the 
conventional sample point density in farm soil mapping in Sweden, the 
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potential advantage of using NIR spectroscopy in practice is lost when using 
more than five times as many reference samples. 

This thesis deals with ways of applying NIR spectroscopy in farm soil 
mapping at the farm or field scale with a minimum amount of calibration 
samples, to obtain information on soil texture, pH and plant nutrients, 
including plant-available N, at a high spatial resolution. 
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Objectives 

The main objective of this thesis was to study the possibility of using NIR 
spectroscopy in farm soil mapping at the field or farm scale in order to 
improve the knowledge of within-field variations in the soil and thus 
increase the precision in arable production and environmental counter 
measures. The field and farm scale involves a focus on small-scale 
calibrations with few calibration samples. One important focus area in the 
present study was the estimation of within-field variation in N 
mineralisation to allow for improved N fertilisation strategies. The other 
focus area was to achieve economically feasible strategies for increasing the 
sample point density in conventional farm soil mapping for better decision 
support in precision agriculture. 
 
Specific objectives were to: 

 compare field-scale NIR calibrations with the use of clay and SOM as 
predictors for plant N uptake in plots without N fertilisation (Paper I), 

 develop strategies for using farm-scale NIR calibrations to increase 
sample point density in farm soil mapping while reducing the number 
of conventional laboratory analyses (Papers II and III),  

 compare local farm-scale calibrations with Swedish national 
calibrations for within-field and within-farm variation, including a 
strategy for augmenting local samples to the national calibration 
sample set (Paper IV). 
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Soil variation 

Soil consists of a heterogeneous mixture of mineral particles of different sizes 
derived from weathered rock and sediments, organic particles consisting of 
organic compounds in different stages of decomposition, living organisms, 
water, air and different chemicals such as mineral nutrients associated with 
the particles or the soil solution. For the microorganisms, protozoa, animals, 
fungi and plant roots inhabiting soil, the environment can be very diverse 
over short distances, changing from aerobic to anaerobic, wet to dry or 
nutrient-rich to nutrient-poor within micrometer distances (Sylvia et al., 
1998) (Figure 1). 

Figure 1. Soil habitat <1 mm in 
both directions. After an original 
drawing by Kim Luoma in Sylvia 
et al. (1998). 

 
 
Soil-forming factors such as parent material, climate, topography, 

vegetation and human impact have over time resulted in a variety of 
different soils over the world, ranging from very old, highly weathered soils 
in equatorial and tropical South America, Africa, Asia and Australia to 
relatively young soils shaped by the latest great ice advance as in Scandinavia 
(Strahler & Strahler, 1978). 
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The soil-forming processes also work on a regional scale, sometimes 
dividing farms or fields into parts with very different soil types (e.g. Sjöstorp 
in Papers III and IV). Together with processes acting on local field scale, this 
results in sometimes very large variations in soil properties within a 
seemingly homogeneous field (van Vuuren et al., 2006). This has 
consequences for plant production, since the growing conditions can differ 
over the fields in terms of plant nutrients and water availability (Delin & 
Lindén, 2002; Delin & Berglund, 2005). 

Geostatistics 

Soil variability and spatial dependency can be described using geostatistical 
methods (McBratney & Pringle, 1997). These are based on the regionalised 
variable theory, which assumes that the spatial variation in a variable can be 
divided into three components: i) a structural component with a constant 
mean or a trend; ii) a spatially correlated but random component (the 
variation in the regionalised variable); and iii) spatially uncorrelated random 
noise caused by measurement error and very short-range spatial variation 
(Burrough & McDonnell, 1998). The interpolation technique using 
geostatistics, named kriging after D.G. Krige, utilises information on the 
spatial correlation described in an experimental variogram presenting the 
semivariance between pairs of samples at different distances. Figure 2 shows 
a schematic variogram with the nugget being random short distance noise 
(iii above), the sill being the maximum variance and the range being the 
distance at which there is spatial correlation (Burrough & McDonnell, 
1998). One drawback with this method is that it requires a rather large 
number of samples. For example, at least 100 observations have been 
recommended as a minimum to calculate a reliable variogram (Webster & 
Oliver, 1992). 
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Figure 2. Schematic example of a variogram 
where lag is the distance between sampling 
points. The points shown in the variogram 
are mean values for all pairs separated by a 
certain distance. 
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Precision agriculture 

Site-specific farming aims to utilise knowledge of within-field variations in 
the management of the fields in question, e.g. by variable rate fertilisation 
and liming. By adapting the inputs according to the requirements in 
different parts of the field, possibly leading to better utilisation of plant 
nutrients, both economic and environmental benefits can be achieved 
(Bouma, 1999). 

The development during the past 20 years of global navigation satellite 
systems (GNSS), geographical information systems (GIS) and techniques for 
variable rate application has made it possible to adjust inputs over the field in 
a fairly automated way. However, one of the remaining challenges is the 
collection of the necessary data at a reasonable cost. It is difficult to state a 
universally valid number of samples needed, since this depends on the 
variation and the area represented by a sample (Oliver et al., 1997). 
Conventional laboratory analyses are often time-consuming and costly, 
which makes it difficult to simply intensify existing farm soil mapping 
practices. Within-field analyses at a high spatial resolution that does not 
require any collection of samples for laboratory analyses would be preferable. 
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Digital soil mapping 

Digital Soil Mapping (DSM) is defined as: 
"the creation and the population of a geographically referenced soil database 
generated at a given resolution by using field and laboratory observation 
methods coupled with environmental data through quantitative relation-
ships" (Working Group on Digital Soil Mapping, 2009). 

DSM can utilise data collected from e.g. remote sensors, proximal sensors 
and digital elevation models to produce soil maps with limited use of 
relatively expensive fieldwork and laboratory analyses (McBratney et al., 
2003). Instead of the static polygon-based soil maps, digital maps, possibly 
with associated uncertainties, can be stored and manipulated in GIS, 
allowing for a variety of analyses and the possibility of developing dynamic 
soil maps (McBratney et al., 2003). 

The development of DSM depends on having high quality datasets, but 
collection of soil data is often a limiting factor according to Lagacherie 
(2008), who identified three complementary ways to overcome this: 

"i) develop optimal sampling methods, ii) use as much as possible legacy soil 
data and iii) develop new soil sensors for accurate and cost-effective 
estimation of soil properties". 

Remote and proximal sensing 

In remote sensing, data are collected without any contact with the object of 
interest, which means that the technique is non-invasive. The term remote 
sensing is mostly associated with aerial photos and satellite images, but can 
also be applied to e.g. gravity meters that measure variations in the 
distribution of gravity and sonar equipment that measures differences in the 
distribution of acoustic waves (Lillesand & Kiefer, 2000). 



 22 

The advantage with remote sensing techniques is the rational collection 
of information over large geographical areas. A weakness is that remote 
sensing only receives information on the topmost layer of the soil, often 
corresponding to a few millimetres (Viscarra Rossel et al., 2009).  

Proximal soil sensors are field-based, non-invasive or invasive techniques 
to measure soil properties from a distance of not more than approximately 2 
m above the soil surface (Viscarra Rossel et al., 2009). The advantage with 
using proximal sensors is the possibility to collect information in the field on 
soil variability at a higher resolution than with conventional measurements. 
Moreover, compared with strictly remote sensing techniques such as satellite 
images, it is often possible to collect information from both topsoil and 
subsoil (Viscarra Rossel et al., 2009). 

Examples of proximal sensors include sensors for measuring soil electrical 
conductivity (e.g. Sudduth et al., 2005), ground-penetrating radar for 
measuring soil moisture content (Lunt et al., 2005), acoustic sensors for 
measuring compaction layers (Grift et al., 2005), soil strength sensors for 
measuring mechanical resistance (Adamchuk et al., 2008), electrochemical 
sensors using ion-selective electrodes for measuring pH (Adamchuk et al., 
2006) and diffuse near and mid infrared reflectance (NIR and MIR) 
spectroscopy for the prediction of several soil constituents and properties 
(e.g. Viscarra Rossel et al., 2006; Islam et al., 2003; Udelhoven et al., 2003; 
Chang et al., 2001). 

