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Abstract
Apex carnivores are wide-ranging, low-density, hard to detect, and declining through-
out most of their range, making population monitoring both critical and challenging. 
Rapid and inexpensive index calibration survey (ICS) methods have been developed 
to monitor large African carnivores. ICS methods assume constant detection prob-
ability and a predictable relationship between the index and the actual population 
of interest. The precision and utility of the resulting estimates from ICS methods 
have been questioned. We assessed the performance of one ICS method for large 
carnivores—track counts—with data from two long-term studies of African lion popu-
lations. We conducted Monte Carlo simulation of intersections between transects 
(road segments) and lion movement paths (from GPS collar data) at varying survey 
intensities. Then, using the track count method we estimated population size and 
its confidence limits. We found that estimates either overstate precision or are too 
imprecise to be meaningful. Overstated precision stemmed from discarding the vari-
ance from population estimates when developing the method and from treating the 
conversion from tracks counts to population density as a back-transformation, rather 
than applying the equation for the variance of a linear function. To effectively assess 
the status of species, the IUCN has set guidelines, and these should be integrated 
in survey designs. We propose reporting the half relative confidence interval width 
(HRCIW) as an easily calculable and interpretable measure of precision. We show that 
track counts do not adhere to IUCN criteria, and we argue that ICS methods for wide-
ranging low-density species are unlikely to meet those criteria. Established, intensive 
methods lead to precise estimates, but some new approaches, like short, intensive, 
(spatial) capture–mark–recapture (CMR/SECR) studies, aided by camera trapping 
and/or genetic identification of individuals, hold promise. A handbook of best prac-
tices in monitoring populations of apex carnivores is strongly recommended.
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1  | INTRODUC TION

Apex carnivores such as the African wild dog (Lycaon pictus), lion 
(Panthera leo), spotted hyaena (Crocuta crocuta), leopard (Panthera 
pardus), and cheetah (Acinonyx jubatus) have strong ecological, eco-
nomic, and cultural importance in sub-Saharan Africa. The wolf 
(Canis lupus), grizzly bear (Ursus arctos), and polar bear (Ursus mariti-
mus) have similar importance in Europe and North America, as does 
the tiger (Panthera tigris) in Asia and the jaguar (Panthera onca) in the 
Americas. Most large carnivores have experienced substantial pop-
ulation declines and range contractions during the past two centu-
ries (Ripple et al., 2014), mainly due to direct persecution or more 
indirectly through habitat conversion by a human population that 
increased about sevenfold, to more than 7 billion, with about 5.5 bil-
lion of those added in the past 90 years (Cohen, 2003, “Population 
Clock” 2019). Intact populations of apex carnivores are integral 
to ecosystem function and are an indication of ecosystem health 
(Ripple et al., 2014), as well as having economic and cultural value 
(Dickman, Macdonald, & Macdonald, 2011). Thus, there is an urgent 
need to conserve apex carnivores. They are, however, inherently dif-
ficult to conserve because they are conflict-prone and require large, 
ecologically intact landscapes to support viable populations.

It is crucial that conservation and management decisions for 
large carnivores are based on reliable information (Jiménez et al., 
2017). However, unbiased population or density estimates with 
sufficient precision to reliably detect trends are difficult to obtain 
for low-density, wide-ranging, and cryptic species that often occur 
in remote areas. Unbiased and precise estimates are best acquired 
through long-term intensive studies that are often time-consuming, 
expensive, and labor-intensive (Beukes, Radloff, & Ferreira, 2017; 
Loveridge, Valeix, Davidson, Mtare, & Macdonald, 2016; Mweetwa 
et al., 2018). Long-term studies allow the use of capture–mark–re-
capture (CMR) or spatially explicit capture–recapture (SECR) tech-
niques, with individuals being identified by direct observation 
(Beukes et al., 2017; Elliot & Gopalaswamy, 2016; Loveridge, Valeix, 
Elliot, & Macdonald, 2016; Mweetwa et al., 2018) or camera trapping 
(Borah et al., 2013; Karanth, 1995; Kelly et al., 2008; Rich et al., 2019; 
Silver et al., 2004; Tarugara, Clegg, Gandiwa, & Muposhi, 2019). 
Genetic identification (Bellemain, Swenson, Tallmon, Brunberg, & 
Taberlet, 2005; Boersen et al., 2003; Kendall et al., 2009; Miotto, 
Cervini, Kajin, Begotti, & Galetti Jr, 2014; Solberg, Bellemain, 
Drageset, Taberlet, & Swenson, 2006; Spitzer, Norman, & Schneider, 
2016) or a mix of these methods (Jiménez et al., 2017) can also be 
employed. In exceptional cases, distance sampling methods are em-
ployed where large carnivores are unusually visible, for example with 
polar bears (Ursus maritimus) (Aars et al., 2009; Stapleton, Atkinson, 
Hedman, & Garshelis, 2014) or carnivores on the shortgrass plains of 
the Serengeti (Durant et al., 2011).

In comparison with these methods, index calibration survey 
(ICS) methods are quicker and cheaper and have thus been used 
to describe population trends (Clevenger & Purroy, 1996; Mason & 
Macdonald, 1987; Smallwood & Fitzhugh, 1995). Managers need re-
liable population estimates or estimates with a consistent bias and 

reasonable precision to infer population trends, often quickly, while 
management and research budgets are small (Lindsey et al., 2018) 
and research capacity is limited. If surveys are intended to establish 
conservation priorities among sites, the bias of index methods must 
be consistent among the ecosystems being compared. Given these 
dilemmas, there is great interest in finding methods that can pro-
vide reliable population estimates across large areas with relatively 
minimal time and expense. For African carnivores, ICS methods, like 
track or “spoor” counts (and in the case of lions and hyaenas also 
call-up/call-in methods), have been widely adopted to play this role, 
particularly for lions.

Index calibration survey methods fundamentally rely on a pre-
dictable relationship between the index and the population size/den-
sity, as well as a constant detection probability of the index across 
the range of variables potentially affecting it (Anderson, 2003). 
Quantifying these relationships requires verification (Ericsson & 
Wallin, 1999; Graham, 2002; Stanley & Bart, 1991), and this has re-
sulted in considerable debate on the use of ICS methods. Wilson 
and Delahay (2001) wrote that an ideal index is one in which varies 
consistently with changes in abundance of the target species with 
considerations given to factors that may influence index values even 
if abundance does not change. Anderson (2001) emphasized that ICS 
rests on critical but untested assumptions about detection probabil-
ity, which is often assumed to be constant across habitats, observ-
ers, and characteristics of the target species. Anderson (2003) took 
this a step further and suggested that unless detection probabilities 
are estimated from the data, ICS studies provide “just numbers” that 
reveal little about abundance.

The challenges of employing ICS methods with large carnivores 
are well illustrated by the debate over trends in tiger (Panthera tigris) 
abundance in India. Traditionally censused with track count meth-
ods that assumed complete coverage and 100% detection, tiger 
estimates were criticized by Karanth et al. (2003) who suggested 
that changes in ICS estimates might correlate poorly with changes 
in actual density. Jhala, Qureshi, and Gopal (2011) defended the 
use of a combination of two indices, but Gopalaswamy, Delampady, 
Karanth, Kumar, and Macdonald (2015) found that imperfect detec-
tion, spatial heterogeneity in sampling, sampling uncertainties, and 
variation in true abundance all had strong effects on the accuracy 
of ICS methods. Furthermore, Gopalaswamy, Karanth, Delampady, 
and Stenseth (2019) show that estimates of trends in tiger popula-
tions are misleading because of the presence of high sampling-based 
overdispersion and parameter covariance due to unexplained het-
erogeneity in detection probabilities. Such processes likely explain 
why field studies exhibit such a wide variation in degree of confi-
dence in population estimates from ICS. In the latest countrywide 
tiger survey from India, there is still a lot of effort put into sign sur-
veys, with over 500,000 km of walked transects, but the majority of 
the data contributing to the total estimates comes from CMR data 
from camera trapping (Jhala, Qureshi, & Nayak, 2019).