Thus NIR spectroscopy can be used both as a remote sensing and 
proximal sensing technique. 

Pedometrics 

The official definition of pedometrics is: 
"The application of mathematical and statistical methods for the study of the 
distribution and genesis of soils" (Pedometric Commission, 2009). 

The term was coined by Alex McBratney, who describes it as a neologism 
derived from the Greek roots pedos, meaning soil, and metron, meaning 
measurement, to be used analogously to other words such as e.g. 
chemometrics and geometrics (Preface, 1994). Near infrared spectroscopy is 
a common research area in pedometrics, and is an example of the use of new 
tools and techniques for analyses of soil properties over space and time 
(Minasny & McBratney, 2008). 

An overview of pedometric techniques is given by McBratney et al. 
(2000) including e.g. i) the use of fuzzy-set theory in soil classification; ii) the 
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use of what they call "the classical approach" referred to as CLORPT1 
techniques, which are described as the use of information such as climate, 
organisms, chronology and land information in deterministic, empirical 
models, e.g. simple and multiple linear regressions, regression trees, 
generalised adaptive models and neural network models; iii) the use of 
geostatistical techniques including various forms of ordinary and simple 
kriging; and iv) the use of hybrid techniques described as various 
combinations of geostatistical and CLORPT methods such as universal 
kriging, cokriging, regression kriging, kriging with external drift and 
factorial kriging. 

                                                 
1 In McBratney et al. (2000) CLORPT refers to Jenny's (1941) (in McBratney et al., 2000) 

"Factors of Soil Formation" S = f(CL,O,R,P), where S is soil property as a function of CL 
= climate, O = organisms, R = relief, P = parent material and T = time (see also Jenny, 
1946). 
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Farm soil mapping 

Due to an urgent need for increased agricultural production, systematic soil 
surveys were started in many European countries during the 1950s (The 
European Soil Information System, 1999). This resource-driven collection 
of information, often including profile description, soil classification and soil 
quality aspects, is found all over the world (though not in Sweden) and is 
still continuing. The scales of these surveys may vary from 1:2000 in some 
national surveys up to 1:250 000 or 1:1 or 5 million at European or global 
level (e.g. Food and Agriculture Organization of the United Nations (FAO)) 
(The European Soil Information System, 1999). Parallel to this is the more 
farmer-driven information collection at farm-scale to allow for economically 
optimised crop production. The design of these farm soil mapping systems 
differs somewhat in different countries. For example, in Finland a minimum 
of one composite sample every 5 hectares with resampling every 5 years is 
required to obtain subsidies for environmental purposes (for the period 
2007-2013), although it is stressed that having more samples usually pays off 
in practice (Markkarteringstjänst, 2009). In Denmark, one sample per 1-3 ha 
is recommended for non site-specific management or when the sampling is 
based on ECa measurements or biomass and/or yield maps, and 2 samples 
per ha for site-specific farming without ECa measurements (LandbrugsInfo, 
2003). 

Farm soil mapping in Sweden 

Farm soil mapping started in Sweden in the 1920s (Fredriksson, 1961) but 
become more common during the Second World War, partly due to 
shortages of fertiliser products during that time period (Franck, 1943). The 
chemical method for estimating "easily available" plant nutrients used in 
Sweden today, the ammonium acetate lactate method, was introduced in 
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1958, mostly for analyses of P and K (Egnér et al., 1960). Already from the 
beginning the soil sampling strategy was based on point sampling, with 2-4 
samples comprising 7-8 sub-samples with an area of about 10 m2 each per ha 
(Fredriksson, 1961). The recommendations also included visual and manual 
estimation of SOM content and soil texture at the time of the sampling. 
However, these observations were not always made and eventually, they 
were phased out. The number of samples per hectare was reduced over time 
to about 1 ha-1. 

The early soil maps from the 1940s and 1950s were entirely filled in with 
different colours representing P and K classes, making them resemble the 
interpolated soil maps of today. The completely coloured areas were later 
replaced by stamped circles and dots. 

The soil sampling density recommended today by the Swedish Board of 
Agriculture is based on good soil sampling practice developed by 
Markkarteringsrådet (Swedish Soil Mapping Panel), a body that includes a 
number of representatives of the agricultural community, such as the 
Swedish Board of Agriculture, Swedish University of Agricultural Sciences, 
Swedish Rural Economy and Agricultural Societies, as well as a number of 
commercial companies and chemical laboratories. The recommended 
sampling density is one sample per hectare, or more if the field has large 
variations in soil texture (Hansson et al., 2002). However, the soil sampling 
requirement to obtain subsidies for environmental protection measures in 
Sweden is a farm soil map not older than 10 years with pH, P-AL and K-AL 
analysed in one sample per hectare and soil texture in one sample per 1-3 
hectares (Jordbruksverket, 2009). 
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Near infrared reflection spectroscopy 

The advantages with using NIR spectroscopy compared with many 
conventional laboratory measurements are minimal sample preparation, no 
need for hazardous chemicals, rapidity and identification of multiple 
properties from one spectrum (Batten, 1998). Apart from collecting soil 
samples, the technique also allows for development of in-field measurements 
(Christy 2008; Maleki et al., 2008). 

Short history and definition 

Near infrared reflection is said to have been discovered in 1800 by William 
Herschel, who found increasing temperatures beyond the red end of the 
spectrum, which he first referred to as "radiant heat" (Hindle, 1997). The 
first near infrared spectrum was measured by Abney & Festing in 1881 
(Davies, 2005) but it was not until the 1960s and 1970s, that the technique 
really started gaining in interest when the possibility of using NIR 
spectroscopy for analyses of the quality of agricultural samples was 
demonstrated (Batten, 1998). 

In this thesis, the near infrared part of the electromagnetic spectrum is 
defined as the wavelengths between 780 and 2500 nm (Figure 3) (Sheppard 
et al., 1985). This is a common definition used by people working with  
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Figure 3. Electromagnetic spectrum based on Figure 1 in Davies (2005). 
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NIR spectroscopy in the laboratory or under field conditions in proximal 
sensors (perhaps with slightly different starting points between 700 and 780 
nm). However, in the area of remote sensing, e.g. satellite images, NIR is 
often defined as 0.7-1.3 µm wavelength, with 1.3-3.0 µm wavelength 
sometimes referred to as mid infrared (MIR) (Lillesand & Kiefer, 2000) or as 
short wavelength infrared (SWIR) (e.g. Huang et al., 2009). 

Physics and chemistry behind NIR spectroscopy 

Reflection spectra are a mixture of physical and chemical information. The 
physical part is due to the influence of particle size and surface structures on 
the diffuse reflectance (Dahm & Dahm, 2004) while the chemical part is due 
to absorption of energy by molecular bonds. 

Absorption in the NIR region is due to overtones and combination 
bands of fundamental vibrations (stretching and bending) of OH, CH, NH, 
CO, CN and NO bonds in the mid infrared region. In simplified terms, 
light is absorbed if the energy (which is directly related to frequency or 
wavelength) corresponds to the difference in energy between two 
vibrational states (quantum numbers) in a molecular bond. These energy 
levels are bond-specific but are also affected by the surrounding 
environment, e.g. type of functional group, neighbouring molecules and 
hydrogen bonds. This means that a particular molecule only absorbs light at 
certain wavelengths, thus allowing for identification of molecules or 
substances due to different absorption patterns. Overtones occur when the 
energy of a wavelength is absorbed due to correspondence to a change in 
more than one vibrational state (an increase in quantum number greater than 
one), while combination bands occur when the energy from one 
wavelength is shared between two or more vibrations (Miller, 2004). 