Despite the challenges encountered with carnivore population 
monitoring on other continents, in Africa, two different ICS techniques 
are commonly employed for a range of carnivore species and even 
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recommended as the primary monitoring methods for lions (Funston & 
Henschel, 2018). While both techniques have received criticism (Belant 
et al., 2019; Rosenblatt et al., 2014; Whitman, 2006), both are in wide 
current use. One method commonly used to estimates populations 
of lions and hyaenas are call-ups/call-ins (Bauer, 2007; Begg, 2015, 
2019; Belant et al., 2016; Brink, Smith, & Skinner, 2012, 2013; Cozzi, 
Broekhuis, Mcnutt, & Schmid, 2013; Ferreira & Funston, 2010, 2016; 
Groom, Funston, & Mandisodza, 2014; Midlane, Justin O'Riain, Balme, 
& Hunter, 2015; Ogutu & Dublin, 1998; Okot-Omoya, Mudumba, 
Buckland, Mulondo, & Plumptre, 2013; Trinkel, 2009). In this method, 
audio lures (recordings of hyaena, lion, and distressed herbivores) are 
played through loudspeakers to attract lions and hyaenas. Because it 
is widely recognized that habituation and a range of other factors af-
fect whether an animal is attracted and is surveyed (Brink, Smith, & 
Skinner, 2013; Mills, Juritz, & Zucchini, 2001; Ogutu & Dublin, 1998; 
Whitman, 2006), call-ins require calibration with lions and hyenas to 
determine at what distances (and with what audio lure sounds) animals 
will respond. Furthermore, habituation can invalidate such calibrations, 
if animals reduce their response through time. To avoid this problem, 
track or spoor surveys are widely used to estimate population densities 
of many of the African large carnivores: lions, hyaenas, leopards, chee-
tahs, and African wild dogs (Bauer et al., 2014, 2015, 2017; Hanssen, 
Funston, Alfred, & Alfred, 2017; Funston et al., 2010, 2017; Groom & 
Watermeyer, 2019; Houser, Somers, & Boast, 2009; Midlane, Justin 
O'Riain, Balme, & Hunter, 2015; Stander, 1998a; Winterbach, Ferreira, 
Funston, & Somers, 2016). Stander (1998b) found a positive correlation 
between track frequency and independent estimates of population 
density for African wild dogs, leopards, and lions in northern Namibia. 
Funston et al. (2010) refined this method to account for substrate vari-
ation and concluded that “a combined model for all carnivore species 
on sandy soils served as a robust approach to predict large carnivore 
densities.” The regression model of Funston et al. (2010) included a 
nonzero intercept, which allows a track density of zero to predict a 
population density above zero. Winterbach et al. (2016) refined the 
model by dropping the nonzero intercept from the regression, but did 
not alter the way the uncertainty in the estimates were calculated; this 
methodology is hereafter what we refer to as the track count method.

In the track count method, transects, usually road based, are 
driven at a slow speed, in early morning when tracks of animals 
are most easily detectable, and the number of tracks of individ-
ual animals of several species and kilometers driven are recorded. 
Then, a track density is calculated as the number of tracks per 
100 km driven. A constant, even across species, relationship be-
tween number of observed tracks of a species and actual density 
of the species in the area is assumed, and a density and/or popula-
tion estimate is calculated from this relationship. The logic of the 
method is intuitively appealing: Carnivore tracks are more easily 
detected than carnivores themselves and can be rapidly collected 
over large areas; if track density can then be accurately converted 
to carnivore density and provide unbiased and precise estimates 
of population density, then this method could provide important 
information in an efficient way. Evaluating this premise is the focus 
of this paper.

Despite the promise of ICS methods such as track surveys for car-
nivore conservation, it remains essential that population estimates are 
paired with valid estimates of their uncertainty. For example, wildlife 
managers need measures of uncertainty to assess the likelihood that 
an apparent change in population size is real or to assess the likelihood 
that a population decline/increase of a given size (say 10%) would go 
undetected. We have concerns that current track survey methods 
overstate the precision of population estimates, for several reasons. 
First, these methods do not account for uncertainty in the original 
population estimates used to calibrate the relationship between track 
density and carnivore density. Second, variance in track density is 
converted to variance in carnivore density incorrectly; we refer to the 
discussion for a further explanation of this. We also assess variation in 
the number of encountered tracks between surveys, or an inconsistent 
detection probability, using a Monte Carlo simulation of theoretical 
transects and the movements of GPS-collared animals. We use data 
from GPS-collared lions from two populations (Hwange National Park 
in Zimbabwe and Kafue National Park in Zambia) to test how variation 
in track density from populations of known size is captured by popula-
tion estimates using the track count method in a best possible scenario. 
In simulations comparing estimated and known population density, we 
test how variation in lion density and survey intensity affects the ac-
curacy of the population estimate compared to known size population. 
Lastly, we discuss how issues with track surveys relate to the challenge 
of monitoring and conservation for large carnivores in general and lions 
in particular.

2  | METHODS

Our simulations were designed to reflect a situation in which track 
surveys detected lions as well as possible. To compare the track 
count method between sites, we used data from two long-term lion 
studies, one in the Northern part of Kafue National Park in Zambia 
and the other from the Northern and Eastern side of Hwange 
National Park in Zimbabwe, to allow comparison of results for simu-
lations parameterized with data from areas with different lion and 
road densities. Our approach was to: (a) simulate, in R (R Core Team, 
2018), track detection data for populations with movement trajecto-
ries based on GPS-collared individuals, (b) use track count methods 
to produce an estimate of the population, and (c) compare the mean 
and confidence limits of the estimated population with the actual 
used population in each area. We began with data on the move-
ments of GPS-collared lions (see below) and the actual road network 
in the area within which they moved.

3  | STUDY ARE A S

Kafue National Park, 22,400 km2, is situated in western Zambia 
between 15°46′S 25°55′E. Mean annual rainfall ranges from 
1,020 mm (in the North) to 530 mm (in the South), three peren-
nial rivers, the Kafue, Lunga, and Lufupa run the length of the 
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park (Midlane, Justin O'Riain, Balme, Robinson, & Hunter, 2014). 
Vegetation consists of Miombo and Kalahari woodland domi-
nated by Brachystegia spp. and Julbernardia spp., munga and ter-
mitaria woodland dominated by Acacia spp., Combretum spp. and 
Terminalia spp., and munga scrub and grassland comprising open 
scrubland up to 3 m high and dambo, floodplain, and riverine 
grasslands (Midlane et al., 2015). The Kafue lion data from this 
study came from four neighboring lion prides in the northern sec-
tion of the park. In Kafue National Park, lion was estimated at 1.83 
lions per 100 km2 Midlane et al. (2015) with a 95% confidence 
interval of 0.86–2.80 based on track counts. However, a study cur-
rently in review, Vinks et al., estimates 3.43 lions per 100 km2 with 
a CI of 2.79–4.23 based on CMR.