The same molecule can give rise to several overtones and combination 
bands over the NIR region. The intensity of overtones and combination 
bands is also weaker than the fundamental vibrational bands and the intensity 
decreases with increasing order of overtone or combination, i.e. at shorter 
wavelengths (Miller, 2004). 

Water has a great influence on NIR spectra and two strong absorption 
bands related to water around 1400 and 1900 nm can be seen in a typical 
spectrum collected from an air-dried soil sample (Figure 4). Organic 
molecules generally include many of the molecular bonds absorbing in the 
NIR region. Clay minerals also show fundamental spectral features (Clark et 
al., 1990; Hunt, 1977). 
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Figure 4. Near infrared spectrum of air-dried soil. Absorption expressed as log (1/reflection). 
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Materials and methods 

The studies in this thesis were conducted at totally six farms in southern 
Sweden (Figure 5).  

b

e

c

f

d

a
0 200 400100 km

Farm soil mapping

N mineralization

National samples

Figure 5. Location of the six study 
sites:                              
a) Sjöstorp (Papers III-IV) 
b) Ribbingsberg (Paper I) 
c) Bränneberg (Paper IV) 
d) Kärrtorp (Paper IV)     
e) Nybble (Paper I)         
f) Hacksta (Papers I-IV)               
and the geographical origin of soil 
samples included in a national soil 
library (Paper IV). 
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N mineralisation study (Paper I) 

The N mineralisation study was conducted in one field of about 20 ha at 
each of the farms Ribbingsberg, Nybble and Hacksta during the growing 
seasons 2003-2005 (Figure 6). Ribbingsberg and Nybble were selected 
because they have a rather high variation in SOM content compared with 
the majority of Swedish farms (3.2-19% and 1.7-20% in the 0-30 cm layer 
respectively), whereas Hacksta has a more representative SOM content for 
typical Swedish agricultural soils (2.0-5.6%). 

Nitrogen in aboveground plant parts of cereal crops (Plant N uptake) 
from plots not receiving any N fertiliser (zero-N plots) was used as an 
estimate of net N mineralisation, using a similar approach to that described 
by e.g. Stenberg et al. (2005). Between 12 and 21 zero-N plots of 
approximately 24 m2 each were distributed over the fields each year (Figure 
6). 

Near infrared reflectance spectra, clay plus SOM content and a 
combination of NIR spectra plus clay and SOM content were used as 
predictors for plant N uptake. Calibration models were made: i) within 
fields and years; ii) within fields between years; and iii) between fields and 
years. A more detailed description of the sites and analyses is found in 
Paper I. 

0 200 400100 m

Year
2003
2004
2005

a)

c)
b)

 
Figure 6. Location of zero-N plots during the years 2003 to 2005 at a) Ribbingsberg, b) 
Hacksta and c) Nybble. 
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Farm soil mapping strategies (Papers II-IV) 

The farm soil mapping strategy study was conducted on adjacent fields with 
a total area of between 62 and 97 ha on four farms representing three of the 
main agricultural areas in Sweden (Figure 5). 

The concept for the sampling strategy (Figure 7) was to use a higher 
sampling density than the conventional 1 or 0.5 samples per ha. By using 
farm-scale NIR calibrations with only a limited number of samples (25) 
analysed by conventional laboratory measurements for the calibrations, the 
vast majority of the soil samples only needed to be measured for their NIR 
spectra, thereby allowing for more soil samples without increasing the cost. 
Three main questions were asked: 
1. Is it possible to build reliable NIR calibration models with only 25 

calibration samples?  
2. Where should the soil samples be taken?  
3. How should the calibration samples be selected? 

1. Soil sampling

2. Select calibration samples

3. Build calibration models

4. Predict the remaining 
samples and interpolate

 
Figure 7. The concept of the soil sample strategy including 1) location of soil samples, 2) 
selection of NIR calibration samples, 3) building of NIR calibration model and 4) prediction 
of the remaining samples followed by interpolation. 

 



 34 

The difficulty associated with few samples is to cover the variations in the 
soil within a field or farm in an adequate way. However, ancillary data 
collected at higher density, e.g. apparent soil electrical conductivity (ECa), 
digital elevation models or satellite images, can be used to optimise sample 
locations (Dunn & Beecher, 2007; Minasny et al., 2007; Lesch, 2005). 

In the farm soil mapping strategy studies presented in this thesis, ECa 
measured with EM38 (Geonics Ltd., Mississauga, Ontario, Canada) and 
reflection measurements from satellite images were compared as ancillary 
data for directed soil sampling (Papers II and III) and with a regular grid 
(Paper III) (Figure 8). 

The strategy for targeted sampling adopted here (proposed by Olsson & 
Söderström, 2003) is described in more detail in Paper II and comprises 
stratified, directed sampling, with the selection of sampling sites based on the 
degree of variation in interpolated ECa or satellite reflection maps. The ECa 
and reflectance measurements were used as estimations of the soil variation, 
rather than as direct correlations with particular soil properties, even though 
such correlations possibly existed for some of the soil parameters, such as 
clay content (see Sudduth et al., 2005). 

Four different ways of selecting calibration samples were tested: i) 
according to ECa measurements; ii) according to reflectance from a satellite 
image applying the same strategy as for the sample location; iii) according to 
a regular grid; and iv) according to the variation between the NIR spectra. 
The calibration selection strategies were applied to the three soil sampling 
strategies as shown in Table 1 (see also Paper III for more details). 

Table 1. Different strategies used for sample location and selection of calibration samples 

Sample location Calibration sample selection 

Regular grid Regular grid 

 NIR spectra 

ECa measurements ECa measurements 

 NIR spectra 

Reflectance from a satellite image Reflectance from a satellite image 

 NIR spectra 
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a) b)

c) d)

0 200 400100 m

e)

0 200 400100 m

f)

 
Figure 8. Sample point distribution at Hacksta (a, c, e) and Sjöstorp (b, d, f) using a regular 
grid (a-b), targeted according to ECa (c-d) (dark grey represents high ECa values) or 
according to reflectance from a satellite image (e-f) (dark grey represents high reflectance 
values).  

0 200 400100 m

a)

           
0 200 400100 m

b)

 
Figure 9. Sample point distribution and ECa measurements (dark grey represents high ECa 
values) at a) Bränneberg and b) Kärrtorp. 
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Using few calibration samples can lead to unsatisfactory and unreliable 
calibrations (Shepherd & Walsh, 2002). However, Brown (2007) proposed a 
way to reduce the number of local samples while obtaining reliable 
predictions by augmenting a large global soil library with local samples. 

In Paper IV, a strategy for augmenting, or spiking, a national soil library 
(Figure 5) with 25 local calibration samples was studied on the four farms 
(Figures 8 and 9). The 25 samples were selected based on ECa values 
according to the targeted sampling strategy described above. In addition to 
using the complete national dataset, four subsets of 50 samples selected to be 
as similar to each of the local libraries as possible were also tested (Figure 10) 
(Paper IV).  
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Figure 10. Score plots for the two first principal components in a principal component 
analysis (PCA) for the national dataset, reduced national dataset and 25 projected local 
samples at a) Bränneberg, b) Hacksta, c) Kärrtorp and d) Sjöstorp. 

 
 
The soil parameters studied in Papers II-IV are presented with a short 

description of analytical methods in Table 2. More details are presented in 
Papers I-IV. 