Hwange National Park, 14,600 km2, is situated in north-western 
Zimbabwe (19°00′S, 26°30′E). Mean annual rainfall is 600 mm and 
highly variable, and water is artificially supplied at water points in 
the dry season (Loveridge, Valeix, Davidson, et al., 2016). Vegetation 
consists of arid, dystrophic savannah forming a mosaic of Combretum 
sp., Terminalia sp., Acacia sp., and Baikiaea sp. communities on the 
Kalahari sands where this study was located (Chamaillé-Jammes et 
al., 2006; Rogers, 1993). The Hwange lion data from this study came 
from five neighboring lion prides in the eastern part of the park. In 
Hwange, lion density was estimated at about 3.5 lions per 100 km2 
(Loveridge, Valeix, Davidson, et al., 2016).

The actual size of the study areas was determined by the 100% 
minimum convex polygon of the used location points from the lions 
in the study. This led to a study area of 2,707 km2 in Kafue and 
2,589 km2 in Hwange. The road network in Kafue was sparse with 
467.2 km of roads contained within the study area. The road net-
work in Hwange varied between sparse and locally dense, and the 
total length of roads within the study area in Kafue was 608.9 km.

3.1 | Selection of sampled transects

From a mapped road network on each site, we randomly created sets 
of transects (10 km or 5 km) totaling ~20%, ~40%, ~60%, ~80%, and 
100% of the total road network. These transect lengths are real-
istic and, with the set of sampling intensities just described, were 
long enough to ensure that simulations did not miss the entire home 
range of any lion and short enough to allow the efficient random 
selection of road segments to be included in transects. Appendix 
S1 provides a detailed description of transect selection. With these 
procedures, the exact sampling intensity was typically slightly less 
than the nominal intensity, so actual (rather than intended) transect 
lengths were used in all analyses. We added a buffer of 25 meters 
to all transects to increase the possibility of intersection with lion 
movement trajectories (see below) and decrease the possibility of 
missing intersections because of errors in the mapped location of 
either the roads or lion movement trajectories. We also report the 
penetration, as the amount of km2 of the study area per km driven, 
as reported in prior track surveys. A graphical diagram of the con-
struction of transects can be found in Appendix S2.

3.2 | Selection of lion movements and intersection 
with transects

We intersected the modeled transect network with lion movements 
from GPS-collared lions in each study area. We constructed move-
ment trajectories of sequential lion locations from the GPS collar 
data, which provided locations at intervals of 1–4 hr. We restricted 
the parameterization data to days for which we had data from at 
least one GPS-collared lion in each lion group resident in the area. 
In Kafue National Park (where lion density was estimated to be rela-
tively low, Midlane et al. (2015) estimated a density of 1.83 lions per 
100 km2 and a CI of 0.86–2.80 based on track counts, a paper cur-
rently in review, Vinks et al., estimates 3.43 lions per 100 km2 with 
a CI of 2.79–4.23 based on CMR), we used data from one pride from 
2016, two from 2017, and one from 2018. In Hwange (with slightly 
higher estimated lion density: (Loveridge, Valeix, Davidson, et al., 
2016), we used data from four prides in 2011 and 2012 and a fifth 
from 2009 and 2010. We selected the lion movement trajectories 
for 24 hr prior to 6:30 a.m. on the day of survey and intersected it 
with the generated transects. Following this method, we intersected 
each randomly generated transect set with all days for which we 
had lion trajectories and thus simulated track surveys that started 
around sunrise when tracks are most visible.

In field applications, an attempt to avoid double-counting of in-
dividuals, which cross roads multiple times in different nearby loca-
tions, is made by dismissing tracks if they are found within 500 m of 
another set of tracks of the same species and additional information 
like group composition, group size, and direction of movement in-
dicates it might be the same set of animals (Funston & Henschel, 
2018). As we did not incorporate group composition, size, and di-
rection of movement of tracks, we used a proximity of 1,000 m 
(to further reduce the risk of double-counting), to other tracks to 
dismiss a detection. We also simulated a scenario where all dupli-
cated tracks, regardless of proximity to other tracks, were removed 
(scenario 3, see below). In our simulations, we assumed perfect de-
tection whenever a lion trajectory intersected with a road transect, 
that all individuals present were detected by their tracks and that all 
lions in a group were present at all detections. In reality, lion prides 
sometimes move in subgroups, but fission–fusion dynamics do not 
alter the number of lions available for detection or the likelihood 
that their movements will intersect with a randomly selected survey 
segment. When a pride temporarily splits, we expect a decrease in 
the number of animals detected per detection that is offset by an 
increase in the number of detections. With respect to population 
estimation, these effects do not alter the number of lions available 
for detection, and any effect of pride fission–fusion on movement (if 
any exists) is embedded in the empirical data from GPS collars that 
we used to parameterize the model.

Using published methods, estimates from the track count 
method are considered reliable if 30 tracks, not clusters of tracks, 
are detected (Funston et al., 2010, Funston & Henschel, 2018). 
Given the densities of lions and roads in our two study areas, fewer 
than 30 tracks were detected in many simulated surveys with lower 
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sampling intensities. To ensure a set of simulations in which enough 
tracks were detected, we also constructed surveys with a randomly 
selected transect set that was surveyed on 5 randomly selected days 
and combined the results. We did this 2,000 times and averaged 
the results. To mimic ideal circumstances with no double-counting, 
we also analyzed the data with all duplicates removed (regardless 
of proximity to other detections) so that each pride could only be 
detected once a day. In the results, we name these scenarios as fol-
lows: (a) regular surveys (random transects, random day, duplicates of 
same pride within 1,000 m removed), (b) replicated surveys (random 
transects surveyed on 5 random days, duplicates of same pride on 
same day within 1,000 m removed), and (c) replicated surveys with 
duplicates removed (random transects surveyed on 5 random days, 
all duplicates of same pride on same day removed).

We created 400 sets of random transects for all intensities ex-
cept for 100% intensity. At 100% intensity, nearly the whole road 
network is used, so that random transects cannot be generated. To 
determine the size of the study area and the roads to be considered 
for transects, we used lion GPS locations to create 100% minimum 
convex polygons with the AdehabitatHR package (Calenge, 2006) in 
R of each pride and then combined the polygons. We only used loca-
tions from the dates included in the construction of lion movement 
trajectories (see below). The area of this combined minimum convex 
polygon was considered the size of the study area, and we clipped 
the sampled road network to fall within this polygon. Density de-
pends on the size of the area estimated to be surveyed, and we 
mainly calculate it here as densities are more easily compared to 
other areas and the most commonly reported population parameter.

3.3 | Kafue lion data

From Kafue National Park, we used data from four neighboring 
prides, which consisted of three, five, five, and 10 subadult and adult 
lions, respectively. These prides were fitted with Telonics GPS satel-
lite collars, fitted by a licensed Zambian veterinarian, with permits 
and protocols approved by the Department of National Parks and 
Wildlife. As there was no complete overlap in dates between all col-
lars (one in 2016, two from 2017, and one from 2018), we used the 
day of year, irrespective of which year the data were collected. For 
114 days of year, we had movement trajectories of all four prides, 
and we assumed the pride size to be constant over all these days. 
Thus with 400 different transect sets for each survey intensity, 
45,600 surveys were simulated at each survey intensity.

The combined polygon for the Kafue prides was 2,707 km2, yield-
ing a density of 0.85 lions per 100 km2. This density is not equiva-
lent to the actual density of lions in Kafue, because the simulated 
population does not include other lions whose movements were not 
monitored with GPS collars; the simulation just investigates the re-
lationship between track counts and density for these four prides 
with complete data on movements. The maximum survey intensity 
in Kafue was 5.86 km of road surveyed per km2 (467.2 km of road in 
a 2,707 km2 study area) of the study area for regular surveys where 

transects were surveyed once and 1.16 for replicated surveys where 
transects were surveyed five times.

3.4 | Hwange lion data

Road and lion data from Hwange were treated the same as those 
from Kafue, using the combined 100% minimum convex polygons of 
all lion groups to select the study area and to define the extent of the 
sampled road network. Transects were built at the same intensities 
as in Kafue. We deleted some roads in very high road density areas 
around tourist camps and dead-end spur roads shorter than 5 km, as 
these made the random selection of roads challenging and did not 
alter inferences. Movement data from five neighboring prides were 
used. These prides were fitted with GPS satellite collars from Africa 
Wildlife Tracking, Pretoria, South Africa, fitted by staff trained, 
and certified by the Wildlife Group of the Zimbabwean Veterinary 
Association and the Wildlife Unit of the Government Veterinary 
Services. This took place under animal handling protocols follow-
ing the “Code of Practice for Biologists using Animals” from the 
Department of Zoology at the University of Oxford and approved 
by University of Oxford, Biomedical Sciences, Animal Welfare and 
Ethical Review Body (AWERB). Four prides yielded GPS data which 
coincided in time in 2011 and 2012, with the fifth pride yielding GPS 
data from 2009 and 2010. These prides numbered two, three, six, 
eight, and 14 subadult and adult lions. For 130 days of year, we had 
movement trajectories of all five prides, and we assumed the pride 
size to be constant over all these days. Thus, with 400 different tran-
sect sets for each survey intensity, 52,000 surveys were simulated at 
each survey intensity.

In Hwange, the combined minimum convex polygons for the lion 
prides was 2,589 km2, providing a density of 1.53 lions per 100 km2. 
Again, this density is not to be mistaken for the actual density of 
lions in Hwange; these were the lion prides included in our simula-
tion to investigate the relationship between track counts and density 
for these five prides with complete data on movements. The total 
road network available for surveying was 608.9 km; this was slightly 
reduced in the 100% intensity surveys to 592.5 km, as the road net-
work was divided into segments of up to 10 km but segments shorter 
than 500 m were discarded. Thus, the maximum intensity possible in 
Hwange was 4.37 km of road surveyed per km2 study are for surveys 
where transects were surveyed once and 0.87 where transects were 
surveyed five times.

3.5 | Assessing model performance

From the recorded intersections between transects and lion 
movement trajectories from a population where all prides and in-
dividuals were known, we calculated the number of tracks re-
corded per transect, per survey (One survey is a complete set of 
transects for the particular survey intensity on a single day or 5 
separate days) and calculated the mean and variance track density 
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using the same methods as recent track surveys in real lion popula-
tions. Population estimates were calculated using the method de-
veloped by Winterbach et al. (2016) using the following formula to 
estimate the populations of lions and other large African carni-
vores: observed track density = 3.26 × carnivore density where 
track density is expressed in units of tracks per 100 km driven, and 
carnivore (lion) density is expressed in individuals (lions) per 
100 km2. Following published methods for track counts, confi-
dence intervals on population density were calculated with the 
coefficient of variance (CV) using two methods. The first method 
was developed by Funston et al. (2010). They found that this CV of 
observed tracks was independent of lion density and soil type and 
developed the following formula based on regression to estimate 

the CV in observed tracks: CV(dt− t)=58.33n
−0.36
i

 where dt − t is 
the distance between observed tracks, and ni is the number of ob-
served tracks, and we refer to this as the track count CV approach. 
The second method calculated the CV as the ratio of the standard 
deviation (s) of tracks per transect to the mean of tracks per tran-
sect (N). We refer to this as the traditional CV approach (also used 
by Bauer et al. (2017)), because it mimics the standard statistical 

formula CV=

�

s2

N
=

s
√

N

. We emphasize, however, that the denomi-

nator of the traditional CV approach inadvertently substitutes N 
where √N is required, thus overstating the precision of population 
estimates.

Because we were primarily interested in testing the bias and 
precision of these method, we report (a) the percentage of cases in 
which the calculated confidence intervals for each method captured 
the true population size and (b) half the width of confidence intervals 
compared to the estimate (half relative confidence interval width) 
as a measure of power to detect population trends. We emphasize 
that for these simulations, the true lion population was known (the 
total number of lions in the prides from which we used locational 
data), there was perfect detection when lion movement trajectories 

and transects intersected, and the study area and thus the sampled 
transects were exactly matched to the area used by those prides 
during the time of study. A combination of the accuracy (percentage 
of times the true density was captured in the calculated confidence 
interval) and precision provided insight about the power with which 
these methods can detect changes in a lion population, or popula-
tions of other wide-ranging, low-density species, and how useful 
they are for this. To measure precision, we calculated the half rela-
tive confidence interval width (HRCIW) by:

where UCL and LCL are the upper and lower confidence limits, and 
N̂  is the population estimate (which can be replaced with a density 
estimate). This HRCIW provides an easily interpretable measure of the 
magnitude of population change that must occur for it to be detectable 
with specified confidence.

4  | RESULTS

The detailed results of regular surveys, without replication, can be 
found in Table 1. The minimum, mean, and maximum values rep-
resent those values from all simulations for the particular site and 
survey intensity. In Kafue, with regular surveys with between 20% 
and 100% of the roads surveyed, mean track density varied between 
4.8 tracks per 100 km (at 100%) to 5.8 (at 20%), with the difference 
(width) between minimum and maximum track density, ranging from 
14.72 (at 100%) to 61.80 (at 20%). In surveys where 100% of the 
road network was included, 1.8% of surveys intersected no tracks 
(Table 1).

In Hwange, with regular surveys with between 20% and 100% 
of the roads surveyed, mean track density varied between 5.59 (at 
100%) to 7.38 (at 20%) tracks per 100 km, with the width of track 
density ranging from 15.19 (at 100%) to 56.80 (at 20%). In surveys 

HRCIW=

0.5×
(

UCL−LCL
)

N̂

×100

TA B L E  1   Results from regular surveys (random transects, random day, duplicates of same pride within 1,000 m removed)

Site
% of roads 
surveyed

Average survey 
length (km)

Average 
penetration (km2 
per km driven)

Min track 
density 
(tracks/100 km)

Mean track 
density 
(tracks/100 km)

Max track 
density 
(tracks/100 km)

% of surveys 
with 0 tracks 
detected

Kafue 20 88.9 30.45 0 5.8 61.80 48.6%

Kafue 40 177.8 15.22 0 5.57 39.45 21.6%

Kafue 60 276.5 9.79 0 5.35 27.12 8.6%

Kafue 80 371.6 7.28 0 4.93 21.06 4.0%

Kafue 100 462.1 5.86 0 4.82 14.72 1.8%

Hwange 20 118.1 21.92 0 7.38 56.80 37.1%

Hwange 40 236.2 10.96 0 7.30 38.09 16.0%

Hwange 60 354.3 7.31 0 6.84 28.25 9.9%

Hwange 80 477.7 5.42 0 5.91 20.90 7.7%

Hwange 100 592.5 4.37 0 5.59 15.19 6.9%
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where 100% of the road network was included, 6.9% of surveys in-
tersected no tracks (Table 1).

The detailed results from replicated surveys can be found in 
Table 2. In Kafue, in replicated surveys with between 20% and 100% 
of the roads surveyed had a mean track density ranging from 4.85 
to 5.88, with the width of track density ranging from 7.49 (at 100%) 
to 22.71 (at 20%). For survey intensities above 20%, there were no 
instances in which no tracks intersected with surveyed transects 
(Table 2).

In Hwange in replicated surveys with between 20% and 100% 
of the roads surveyed, the mean track density varied between 5.61 
(at 100%) and 7.45 (at 40%), with the width of track density ranging 
from 9.99 (at 100%) to 23.02 (at 20%). For sampling intensities above 
20%, there were no instances in which no tracks intersected with 
surveyed transects (Table 2).