 



 37 

Table 2. Soil properties and analyses used in Papers II-IV 

Soil property Analysis  

Clay (%) Sedimentation Papers II-IV 

Silt (%) 100-clay-sand (%) Papers III-IV 

Sand (%) Sieving Papers III-IV 

SOM (%) Loss on ignition or dry combustion Paper II-IV 

tot C (%) Dry combustion Paper III 

tot N (%) Dry combustion Paper III 

pH Water Paper III-IV 

P-AL (mg 100g-1) Ammonium acetate lactate-extractable Paper III-IV 

K-AL (mg 100g-1) Ammonium acetate lactate-extractable Paper III 

Mg-AL (mg 100g-1) Ammonium acetate lactate-extractable Paper III 

Ca-AL (mg 100g-1) Ammonium acetate lactate-extractable Paper III 

 
The NIR calibrations for SOM and clay including 25 calibration samples 
selected according to ECa values were used to predict the rest of the ECa 
targeted soil samples. For all four farms, experimental variograms were made 
for the ECa-targeted samples as well as for conventional sampling with 
laboratory analyses of clay and SOM content (0.5 ha-1) and the model 
parameters were used for interpolation by ordinary block-kriging as 
described for Hacksta in Paper II. The two strategies were then compared 
using 25 validation samples for each farm (as in Paper II). 

NIR measurements (Papers I-IV) 

The NIR spectrophotometer used for the work in this thesis was a 
FieldSpec Pro FR scanning instrument (Analytical Spectral Devices Inc., 
Boulder, CO, USA) equipped with a bare optic fibre connected to a probe 
with a 20W Al-coated halogen tungsten light source placed 7 cm over the 
sample, resulting in a field of view of ~7.5 cm2 (Figure 11). From each soil 
sample, reflectance spectra from two sub-samples were collected. Each 
spectrum consisted of 50 (Paper I) or 100 (Papers II-IV) averaged sub-
spectra from a rotating sample area of about 50 cm2. Thus the measurements 
covered a rather large area of the soil sample, presumably including e.g. 
differences in particle size within the sample. 

The spectral range covered both the visible and the near infrared region 
(350-2500 nm). Only the NIR region was used in Paper I, whereas both the 
NIR region and the region including visible light (VisNIR) were used in 
Papers II and only the VisNIR region in Paper III and IV. More details are 
presented in the individual papers. 
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Figure 11. Sample presentation configuration. 

Analyses of NIR spectra (Papers I-IV) 

Calibration 

Each reflection spectrum consists of hundreds to thousands of wavelengths, 
resulting in large multivariate datasets to be analysed. There is also a high 
degree of correlation between the wavelengths (Martens & Naes, 2004). 
One approach to handle all the data in the field of NIR spectroscopy is the 
use of chemometrics. The term chemometrics was coined by Svante Wold in 
1974 and can be described as  

"How to get chemically relevant information out of measured chemical data, 
how to represent and display this information, and how to get such 
information into data" (Wold, 1995). 

Chemometrics includes e.g. pattern recognition techniques such as 
principal component analyses (PCA) and linear regression techniques such as 
principal component regression (PCR) and partial least squared regression 
(PLSR) (Brereton, 2003). Both PCA (Papers I and IV) and PLSR (Papers I-
IV) were used in the work presented in this thesis. 

Due to a non-linear relationship between the measured reflectance and 
the concentration of the chemical compounds of interest (Dahm & Dahm, 
2004), the spectra were first transformed to absorbance by log(reflectance-1) 
to allow the multivariate linear techniques to be used. To enhance weak 
signals and reduce noise the spectra were transformed and smoothed by first 
order derivative (Savitzky & Golay, 1964). 
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The calibration technique applied in this thesis was PLSR. In a PLSR, 
the spectral information is transformed to PLS components similarly to the 
principal components (PC) in a PCA or PCR, compressing the data and at 
the same time dealing with the correlations within the NIR spectra. The 
difference is that whereas the PCs in a PCA or PCR describe the most 
dominant variation in the NIR spectra, the PLS factors describe the 
variations in the NIR spectra that are most relevant for prediction of the 
chemical data (Martens & Naes, 2004). 

A potential drawback with using PLSR and all linear regression 
techniques is the possible nonlinearity of correlations between NIR spectra 
and the property of interest (Borggaard, 2004). There are other non-
chemometric calibration techniques used in the analysis of NIR spectra that 
can handle nonlinearity, e.g. boosted regression trees (Brown et al., 2006), 
multivariate adaptive splines (Shepherd & Walsh, 2002) and neural networks 
(Daniel et al., 2003). However, PLSR has been proposed as a suitable 
method for small datasets (Martens & Naes, 2004), as was the case in the 
work presented here. 

Validation       A 

In order to say anything about the usefulness of a calibration to predict 
unknown samples, proper validation is crucial, preferably using an 
independent set of validation samples. Without taking appropriate care, 
randomly withholding a percentage of the samples for validation might not 
be sufficient if the samples are not independent, as with a few multisampled 
locations and profiles, and might lead to over-optimistic results (Brown et 
al., 2005). 

In this thesis, validation was performed using independent validation 
samples in Papers II-IV. However, the plant N uptake study (I) included too 
few samples to allow for anything other than cross-validation. 

Evaluation 

A number of different statistical measurements can be used in evaluation of 
calibration performance, with r2 between predicted and measured values 
being by far the most common one. Different calculated prediction errors 
are often presented too, including e.g. standard error of calibration (SEC) or 
prediction (SEP), root mean squared deviation (RMSD) and root mean 
squared error (RMSE) of calibration (RMSECV) or of prediction (RMSEP) 
(e.g. Brown, 2007; Sørensen & Dalsgaard, 2005; Islam et al., 2003). 

In this thesis, r2 between predicted and measured values, RMSEP, 
RMSECV, bias and bias-corrected SEP were used and calculated as: 
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where ŷ is the predicted value and y is the measured value for sample i, with 
n number of samples. 

The ratio of performance to deviation (RPD) (standard deviation (s.d.) 
divided by SEP) (Williams, 1987) is commonly used for placing the 
prediction error in relation to the variation in the data and is also used in the 
thesis calculated as s.d. divided by RMSECV or RMSEP. 

A handful of attempts have been made to define a good prediction of soil 
parameters. Malley et al. (2004) proposed a guideline for evaluation defining 
RPD>4 as excellent, between 3 and 4 as successful, between 2.25 and 3 as 
moderately successful and between 1.75 and 2.25 as moderately useful. The 
approach referred to most often in soil systems is that proposed by Chang et 
al. (2001), which divides prediction results into three classes with i) good 
predictions as RPD>2.0 and r2>0.8; ii) predictions with potential as RPD 
~1.4-2.0 and r2 of 0.50-0.80; and iii) unreliable predictions as RPD<1.4 and 
r2<0.5. Dunn et al. (2002) defined RPD>2 as excellent, 1.6-2.0 as 
acceptable and <1.6 as poor.  

However useful it may be, it is always important not to look too 
exclusively at a single measurement. Whether the predictions are sufficient 
for practical use has to be determined in each situation. 

All NIR data analyses and statistics were calculated using Unscrambler v. 
9.0-9.7 (CAMO PROCESS AS, Oslo, Norway). 
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NIR for measuring spectrally active soil 
properties 

Soil texture 

Since NIR spectra are directly influenced by particle size and surface 
properties, soil texture can be considered a primary property in relation to 
NIR (Chang et al., 2001; Ben-Dor & Banin, 1995b). Several regional or 
national studies have reported prediction results for clay with r2 values 
between 0.72 and 0.95 and RMSE values between 2 and 9% clay (Waiser et 
al., 2007; Chang et al., 2005; Sørensen & Dalsgaard, 2005; Islam et al., 2003; 
Moron & Cozzolino, 2003; Shepherd & Walsh, 2002; Stenberg et al., 2002; 
Malley et al., 2000). Prediction errors of about 2% seem to be close to the 
lower limit of what could be expected even for field-scale predictions 
(McCarty & Reeves, 2006; van Vuuren et al., 2006; Viscarra Rossel et al., 
2006; Paper III). Regardless of scale, the vast majority of earlier studies have 
been made using at least 100 samples in the calibrations. Compared with 
these results, clay content was satisfactorily predicted using only 25 
calibration samples at two of the farms studied in this thesis, Hacksta and 
Sjöstorp (Table 3) (Papers II-VI). Although low RMSEP values (about 3.5% 
clay) were also obtained at Bränneberg and Kärrtorp, r2 and RPD values 
were not as good. The low variation in clay content on these farms 
compared with Hacksta and Sjöstorp (Paper IV) could be part of the 
explanation.  