The detailed results from replicated surveys, with duplicates 
removed, can be found in Table 3. In Kafue in replicated surveys 

with duplicates removed with 20%–100% of the roads surveyed, 
the mean track density varied between 2.93 (at 100%) to 4.50 (at 
20%), with the width of track density ranging from 2.7 (at 100%) 
to 13.32 (at 20%). For survey intensities above 20%, there were no 
instances in which no tracks intersected with surveyed transects 
(Table 3). In Hwange in replicated surveys with duplicates removed 
with between 20% and 100% of the roads surveyed, mean track 
density varied between 2.79 (at 100%) to 5.51 (at 20%), with the 
width of track density ranging from 3.28 (at 100%) to 13.66 (at 
20%). For sampling intensities above 20%, there were no instances 
in which no tracks intersected with surveyed transects (Table 3).

Figure 1 shows examples of regular surveys in each ecosystem, 
including the road network, the sampled transects at 60% survey 
intensity, and lion movement trajectories for the 24 hr preceding the 
survey. For each ecosystem Figure 1 includes representative exam-
ples of surveys without any track detections and surveys with mul-
tiple detections. Note that in the case with multiple detections in 

TA B L E  2   Results from replicated surveys (random transects surveyed on 5 random days, duplicates of same pride on same day within 
1,000 m removed

Site

% of roads 
surveyed (5 
times)

Average 
survey length 
(km)

Average 
penetration (km2 
per km driven)

Min track 
density 
(tracks/100 km)

Mean track 
density 
(tracks/100 km)

Max track 
density 
(tracks/100 km)

% of surveys 
with 0 tracks 
detected

Kafue 20 444.6 6.09 0 5.88 22.71 13.0%

Kafue 40 888.9 3.05 0.34 5.60 14.17 0%

Kafue 60 1,382.3 1.96 0.94 5.36 12.29 0%

Kafue 80 1,857.9 1.46 1.41 5.64 14.43 0%

Kafue 100 2,310.5 1.17 1.69 4.85 9.18 0%

Hwange 20 590.4 3.65 0 7.31 23.02 2.8%

Hwange 40 1,180.9 1.83 0.85 7.45 17.72 0%

Hwange 60 1,771.5 1.21 1.58 6.83 17.16 0%

Hwange 80 2,388.3 0.90 1.73 6.72 14.70 0%

Hwange 100 2,962.6 0.73 1.35 5.61 11.34 0%

TA B L E  3   Results from replicated surveys with duplicates removed (random transects surveyed on 5 random days, all duplicates of same 
pride on same day removed

Site

% of roads 
surveyed (5 
times)

Average 
survey length 
(km)

Average 
penetration (km2 
per km driven)

Min track 
density 
(tracks/100 km)

Mean track 
density 
(tracks/100 km)

Max track 
density 
(tracks/100 km)

% of surveys 
with 0 tracks 
detected

Kafue 20 450.4 6.01 0 4.50 13.32 2.6%

Kafue 40 900.1 3.01 0.33 4.12 7.94 0%

Kafue 60 1,399.5 1.93 0.57 3.73 6.87 0%

Kafue 80 1,993.5 1.36 1.01 3.01 4.98 0%

Kafue 100 2,329.7 1.16 1.46 2.93 4.16 0%

Hwange 20 597.4 3.61 0 5.51 13.66 0.6%

Hwange 40 1,195.2 1.80 0.59 4.84 8.75 0%

Hwange 60 1,790.5 1.20 0.79 4.00 6.92 0%

Hwange 80 2,545.6 0.85 0.85 3.06 4.68 0%

Hwange 100 2,969.8 0.73 0.64 2.79 3.92 0%
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Kafue, two prides crossed different roads approximately 8 km of one 
another, which, under real circumstances, would almost certainly be 
recorded as different tracks and would have led to a high population 
estimate.

4.1 | Assessing model performance: Kafue

If the survey method performed well, we would expect the true 
population size to be captured by the 95% confidence interval in ap-
proximate 95% of the simulations. We would also expect a HRCIW 
of 50% or lower, indicating the estimate has a reasonable probability 
of detecting a population decline of 50%. If such a decline occurs in 
10 years or 3 generations (whichever is longer), then it would meet 
the IUCN guideline under the A2 criterion, which is applicable to 
lions, to classify a population or species as endangered. However, it 
is evident that neither a capturing of the true population size ~95% of 
the time nor a HRCIW of <50% occurs with this method, and in fact, 
estimates do not come anywhere close to meeting these criteria. In 

Kafue, the 95% confidence interval for regular surveys calculated 
with the track count CV approach rarely included the true popula-
tion size, ranging 9.6%–20.9% of simulations at 20%–100% survey 
intensity. The confidence interval using the traditional CV approach 
captured the true population size in 51.4%–98.2% of simulations at 
20%–100% survey intensity. For replicated surveys, the confidence 
interval calculated with the track count CV approach captured the 
true population size in 4.4%–17.7% of simulations at 20%–100% 
intensity, and when all duplicates were removed, this improved to 
19.5%–50.3%. For the traditional CV approach, these values were 
93.9%–100% and 92.9%–100%, respectively. The HRCIW for sur-
veys with the track count CV approach varied between 10.9% for 
surveys where all roads were surveyed five times and only dupli-
cates <1,000 m were removed, and 28.4% for surveys where 20% 
of the roads were surveyed once and only duplicates <1,000 m were 
removed. The HRCIW for surveys with the traditional CV approach 
varied between 93.3% for surveys where 40% of the roads were sur-
veyed five times and only duplicates <1,000 m were removed, and 
398.3% for surveys where 80% of the roads were surveyed once 

F I G U R E  1   Scenarios where no lion 
tracks were detected and scenarios where 
many lion tracks were detected, both at 
60% survey intensity, which represents 
a penetration rate of 9.79 for Kafue and 
7.31 for Hwange
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and only duplicates <1,000 m were removed. Table 4 shows the 
minimum and maximum percentages of how often the true popu-
lation size was captured within the 95% confidence interval of the 
population estimate, the survey types and if all duplicates (not just 
the tracks of the same prides <1,000 m from each other) have been 
removed, the survey intensity, and CV approach used. Results from 
the traditional CV approach are dark shaded, while results from the 
track CV approach are light shaded. Additionally, it shows the mini-
mum and maximum HRCIW for both methods (in bold). Full results 
are presented in Appendix S3.

4.2 | Assessing model performance: Hwange

In Hwange, the confidence interval calculated with the track count 
CV approach again rarely included the true population size, vary-
ing between 19.7% and 22.4% of simulations for regular surveys 
at 20%–100% intensity, while the traditional CV approach cap-
tured the true population size between 62.9% and 93.1% of simu-
lations. For replicated surveys, the confidence interval calculated 
with the track count CV approach captured the true population 
size in 19.2%–25.8% of simulations at 20%–100% intensity, and 
when all duplicates were removed, this shifted to 0%–37.1%. For 
the traditional CV approach, these values were 94.4%–100% and 
92.4%–99.3% of simulations, respectively. It is interesting to note 
that for surveys in Hwange, with the CI calculated with the track 

count CV approach, higher intensities did not necessarily capture 
the true population more often. The HRCIW for surveys with the 
track count CV approach varied between 9.4% for surveys where 
all roads were surveyed five times and only duplicates <1,000 m 
were removed, and 24.4% for surveys where 20% of the roads 
were surveyed once and only duplicates <1,000 m were removed. 
The HRCIW for surveys with the traditional CV approach varied 
between 88.9% for surveys where 40% of the roads were sur-
veyed five times and only duplicates <1,000 m were removed, and 
502.0% for surveys where 80% of the roads were surveyed once 
and only duplicates <1,000 m were removed. Table 5 shows the 
same figures as Table 4, but now for Hwange.