In studies including NIR calibrations for all three textural classes, clay 
content is usually best predicted, followed by sand and with silt being 
hardest to predict (McCarty & Reeves, 2006; Viscarra Rossel et al., 2006; 
Sørensen & Dalsgaard, 2005; Islam et al., 2003; Shepherd & Walsh, 2002; 
Malley et al., 2000).  
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In the results presented in this thesis using only 25 calibration samples, 
the predictions for clay and sand were almost equally well predicted on three 
of the four farms studied, i.e. satisfactorily predicted at Hacksta and Sjöstorp, 
whereas silt was poorly predicted (Table 3). Part of the explanation for the 
often superior predictions of clay content reported in the literature could be 
that in addition to the physical influence of particle size on NIR spectra, 
clay minerals show intrinsic spectral features caused by overtones and 
combination vibrations of mainly hydroxyl groups and water close to 1400, 
1900 and 2100-2400 nm (Hunt et al., 1973; Hunt & Salisbury, 1970), 
whereas the dominant minerals in the sand fraction, quartz and feldspars, are 
nearly spectrally featureless (Hunt et al., 1973). At Sjöstorp there was a 
strong negative correlation between sand and clay (r2 = 0.90) so it could be 
assumed that more or less the same features were used in the NIR 
calibrations for sand and clay. This was further supported by the equally 
good predictions using clay as the only predictor for sand compared with 
NIR calibrations (Paper III). However, this could not be the main 
explanation for the prediction results at Hacksta and Kärrtorp. The poor 
results for silt presented in Table 3 could partly be due to the fact that silt 
was not measured directly but rather as a difference, as errors in the 
reference methods are cumulative. It could also to some extent be explained 
by differences in the variation (Papers III-IV). 

SOM and total N 

Soil organic matter influences most soil biological, chemical and physical 
properties, e.g. nutrient availability, water-holding capacity and aggregation 
stability. It can be directly related to absorption in NIR spectra through a 
number of functional groups, e.g. carboxyl, hydroxyl and amine groups 
(Ben-Dor & Banin, 1995b). Organic carbon or SOM are two of the soil 
properties most frequently analysed with NIR spectroscopy (e.g. Christy, 
2008; Gomez et al., 2008; Islam et al., 2003; Shepherd & Walsh, 2002; 
Chang et al., 2001; Reeves et al., 1999; Ben-Dor & Banin, 1995b; Sudduth 
& Hummel, 1991). 

Several authors have pointed out a need for areas with homogeneous soil 
types for satisfactory predictions of SOM content (Sørensen & Dalsgaard, 
2005; Udelhoven et al., 2003; Reeves et al., 1999; Ben-Dor & Banin, 
1995b). Another factor that has been suggested is a change in quality due to 
decomposition stages with increasing amounts of SOM content (Ben-Dor & 
Banin, 1995b). 
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In this study using 25 calibration samples, SOM content was the best 
predicted soil property for three of the four farms studied (Table 3), with 
Sjöstorp as the exception. Considerable improvements in prediction results 
at Sjöstorp using 94 calibration samples indicated that 25 samples might have 
been too few to predict SOM in the two-part farm (Paper III). Another 
complicating factor could have been that the Sjöstorp fields had parts with 
quite low clay content (Paper III). Stenberg et al. (2002) and Sørensen & 
Dalsgaard (2005) found that the calibrations for SOM gave better predictions 
for soils with a high clay content. The Kärrtorp fields also had parts with a 
lower clay content but no particularly sandy parts.  

Because of the often high correlation between soil C and N, it is difficult 
to state whether total N is independently predicted using NIR or predicted 
due to the correlation with C. In a study using artificially mixed contents of 
organic and inorganic C and total N contents in soils, Chang & Laird (2002) 
reported that even though it was difficult to assign specific absorption bands 
for organic functional groups containing N, their results indicated that 
organic C, inorganic C and total N could be independently predicted. 
Fystro (2002) reported improved predictive capacity for total N using 
VisNIR compared with organic C as the predictor, but no improvement at 
all using loss on ignition as the sole predictor.  

In this thesis, NIR calibrations for total N were only made at Hacksta 
and Sjöstorp (Paper III) and the predictions were slightly less successful than 
for SOM (Table 3). Total N was highly correlated to SOM (r2 about 0.80) 
at both farms and there was no improvement when using NIR calibrations 
compared with simply using SOM as the sole predictor (Paper III). This 
indicates that at least in these NIR calibrations, similar information was used 
to predict both SOM and total N. Similar to the predictions for SOM, using 
more calibration samples improved prediction results, especially at Sjöstorp, 
whereas using only 25 calibration samples resulted in fairly good predictions 
at Hacksta (Paper III). 
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Table 3. Compilation of prediction results for soil texture, SOM, total C total N content by NIR or 
VisNIR calibrations including 25 local calibration samples validated using separate validation samples 
(Papers II-IV) 

  Bränneberg* Hacksta** Kärrtorp* Sjöstorp*** 

Clay (%) PC 3 4-8 2 2-5 

 r2 0.61 0.77-0.82 0.48 0.80-0.89 

 RMSEP 3.5 3.6-4.0 3.6 3.0-4.3 

 RPD 1.3 2.1-2.3 1.2 2.3-3.1 

Silt (%) PC 3 3-6 9 1-2 

 r2 0.62 0.34-0.61 0.29 0-0.12 

 RMSEP 3.2 4.1-5.3 4.2 3.6-4.3 

 RPD 1.4 1.2-1.6 0.9 1.0 

Sand (%) PC 10 7-10 9 4-6 

 r2 0.30 0.81-0.89 0.53 0.72-0.75 

 RMSEP 2.6 3.0-3.6 5.0 5.6-6.2 

 RPD 0.8 2.3-3.0 1.5 1.9-2.0 

SOM (%) PC 3 6-11 9 3-10 

 r2 0.70 0.81-0.89 0.71 0.19-0.57 

 RMSEP 0.21 0.32-0.62 0.91 0.47-0.76 

 RPD 1.9 2.3-3.0 1.5 1.1-1.9 

tot C (%) PC - 6-10 - 4-10 

 r2 - 0.85-0.87 - 0.35-0.41 

 RMSEP - 0.19-0.20 - 0.28-0.30 

 RPD - 2.6-2.8 - 1.2-1.3 

tot N (%) PC - 2-10 - 3-9 

 r2 - 0.45-0.89 - 0.49-0.56 

 RMSEP - 0.018-0.040 - 0.025-0.027 

 RPD - 1.4-3.0 - 1.4-1.5 
* Results from Paper IV (no calibrations for total C and N) 
** Results from Papers II-IV 
*** Results from Papers III-IV 
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NIR for measuring spectrally inactive soil 
properties 

As opposed to soil texture and soil organic matter, pH and ionic chemical 
species such as plant-available nutrients are not considered spectrally active 
and therefore they can only be predicted by NIR calibrations due to 
correlations with other soil properties (Chang et al., 2001). Due to the often 
local nature of these correlations, calibrations over larger areas with varying 
soil types or transferring calibrations made at one site to another might be 
difficult (e.g. Chang et al., 2005; Udelhoven et al., 2003; Reeves et al., 
1999). 