Figure 2 shows the 95% confidence intervals of population es-
timates (horizontal lines) and the true population size (vertical line) 
for a random draw of 30 regular surveys at 60% intensity, for both 
Kafue and Hwange, with the 95% confidence intervals calculated 
using CV's following both approaches. This plot reveals an error in 
the calculation of confidence limits in the track count CV approach 
(see Section 6 for more detail) that causes precision to be overesti-
mated and thus produces confidence intervals that typically do not 
include the true population size and the bias of the estimates being 
inconsistent. The method frequently produced population estimates 
that differed more than fivefold, despite no change in the true pop-
ulation size. The traditional CV approach produced confidence limits 
that nearly always contained the true population size, but these con-
fidence intervals were far too wide to describe population trends in 

TA B L E  4   Summary of results for all modeled scenarios in Kafue. Minimum and maximum percentages of how often the true population 
was captured in the 95% confidence interval are shown (the traditional CV approach dark shaded, the track count CV approach light 
shaded), as well as the minimum and maximum HRCIW (in bold). Full results are presented in Appendix S3

Site Survey type All duplicates removed Intensity CV approach
% true pop captured in 
95% CI HRCIW

Kafue Regular No 20 Track count 9.6% 28.4%

Kafue Regular No 80 Track count 20.9% 22.2%

Kafue Regular No 20 Traditional 51.4% 198.9%

Kafue Regular No 80 Traditional 96.0% 398.3%

Kafue Regular No 100 Traditional 98.2% 353.3%

Kafue Replicated No 20 Track count 16.1% 20.0%

Kafue Replicated No 80 Track count 4.7% 11.2%

Kafue Replicated No 100 Track count 5.3% 10.9%

Kafue Replicated No 20 Traditional 94.4% 94.2%

Kafue Replicated No 40 Traditional 99.3% 93.9%

Kafue Replicated No 60 Traditional 100.0% 94.3%

Kafue Replicated No 80 Traditional 100.0% 110.3%

Kafue Replicated No 100 Traditional 100.0% 108.2%

Kafue Replicated Yes 40 Track count 20.0% 16.5%

Kafue Replicated Yes 100 Track count 49.8% 12.9%

Kafue Replicated Yes 20 Traditional 93.6% 98.7%

Kafue Replicated Yes 80 Traditional 100.0% 128.0%

Kafue Replicated Yes 100 Traditional 100.0% 123.2%

Abbreviations: CV, coefficient of variance; HRCIW, half relative confidence interval width.
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TA B L E  5   Summary of results for all modeled scenarios in Hwange. Minimum and maximum percentages of how often the true population 
was captured in the 95% confidence interval are shown (the traditional CV approach dark shaded, the track count CV approach light 
shaded), as well as the minimum and maximum HRCIW (in bold). Full results are presented in Appendix S3

Site Survey type
All duplicates 
removed Intensity CV approach

% true pop captured in 
95% CI HRCIW

Hwange Regular No 20 Track count 20.4% 24.4%

Hwange Regular No 60 Track count 19.7% 19.4%

Hwange Regular No 80 Track count 22.4% 18.3%

Hwange Regular No 20 Traditional 62.9% 210.0%

Hwange Regular No 80 Traditional 92.3% 502.0%

Hwange Regular No 100 Traditional 93.1% 419.8%

Hwange Replicated No 20 Track count 19.2% 16.2%

Hwange Replicated No 100 Track count 25.8% 9.4%

Hwange Replicated No 20 Traditional 94.4% 91.2%

Hwange Replicated No 40 Traditional 99.3% 88.9%

Hwange Replicated No 80 Traditional 100.0% 127.8%

Hwange Replicated No 100 Traditional 99.8% 122.0%

Hwange Replicated Yes 40 Track count 37.1% 13.8%

Hwange Replicated Yes 100 Track count 0.0% 12.0%

Hwange Replicated Yes 20 Traditional 92.4% 96.3%

Hwange Replicated Yes 100 Traditional 99.3% 150.5%

Abbreviations: CV, coefficient of variance; HRCIW, half relative confidence interval width.

F I G U R E  2   95% confidence intervals 
for the track count CV approach and 
the traditional CV approach for regular 
surveys with a 60% intensity for both 
Kafue and Hwange. The dark blue vertical 
line represents the true population 
size. Missing confidence intervals are 
cases where the confidence interval 
could not be calculated because no 
lions were detected. The track count CV 
approach often did not contain the true 
population size, and bias in estimates was 
not consistent, while the traditional CV 
approach contained the true population 
size but with confidence intervals too 
broad to be biologically meaningful
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a useful manner, as they almost always ranged from 0 to values much 
greater than the true population size.

5  | PRECISION

In Kafue, the HRCIW for the method of track count CV approach 
ranged between 20.6% and 28.4% for regular surveys. For repli-
cated surveys with duplicates, this was 10.9%–20.0% and for rep-
licated surveys without duplicates 13.0%–21.4%. In Hwange, these 
numbers ranged between 17.2% and 25.6% for regular surveys and 
between 9.4%–16.6% and 12.0%–18.0% for replicated surveys with 
and without duplicates, respectively. It should be noted that these 
intervals frequently did not include the true population size.

In Kafue, the HRCIW for the traditional CV approach ranged 
between 199.0% and 398.3% for regular surveys and between 
94.5%–110.0% and 99.1%–127.9% for replicated surveys with and 
without duplicates, respectively. In Hwange, these numbers, in their 
respective order, were 213.1%–520.4%, 91.5%–133.2%, and 98.3%–
168.3%. The differences in width of the relative confidence intervals 
are also shown in Figure 2, with one method failing to capture the 
true population size most of the time and the other method captur-
ing it but with extremely large confidence intervals.

6  | DISCUSSION

6.1 | Track counts do not provide reliable estimates 
to monitor populations

In realistic simulations based on two lion populations of known size, 
track surveys either produced confidence limits that did not include 
the true population size or yielded wide confidence intervals that 
usually included zero. In either case, the results did not provide esti-
mates of lion population size that could be used to effectively guide 
conservation and management. The track count CV approach and 
the traditional CV approach are both likely to yield spurious infer-
ences that a population is increasing or decreasing or that one eco-
system holds a considerably higher or lower population density than 
another. The traditional CV approach produced confidence intervals 
so broad that large positive or negative changes in density (or dif-
ferences in density between ecosystems) would go undetected. The 
track count CV approach produced confidence intervals that rarely 
included the true population size.

The reason that the track count CV approach often failed to in-
clude the true population size within the confidence interval can be 
explained as follows. This method originally used a regression with 
data from several well-studied populations, including from Hwange 
National Park, to parameterize a linear equation relating the density 
of tracks (ti) to the density of carnivores (xi).

The method of using regressions like Equation 1 to convert 
track counts to population estimates has been widely applied, for 
example with lions on sandy soils, for which Funston et al. (2010) 
provide the equation ti=3.30xi−0.32. In regressing track density 
on population density to produce this equation, it was assumed 
that estimates of population size were equal to the true population 
size, with no error. This assumption is apparent in two ways. First, 
Funston et al. (2010) stated that because population estimates 
“came from long-term studies of radio-collared individuals, we do 
not provide confidence limits.” Second, the estimates of population 
density were treated as an independent variable measured without 
error in their Figure 2, which shows the regression of track density 
on population density.