pH          A 

Calibrations based on 25 samples could not predict pH satisfactorily at any of 
the four farms except to some extent at Sjöstorp (Table 4). Although a 
number of studies have reported r2 values between 0.7 and 0.9 with RMSE 
values of 0.09-0.61 pH units (Zornoza et al., 2008; van Vuuren et al., 2006; 
Islam et al., 2003; Lee et al., 2003; Moron & Cozzolino, 2002; Shepherd & 
Walsh, 2002) there are also a number of studies with results similar to those 
presented here (r2 values of 0.5-0.6, with corresponding RMSE values of 
0.18-0.57 pH units) (Christy, 2008; McCarty & Reeves, 2006; Viscarra 
Rossel et al., 2006; Chang et al., 2001; Malley et al., 2000; Malley et al., 
1999). Prediction results presented for Hacksta and Sjöstorp, using 81 and 94 
calibration samples respectively, indicate a possibility of farm-scale NIR 
calibrations for predictions of pH with a sufficient number of samples (Paper 
III). 
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Table 4. Compilation of prediction results for pH and plant nutrients by NIR or VisNIR calibrations 
including 25 local calibration samples validated using separate validation samples (Papers III-IV) 

  Bränneberg* Hacksta** Kärrtorp* Sjöstorp*** 

pH PC4 3 4-9 7 1-7 

 R2 0.49 0.28-0.50 0.50 0.48-0.64 

 RMSEP 0.10 0.19-0.23 0.22 0.28-0.31 

 RPD 1.3 1.1-1.4 1.4 1.4-1.7 

P-AL (mg 100g-1) PC4 8 2-10 7 2-7 

 R2 0.05 0.36-0.66 0.31 0.31-0.70 

 RMSEP 1.8 4.1-5.4 3.0 1.3-3.4 

 RPD 1.0 1.2-1.7 1.2 1.5-4.0 

K-AL (mg 100g-1) PC4 - 4-8 - 2-11 

 R2 - 0.50-0.74 - 0.16-0.49 

 RMSEP - 2.3-3.2 - 3.8-4.9 

 RPD - 1.4-2.0 - 1.1-1.4 

Mg-AL (mg 100g-1) PC4 - 2-5 - 6-9 

 R2 - 0.61-0.75 - 0.56-0.72 

 RMSEP - 6.1-7.3 - 2.7-3.400 

 RPD - 1.8-2.1 - 1.5-1.9 
* Results from Paper IV (no calibrations for K-AL and Mg-AL) 
** Results from Papers II-IV 
*** Results from Papers III-IV 

Plant mineral nutrients 

Near infrared spectroscopy has been related to different plant nutrients, e.g. 
P, K and Mg included in this thesis, in a number of studies (see review by 
Viscarra Rossel et al., 2006). However, due to a variety of different 
analytical methods resulting in different proportions of the nutrients, it is 
difficult to compare the results in terms of RMSE values and the results 
vary. RPD values of around 2 have been reported for all three nutrients 
included here (Zornoza et al., 2008; van Vuuren et al., 2006; Islam et al., 
2003; van Groenigen et al., 2003; Dunn et al., 2002; Chang et al., 2001; 
Malley et al., 1999) but also less successful predictions with r2 values no 
better than 0.3 (He et al., 2007; McCarty & Reeves, 2006; Viscarra Rossel et 
al., 2006; Pirie et al., 2005; van Groenigen et al., 2003). 

Prediction results presented in Paper III indicate that farm-scale 
calibration models for predictions of P-AL, K-AL and Mg-AL could also be 
feasible with a sufficient number of calibration samples. However the 
varying results using 25 calibration samples suggest that this might be too 
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few (Table 4). Because of the indirect measurements, differences in 
management at the different fields e.g. in terms of fertilisation and liming 
will interfere, making NIR calibrations more difficult. 

Soil N mineralisation 

Potential N mineralisation 

A number of studies on NIR predictions for mineralisable N measured as 
accumulated mineral N after aerobic or anaerobic incubations have been 
reported to be promising, with r2 values between 0.7 and 0.8 and RPD 
values about 2 (Russell, 2003; Fystro, 2002; Ludwig et al., 2002; Chang et 
al., 2001), although others report poorer results (r2<0.5) (Terhoeven-
Urselmans et al., 2008; van Groenigen et al., 2003; Shepherd & Walsh, 
2002; Reeves et al., 1999). Chang et al. (2005) presented intermediate results 
for 400 cross-validated samples (r2 = 0.6, RPD = 1.6) with less accurate 
results when a small subset of the samples from a different location was used 
for validation. The same problem was found when predicting biomass C and 
N in soils from two long-term field experiments in Maryland, USA, using 
one experimental site to predict the other (Reeves et al., 1999). Terhoeven-
Urselmans (2006) reported an r2 of 0.7 but an RPD value of 0.9 (for cross-
validation) when predicting mineralisable N in a very diverse sample set 
including both soil and litter samples and emphasised the need for large 
sample sets with sufficient diversity when predicting biological 
characteristics. 

At least for soils with low C content (i.e. most arable soils compared with 
the organic layers in forest soils), correlations between the predicted 
biological constituents and total or organic C and N content are likely to 
explain a large part of the variation in the NIR predictions (Reeves et al., 
2006; Russell, 2003; Fystro, 2002; Chang et al., 2001; Reeves et al., 1999). 
Nevertheless, the inability of total or organic C and N content to explain all 
variation in the NIR predictions of different soil biological constituents 
(Reeves et al., 2006; Fystro, 2002; Reeves et al., 1999) suggests that NIR 
can be used for predictions of SOM quality as well as quantity.  

Actual N mineralisation 

For practical applications, the possibility to estimate actual rather than 
potential N mineralisation is favourable. However, the number of 
unpredictable factors influencing the mineralisation, other than the soil and 
its constituents, such as weather, make this very difficult (Delin & Lindén, 
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2002). Nitrogen uptake by a crop is an indirect measurement of the N 
mineralisation that can be interpreted relatively directly for practical 
management. Near infrared spectroscopy has been used to predict N uptake 
in glasshouse pot experiments with good results (cross-validated r2 of about 
0.8) (Russell et al., 2002; Wagner et al., 2001).  

In the study in this thesis, plant N uptake varied between 70 and 125 kg 
N ha-1 between the lowest and highest uptake in the different fields, with 
the highest variation at Ribbingsberg and the lowest at Hacksta (Table 5). 
For two fields, the NIR calibration results presented in Paper I (Table 6) are 
comparable with earlier promising results for in-field N uptake in cereals 
including rice crops within single or nearby fields (r2 = 0.7-0.8 and RMSE 
= 6-21 kg N ha-1) (Stenberg et al., 2005; Dunn et al., 2000; Börjesson et al., 
1999). The results support the feasibility of plant N uptake calibrations over 
smaller areas with similar soil and climatic conditions. However, one out of 
two rice experiments in south-eastern Australia only resulted in an r2 of 0.5 
(Dunn et al., 2000), while van Groenigen et al. (2003) reported poor 
prediction results of N uptake in a Californian rice field (r2 = 0.19, RPD = 
1.1). Notably, the range of N uptake in the Californian field was 
considerably smaller than that reported in the other studies. In Paper I, 
predictions of plant N uptake in winter wheat failed at Hacksta, where there 
were large variations in N uptake but only small variations in SOM content 
(Table 6). This implies a possible limitation of the calibrations to fields with 
high SOM content. However, since there were only results from one year at 
Hacksta, no general conclusions can be drawn. 

Table 5. Nitrogen (kg N ha-1) in aboveground plant parts from 1 m2 (4 x 0.25 m2 quadrants) in (n) 
plots without nitrogen fertilisation (= plant N uptake) 

 Year Crop n Mean Min Max S.d. 

Nybble 2003 Oats 20 53 20 134 30 

 2004 Oats 20 51 21 106 29 

 2005 Spring barley 12 53 18 111 31 

Ribbingsberg 2003 Winter wheat 20 91 41 167 41 

 2004 Oats 13 94 37 150 37 

 2005 Winter wheat 12 68 32 122 26 

Hacksta 2004 Winter wheat 21 67 33 105 19 
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Table 6. Correlation between measured and estimated plant N uptake through cross-validated 
calibration models using i) NIR-spectra, ii) SOM and clay content or iii) NIR-spectra, SOM and clay 
content. Calibrations for separate years and calibrations including all three years together are shown 

  NIR SOM and clay NIR + SOM and clay 

  n PC r2 RMSECV RPD r2 RMSECV RPD PC r2 RMSECV RPD 

Nybble               
   2003 20 3 0.85 11 2.6  0.69 16 1.8 2 0.87 11 2.9 

   2004 20 3 0.75 14 2.1  0.81 12 2.3 1 0.81 12 2.3 

   2005 12 2 0.83 12 2.4  0.79 14 2.3 1 0.64 18 1.7 

   2003-2005 52 1 0.79 13 2.2  0.77 14 2.1 1 0.81 13 2.3 

Ribbingsberg             

   2003 20 2 0.26 36 1.1  0.36 33 1.3 1 0.35 33 1.3 

   2004 13 2 0.81 16 2.4  0.77 17 2.2 2 0.81 16 2.3 

   2005 12 6 0.79 12 2.3  0.54 18 1.5 2 0.72 13 1.9 

   2004-2005 25 7 0.81 15 2.3  0.64 20 1.7 1 0.63 20 1.7 

Hacksta              
   2004* 20 6 0.16 17 1.1  0 - - - 0 - - 

n = number of plots without nitrogen fertilisation included in the model 
PC = number of PLS components used in the calibration models. 
* The calibration models using SOM and clay and NIR+ SOM and clay resulted in r2 values 
of 0, which is why no values are presented for RMSECV, RPD and PC.  

 
Although Stenberg et al. (2005) predicted N uptake in one field with a 
calibration model created from a nearby field with an r2 of 0.6 and an RPD 
of 2.5, building reliable prediction models for N uptake over larger areas has 
hitherto proven to be more difficult (paper I; Russell et al., 2002; Paper I). 
However, in the study by Fox et al. (1993), 50 of the 95 sites had received 
farmyard manure in the previous year and 25 were first year after legumes. 
Application of pig slurry in the autumn 2002 at Ribbingsberg is the most 
likely explanation for the poor results in 2003, possibly masking the 
variation in soil mineralisation (Table 6). 

Similar to the studies on other biological characteristics, NIR predictions 
were able to explain more of the variation in N uptake compared with using 
organic C content as predictor (Stenberg et al., 2005; Börjesson et al., 1999). 
The results in Paper I indicate that the additional predictive capacity of NIR 
could be related to soil texture. This was shown by the equally good results 
using NIR spectra or SOM and clay content as predictors and by the lack of 
improvement when the two methods were combined. This was further 
supported by the poor results at Hacksta, where the variation in SOM and 
clay content failed to explain plant N uptake and the same poor results were 
found for the NIR-based calibrations. 
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Calibrations at different scales 

The advantage of using near infrared spectroscopy to increase sample point 
density in farm soil mapping relies on the number of conventional 
laboratory analyses for the calibrations being kept to a minimum. Large 
national, regional or global calibrations would be favourable in that respect, 
but for assessing within-field variation, smaller or more similar areas have 
resulted in better predictions for a number of soil properties (Sankey et al., 
2008; Paper IV). However, the majority of the field-scale NIR calibrations 
include too many calibration samples to be applicable in practice (e.g. He et 
al., 2007; McCarty & Reeves, 2006; Viscarra Rossel et al., 2006). 

The results presented in Papers I-III show the potential for building 
reliable NIR calibration models using very few calibration samples, 
particularly for clay and SOM content. Nevertheless, including more 
calibration samples improved the prediction results (Paper III). 

Improved prediction results compared with using a national or global soil 
library can be achieved by spiking the large library with local samples 
(Sankey et al., 2008; Brown, 2007; Paper IV). As demonstrated in Paper IV 
and Figure 12, the improvement is often to a large extent a reduction in bias 
(see also Brown, 2007; Reeves et al., 1999). Brown (2007) and Sankey et al. 
(2008) presented better predictions using a spiked global library compared 
with using local libraries at the majority of their study sites, whereas using 
the local library (25 samples) often resulted in the lowest RMSEP values in 
the study presented in Paper IV. These differences may partly be explained 
by the different scales in the three studies, where the local samples may have 
been too few to capture the potential variation in the larger and thereby 
possibly more heterogeneous areas in the studies by Sankey et al. (2008) and 
Brown (2007). 

Another approach to improve calibrations using large soil libraries is using 
tailor-made calibrations, by selecting calibration samples from these large soil 
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libraries that are spectrally similar to the unknown samples (e.g. Chang et al., 
2001; Shenk et al., 1997). Using reduced national libraries in Paper IV did 
not result in better predictions compared with using local calibrations or the 
whole national library. However, combining the strategy of selecting 
spectrally similar samples with spiking with local samples in some cases 
resulted in better predictions than using both local libraries and spiked 
national libraries in the calibrations, indicating possibilities for further 
improvements (Figure 12) (Paper IV). 
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Figure 12. Prediction results for clay and SOC for the local, national, spiked national, reduced 
national and spiked reduced national calibrations at a-b) Bränneberg, c-d) Hacksta, e-f) 
Kärrtorp and g-h) Sjöstorp. 
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Strategies for dense farm soil mapping 

There were only small differences between the sampling strategies and 
calibration selection methods in Table 1 (Papers II and III). The approach 
using ECa measurements performed slightly better in Paper II, which is why 
that method was compared with conventional sampling at all four farms. 
The approach also has practical advantages, since the calibration samples can 
be determined before sampling and since ECa measurements already exist as 
a commercial product. 

As could be expected, using more soil samples than the 0.5 sample per 
hectare resulted in slightly better interpolated soil maps. The improvements 
were seen in terms of more reliable variograms (Figures 13 and 14) and 
better map validation results (Table 7) (see also Paper II). The interpolated 
maps are shown in Figures 15 and 16. With more samples, the variograms 
tended to be more stable and it was possible to estimate the variation at 
shorter distances with a larger number of sample pairs. 

Soil organic matter content at Sjöstorp was the only soil property for 
which the conventional soil map resulted in better validation results 
compared with the NIR-predicted map. Sjöstorp should probably have been 
divided into two parts before interpolation due to the very sharp border 
between two different glacial till soils that divided the farm in to two parts 
with rather different soil types. However, this would have led to very few 
samples in the smaller of the two parts for the conventional soil sampling. 
Thus, the farm was treated as a whole. For clay, the problem with this 
border line in the conventional map is evident. However, the opposite is 
true for the SOM content. The variation in SOM did not strictly follow that 
of clay, although there was a very short transition range from some of the 
highest SOM contents to some of the lowest in connection with the border 
line. The conventional samples missed the low SOM values in that area, 
whereas samples with very low values were present in the NIR-predicted 
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samples. These low value SOM samples seem to have overshadowed some 
of the higher SOM values in the interpolation. 

At Bränneberg, there were only small differences in validation results 
between the conventional and the NIR-predicted maps, especially for clay 
content and in terms of RMSEP values for SOM content. However, no 
validation r2 values were particularly good at Bränneberg.  

At Kärrtorp, neither the NIR-predicted nor the conventional soil 
samples managed to correctly present the variation in SOM content. This 
may be explained by small areas with high SOM content that might have 
been too patchy for the interpolation to deal with. 

The results demonstrate the need for denser sampling and the ability to 
use NIR predictions to produce reliable farm soil maps for clay and SOM 
content.  