Ignoring variance in estimates of population size is problematic 
when developing a method to estimate population size from its 
relationship to another variable (tracks, in this case). The variance 
associated with the original population estimates was not used in 
the regression equation to convert track counts to population es-
timates, and consequently, the precision of population estimates 
using this method is overstated: Confidence limits are affected by 
the sampling variance of tracks, but not by the sampling variance 
associated with a specific track density, because it was assumed to 
be zero. Funston et al. (2010) did not describe the methods used to 
produce the population estimates included in their regression, be-
yond noting that they came from long-term studies of radio-collared 
individuals. However, the variance of such population estimates for 
large carnivore populations is appreciable, even with intensive, long-
term monitoring using radio-collars (e.g., see M'Soka, Creel, Becker, 
& Droge, 2016; Mweetwa et al., 2018; Rosenblatt et al., 2014). This 
uncertainty is too large to ignore, but it is not addressed by surveys 
that use the methods of Funston et al. (2010) to convert estimates of 
track density to estimates of population density. Consequently, the 
precision of these population estimates is overstated. As a result, the 
associated confidence intervals often do not contain the true pop-
ulation size. Additionally, the bias in the estimates is inconsistent, 
making it of no value for monitoring population trends.

Compounding this problem, track surveys use �̂ and �̂  from 
Equation 1 to convert the confidence limits for track density into 
confidence limits for carnivore density. This conversion (incorrectly) 
treats the relationship between track and carnivores as if it was a 
back-transformation, rather than (correctly) applying the equation 
for the variance of a linear function. When a variable (e.g., lion den-
sity) is a linear function of other variables (e.g., track density), then 
the mean of the linear function is equal to the linear function applied 
to the constituent means, but the variance of the linear function is 
not equal to the linear function applied to the constituent variances. 
To clarify, if X1, X2, … Xn are independent random variables with 
means μ1, μ2, … μn and variances �2

1
,�2

2
,… �2

n
 and Y is a linear function 

of these variables

(1)ti= �̂xi+ �̂
(2)Y=

n
∑

i=1

aiXi
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with constants a1, a2, … an, then the mean of Y is

and the variance of Y is

Critically, the constant relating Y (lion density) to X (track 
density) is squared in Equation 4. By treating the conversion of 
variance as a simple linear back-transformation, many recent car-
nivore assessments have compounded the overstatement of pre-
cision by a factor of 3.30 (i.e., the slope �̂  of Equation 1 estimated 
by Funston et al. (2010), which becomes ai in Equation 4). After 
addressing these problems, confidence limits on estimates from 
track surveys would often be >5 times wider than stated and be 
similar to the confidence intervals calculated according to the 
conventional method of calculating CV's. A clear recognition of 
this uncertainty is needed for valid assessments of large carnivore 
population sizes, trends, and the success or failure of efforts to 
conserve them.

We also reported the percentage of times that not a single set 
of lion tracks was encountered. In both Kafue (1.8%) and Hwange 
(6.9%), there were surveys, where 100% of roads were surveyed 
once and no tracks were encountered, though it should be recog-
nized that these values were for simulated densities, lower than 
the true densities in these ecosystems. Nonetheless, the percent-
age of surveys that detect no lion tracks is expected to be appre-
ciable at low but realistic lion densities in areas with few roads, 
which are precisely the areas where better information about lion 
population is needed. In Angola, for example, countrywide esti-
mates were adjusted from >1,000 to <50 largely based on track 
surveys which detected very few lion tracks (Funston et al., 2017; 
Overton, Fernandes, Elizalde, Groom, & Funston, 2017). Anderson 
(2001) pointed out that index calibration survey methods as-
sume that detection probability is constant. Following this logic, 
the number of detections of sign should change in proportion to 
changes in the population, or survey effort. Thus, in our simula-
tions, survey intensities of 80% should have twice as many obser-
vations as survey intensities of 40%. Indeed, in Kafue for example, 
the mean number of tracks detected in regular surveys goes from 
9.9 to 18.3 in surveys with 40% and 80% respectively. However, 
the minimum number of tracks detected at both intensities is 0 
and the maximum number of tracks detected during surveys was 
70 and 78, respectively. Despite a doubling of effort, the ranges 
for the number of detected tracks overlap almost completely. 
This substantial variation in detection, violates the critical ICS 
assumption of constant detection probability, and strongly limits 
the inferences that can be drawn from index calibration methods 
for low-density, wide-ranging species. The sources of variation in 
the number of intersections between tracks of wide-ranging and 

low-density animals and survey transects (speed, distance, and di-
rection of movement of the animals which can be influenced by 
prey density, feeding state, weather, moon phase among many 
other things) apply over large spatial scales and thus, in reality, 
are large. Our simulations indeed show that there is considerable 
variation in detection with no change in underlying population 
density. In theory, this variation could be controlled if many obser-
vations are collected; however, since these animals occur at low 
densities that is not practical, as even when surveys were repli-
cated 80 times (resulting in survey lengths of tens of thousands of 
kilometers), this variation still did not increase the power of track 
surveys to detect population trend to acceptable levels.

6.2 | What is considered to be a “good” population 
estimate?

Numerous authors (Elliot & Gopalaswamy, 2016; Funston et al., 
2010; Kane, Morin, & Kelly, 2015; López-Bao et al., 2018; Reynolds, 
Thompson, & Russell, 2011; Seavy & Reynolds, 2007) emphasize 
the need for reliable, unbiased, and precise population estimates 
for animals. However, only Reynolds et al. (2011) quantifies what 
would be sufficient precision, and they do so using the well-devel-
oped IUCN guidelines criteria for the classification of the status of 
species or populations. Lions are currently listed by the IUCN as 
vulnerable under criterion A2 (Bauer, Packer, Funston, Henschel, 
& Nowell, 2016). Under the A2 criterion, a species will be classified 
as “vulnerable” if there was a 30% decline in the population in the 
past 10 years or 3 generations (whichever is longer) and would be 
classified as “endangered” if there was a 50% decline. For lions, 
the best available data led to an estimate of 25,105 lions in 2018, 
down from 33,292 lions in 2005 (IUCN SSC Cat Specialist Group, 
2018). Measures of precision do not accompany these estimates, 
but in the report it is noted that “Many of the estimates we present 
have very large confidence intervals, and for many the precision 
is not even known.” One recommendation made in the Guidelines 
for Using the IUCN Red List Categories and Criteria (IUCN, 2017) 
is that a precautionary attitude should be adopted, using plausible 
lower bounds, rather than best estimates. Since no uncertainty 
is reported this is not possible, and it leaves room for debate if 
lions should be listed as “near threatened,” “vulnerable,” or “en-
dangered.” Even for an iconic and economically valuable species, 
like the lion, published population estimates often do not meet 
the standard of the IUCN guidelines for assessing the status of 
the species; these standards currently require the power to infer a 
30%, or larger, decline. This would be the equivalent of a HRCIW 
of 30%, yet only a few population estimates, from even fewer 
populations, and all from long-term intensive studies meet those 
standards (Loveridge, Valeix, Davidson, et al., 2016; Mweetwa et 
al., 2018; Rich et al., 2019; Rosenblatt et al., 2014). The argument 
for the need for enough statistical power to detect trends in popu-
lations is not new. Macdonald, Mace, & Rushton noted in 1998 
(summarized in Macdonald, Mace, & Rushton, 2000) that there is 
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a risk with many monitoring schemes, that all the grueling effort 
of fieldworkers is wasted because there is so much “noise” in the 
data that the statistical power is too low to detect changes in a 
species' numbers.

We recommend that monitoring of large carnivores like the lion 
use manageable-sized and representative areas, with methods that 
can detect a 30% change in any 10-year period, according to the 
IUCN guidelines. This criterion could possibly be relaxed for applica-
tion in the field by protected area managers, by using an 80% confi-
dence interval rather than a 95% confidence interval and tightening 
the time span to 5 years or 1 generation time. A usefully precise 
estimate from a well-chosen representative area, as big as could lo-
gistically be covered with the resources available, is a logical basis 
for the management of the wider landscape; as with all sampling 
designs, careful consideration about the broader area that a study 
site represents could allow inferences to guide management over a 
larger area than the study site itself.

Populations where human encroachment and prey densities 
are not changing dramatically are not likely to experience dramatic 
population declines within short times; therefore, surveys to detect 
population changes in such areas should consider periods that realis-
tically reflect lion demography. Most population estimates consider 
subadults and adult lions; cubs are generally considered subadults 
at 18–24 months, but this is not consistent between studies. If there 
is no continuous monitoring program in place, it would be advisable 
to invest in more intensive or longer (or both) surveys bi-annually, or 
tri-annually, versus annual surveys or short one-off surveys. Elliot 
and Gopalaswamy (2016) showed that in a high lion density area, and 
where lions are easily sighted, it is possible to get estimates which 
fall well within the IUCN precision requirements with a 3-month in-
tensive spatial mark–recapture approach. For areas with lower lion 
densities, or where lions are more cryptic, a longer period and/or the 
aid of camera traps, from which lions could also be individually iden-
tified, is more advisable. One has to consider assumptions of closure 
when studying animals over longer periods or choose approaches 
which can deal with closure assumptions over longer periods like 
robust design. Furthermore, we recommend adding the HRCIW to 
population or density estimates as an easy to calculate and easy to 
interpret figure evaluating the estimate's power to detect population 
changes.

6.3 | ICS estimate do not provide “good” 
population estimates

The recently published Guidelines for the Conservation of Lions in 
Africa (IUCN SSC Cat Specialist Group, 2018) includes a chapter on 
the monitoring of lion populations. It focuses heavily two ICS meth-
ods, the track count survey methods and the call-up survey method 
(for a more detailed explanation about the call-up survey method 
see Ogutu and Dublin (1998) and Ferreira and Funston (2010)). In 
conducting call-up surveys, many authors found the response rate, 
and thus the detection probability, of lions to vary with different 

factors—such as complete groups of lions responding or none at all 
(Brink et al., 2013), the distance between the lion and the speaker 
and speaker placement relative to the core area of a pride's terri-
tory, age, sex, presence of resident males, group size, and whether 
the lions possessed a carcass (Whitman, 2006) and the presence 
of cubs (Mills et al., 2001; Ogutu & Dublin, 1998; Whitman, 2006). 
Arguably, the vegetation type, ruggedness of the terrain and wind 
conditions play a role too in how far the sound is carried and from 
how far lions could be attracted. However, the method only distin-
guishes in the response rate between prides with and without cubs 
(Ferreira & Funston, 2010; IUCN SSC Cat Specialist Group, 2018). 
Detection probability is assumed to be constant within these two 
classes, but this assumption is known to be false, violating a critical 
assumption of ICS. The complexity of using the call-up method is 
further increased by the recommendation to calibrate a site-specific 
response rate by testing with >20 groups of lions, something which 
is very rarely achieved. For example, in Niassa Reserve, where some 
of the most extensive call-up surveys have been conducted—with 
up to 153 call-up stations per survey conducted within a year—only 
16 prides in total responded (Begg, Miller, & Begg, 2018). Belant et 
al. (2016) found that lions habituate to call-up sounds very quickly 
and that temporal and spatial variation of broadcasted sound did not 
reduce this habituation (Belant et al., 2017), which would imply that 
areas used for calibration cannot subsequently be surveyed. We did 
not evaluate the call-up method here. However, the similarities in 
the assumptions between both methods, assuming constant detec-
tion probabilities while ignoring many sources contributing to vari-
ation in detection probabilities, together with the recommendation 
of its use in the Guidelines for the Conservation of Lions in Africa 
(IUCN SSC Cat Specialist Group, 2018) leads us to caution against 
the use of the call-up method as well.

Johnson (2008) noted that a variety of methods have been de-
veloped to improve ICS. However, these methods either focus on 
improving or better estimating detection probability, and in our 
simulation, we assumed perfect detection every time that tracks 
intersect a survey. Repeated counts could be used to improve ICS 
in various ways. One approach is to take the maximum count of 
tracks as an estimate of minimum population size. Such a method 
is often used in point counts for birds, for example for estimat-
ing grouse through counting at leks (Walsh, White, Remington, 
& Bowden, 2004). However, these authors acknowledge that the 
probability of detecting an individual must be estimated (by mark–
recapture) to relate lek counts to population size (Anderson, 2003). 
Moreover, in our simulations the maximum count was often greater 
than the population size, except in cases where all duplicates were 
removed, which would typically be impossible for a field study. 
This problem is illustrated in Figure 1, where several prides are 
recorded more than once, crossing different roads at distances up 
to ~8 km apart.

The track count method has also been used to determine oc-
cupancy rather than density (Funston et al., 2017; Henschel et al., 
2016; Midlane et al., 2014), and it is likely that it performs better 
in this context. However, given the large variation in detection 
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between different surveys, revealed by our simulations, caution 
should be used when using track count data for occupancy analyses 
and a simulation study of this method would be of value.

Overall, we conclude that index calibration survey methods are 
not effective for population monitoring of wide-ranging low-density 
species like lions. While inexpensive methods that can rapidly be 
applied across large areas would be of great value, our simulations 
show that the track count methods currently used to monitor a range 
of African large carnivores produce population estimates with over-
stated precision (leading to erroneous inferences about population 
trends or differences between ecosystems) or with power that is too 
low to guide management. To date, only resource and time intensive 
long-term studies with individual recognition have produced popu-
lation estimates with precision sufficient to apply IUCN criteria for 
decisions about the status of lion populations (Loveridge, Hemson, 
Davidson, & Macdonald, 2010; Loveridge, Valeix, Davidson, et al., 
2016; Mweetwa et al., 2018; Rosenblatt et al., 2014). In some cases, 
relatively short intensive studies have yielded precise estimates of 
lion density using spatially explicit capture–recapture (SECR) tech-
niques, in areas with a relatively high population density, with ani-
mals that are easily approachable by vehicle (Elliot & Gopalaswamy, 
2016).

Long-term intensive studies are expensive and challenging 
to maintain but population dynamics are rarely the focal point 
of published studies. Regularly publishing demographic data 
from these studies would provide critical data for conservation 
and management purposes, but might not be a scientific prior-
ity, which often leads to rigorous population trend data not being 
publicly available for many well-studied species of concern. The 
exception to this rule is the 5-yearly large scale monitoring sur-
vey done for tigers throughout India (Jhala et al., 2019), even 
though this survey is done in a single country, it is done across 
many populations, in a consistent manner, which could set an 
example for monitoring of populations of several large carnivore 
species elsewhere across countries and populations. Individually 
based (spatial) capture–recapture methods benefitting from ad-
vances in genetic approaches like pedigree estimation (Creel & 
Rosenblatt, 2013; Spitzer et al., 2016) and improvement in qual-
ity of camera trap images hold some promise to reduce the cost 
of long-term capture–recapture studies and additional research 
and development into these methods is strongly recommended. 
We also echo the call that concludes the lion monitoring chapter 
in the Guidelines for the Conservation of Lions in Africa (IUCN 
SSC Cat Specialist Group, 2018) that there is a need for a more 
comprehensive overview on the collection of lion data, and other 
wide-ranging low-density species, and that a specific handbook 
on lion monitoring methods is urgently needed to increase the 
quality and comparability of lion monitoring throughout its range 
to ensure the survival of the species in Africa and Asia. Such a 
handbook could also be a guideline for monitoring practices for 
other low-density, wide-ranging species for which such practices 
need to be comparable to make wide-range inferences with data 
from different studies, populations and countries.
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