The strategy of using ECa measurements for targeting soil samples also 
makes it possible to identify farms like Sjöstorp, where more than 25 samples 
might be needed to cover the very different soil types within its boundaries. 
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Figure 13. Variograms and fitted models for clay content for the NIR-predicted strategy (a, c, 
e and g) and the conventional sampling strategy (b, d, f and h) at Bränneberg (a-b), Hacksta 
(c-d), Kärrtorp (e-f) and Sjöstorp (g-h). 
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Figure 14. Variograms and fitted models for SOM content for the NIR-predicted strategy (a, 
c, e and g) and the conventional sampling strategy (b, d, f and h) at Bränneberg (a-b), Hacksta 
(c-d), Kärrtorp (e-f) and Sjöstorp (g-h). 

Table 7. Validation of soil maps for SOM and clay content derived from NIR predictions using the 
ECa targeted samples compared with maps derived from conventionally analysed SOM and clay content 
in a 0.5 sample per hectare grid (conventional sampling density) 

   Clay  SOM 

  n r2 RMSED  r2 RMSED 

Bränneberg NIR-predicted 138 0.37 3.7  0.40 1.1 

 Conventional 34 0.31 3.9  0.26 1.1 

Hacksta NIR-predicted 152 0.60 5.6  0.72 0.6 

 Conventional 50 0.51 5.7  0.36 0.9 

Kärrtorp NIR-predicted 155 0.78 2.0  0.29 1.3 

 Conventional 40 0.56 3.0  0 1.8 

Sjöstorp NIR-predicted 128 0.74 5.8  0.59 0.7 

 Conventional 38 0.51 8.0  0.68 0.6 

 



 56 

a)

0 200 400100 m

b)

0 200 400100 m

c) d)

0 200 400100 m

e) f)

0 200 400100 m

g) h)

< 15 15 - 20 20 - 25 25 - 30 30 - 35 35 - 40 40 - 45 45 - 50 50 - 55

Clay %

> 55  
 
Figure 15. NIR-predicted clay content interpolated from ECa targeted soil sample data 
(a, c, e, g) and conventionally analysed clay content interpolated from 0.5 samples per hectare 
(b, d, f, h) at Bränneberg (a-b), Hacksta (c-d), Kärrtorp (e-f) and Sjöstorp (g-h). 
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Figure 16. NIR-predicted SOM content interpolated from ECa targeted soil sample data 
(a, c, e, g) and conventionally analysed SOM content interpolated from 0.5 samples per 
hectare (b, d, f, h) at Bränneberg (a-b), Hacksta (c-d), Kärrtorp (e-f) and Sjöstorp (g-h). 
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Conclusions and future work 

Information about soil texture, SOM content, nutrient status and pH is 
fundamental for good crop production and for minimising negative effects 
on the environment. Farmers attain this information through farm soil 
mapping, on which decisions on fertiliser and lime requirements are based. 
Although there is a general awareness that there are large variations within 
fields and farms that might not be captured with conventional sample point 
density, it is not economically viable to simply increase the number of 
conventional samples, as this would increase the cost of soil mapping to 
unacceptable levels. Furthermore, some soil properties such as N 
mineralisation, which has a great impact on crop N fertiliser requirements, 
are difficult to estimate and are currently not included in conventional farm 
soil mapping. 

The results presented in this thesis show that NIR spectroscopy can be 
used in estimating the within-field variation in N mineralisation potential 
and that farm soil mapping strategies involving NIR measurements can be 
used to increase sample point density without substantially increasing the 
cost. 

N mineralisation (Paper I) 

The results demonstrate the possibility of estimating plant N uptake using 
NIR measured in the topsoil of fields with a large range in SOM content, 
from 2-3% up to 19-20%. However, this should not be taken as the 
minimum SOM content at which the NIR method can be used, since more 
study sites, including fields with intermediate variations compared with the 
fields in this study, would be needed to establish such a minimum level.  

In earlier studies, NIR spectroscopy has displayed an additional predictive 
capacity for plant N uptake compared with conventionally analysed SOM 
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content. The results presented in this thesis show that this additional 
predictive capacity is related to soil texture. The results also indicate possible 
limitations to fields with a pronounced correlation between plant N uptake 
and variation in SOM and clay content, but again, more study sites would 
be needed to confirm such relationships. 

Future work 

There will still be a need for field- or farm-specific predictions, at least 
initially. However, with a large variation in SOM content, the pattern in 
plant N uptake (as observed at Ribbingsberg and Nybble) seems to be fairly 
stable between years, making N mineralisation zones an interesting approach 
to pursue. 

Investigations with a larger number of study sites, including several 
intermediate variations in SOM content, could help determine the critical 
levels of SOM variations for the NIR spectroscopy method. Furthermore, 
they would provide the scope for building larger calibration models, 
something which was not possible with the small number of study sites 
included in this thesis. 

A limitation for acceptance of field-specific calibrations in practice is the 
need for at least one year of zero-N plots for the calibrations, which is 
labour-intensive. Resolution of this problem needs further investigation. 

Farm soil mapping strategies (Papers II-IV) 

To fully take advantage of the NIR technique, the number of samples 
analysed conventionally for the calibrations should be kept to a minimum. 
However, few calibration samples might lead to unreliable or unsatisfactory 
calibration results. In these studies, local farm-scale calibrations with very 
few calibration samples (often considered too few) were studied for dense 
sampling at low cost. 

The results show that satisfactory predictions could be obtained using 
only 25 calibration samples, representing an area of between 62 and 97 ha, 
for SOM and clay content and in some cases also for sand. However, for 
farms with very different soil types, as at Sjöstorp, 25 samples were shown to 
be too few. 

For pH, P-AL, K-AL and Mg-AL within-field calibrations proved 
possible, but more than 25 samples were needed to produce reliable 
calibrations, whereas predictions for silt failed regardless of the number of 
calibration samples. 
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The results also demonstrated that a sampling strategy with about 1.5 
samples ha-1, with the majority of the samples predicted by NIR calibrations 
with 25 calibration samples, resulted in more reliable clay and SOM maps 
than interpolation from conventionally laboratory-analysed samples taken at 
0.5 samples ha-1. 

Using a farm-scale calibration including only 25 calibration samples 
always produced better results than using a national calibration or a spectrally 
similar subset of the national library to predict within-farm variation. 
However, spiking both the whole national library and the reduced national 
subset with 25 local samples improved predictions and decreased RMSEP 
values, often to the same level as obtained using the local calibrations.  

The results also show a possible approach for better predictions using few 
calibration samples by combining tailor-made soil libraries with a spiking 
strategy. 

Future work 

The number of calibration samples needed for different soil variations was 
not within the scope of these studies but needs further investigation. If 25 
samples are too few, as at Sjöstorp, the question is how many more samples 
are needed. Another question is how many calibration samples are needed to 
get reliable prediction results for pH or P-AL. A starting point could be to 
expand the analyses on the data presented here, including calibrations with 
varying numbers of calibration samples. However, more study sites would 
have to be included if general recommendations are to be made. 

An interesting approach to investigate further is the combination of 
tailor-made calibration sets from larger soil libraries spiked with local 
samples, e.g. using different methods for the selection of calibration samples 
from the large soil library. 

Although the focus in this thesis was on farm soil mapping, the results can 
be used in any situation where dense sampling of e.g. soil texture or SOM 
content is desirable but where economic considerations impose limitations, 
for example in monitoring changes in soil carbon content for environmental 
or soil quality purposes. 

Current limits and applications of the method   

 At this point, the method can be recommended for SOM and clay 
content. However, the exact number of calibration samples needed 
could be slightly more than 25. 
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 Measurements of ECa before sampling could identify the need for 
more calibration samples, e.g. if the farm has two or more very 
different soil types.  

 The larger the farm, the greater the reduction in conventionally 
analysed samples. Depending on the costs for NIR analyses and soil 
sampling, the area needed to benefit economically from the NIR 
spectroscopy strategy will differ. 

 The development of calibration models for neighbouring farms with 
similar soil types using the suggested strategy could increase the 
overall number of calibration samples and/or making the method 
more cost-effective. 
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