Molecular Diagnosis and Characterization of Honey Bee Pathogens

Eva Forsgren
Faculty of Natural Resources and Agricultural Sciences
Department of Ecology
Uppsala

Doctoral Thesis
Swedish University of Agricultural Sciences
Uppsala 2009
Cover: Honey bee with symptoms of deformed wing virus infection
(Photo: Vitezslav Manak)
Molecular Diagnosis and Characterization of Honey Bee Pathogens

Abstract

Bees are crucial for maintaining biodiversity by pollination of numerous plant species. The European honey bee, *Apis mellifera*, is of great importance not only for the honey they produce, but also as vital pollinators of agricultural and horticultural crops. The economical value of pollination has been estimated to be several billion dollars, and pollinator declines are a global biodiversity threat. Hence, honey bee health has great impact on the economy, food production and biodiversity worldwide.

A broad spectrum of specific pathogens affect the honey bee colony including bacteria, viruses, microscopic fungi, and internal and external parasites. Some of these microorganisms and parasites are more harmful than others and infections/infestations may lead to colony collapse. Knowledge of the biology and epidemiology of these pathogens are needed for prevention of disease outbreak.

The use of molecular methods has increased during recent years offering a selection of powerful tools for laboratories involved in honey bee disease diagnostics and research. Novel diagnostic techniques also allow for new approaches to honey bee pathology where specific and critical questions can be answered using modern molecular technology.

This thesis focuses on molecular techniques and their application within honey bee pathology. Specific questions concerning five disease-causing agents all capable of inducing population depletion of honey bee colonies were addressed. The studied pathogens included two different bacterial species, (*Melissococcus plutonius* and *Paenibacillus larvae*) that cause serious disease in honey bee larvae, one virus (deformed wing virus, DWV) that causes deformity during pupal development and finally, two honey bee pathogenic microsporidia (*Nosema ceranae* and *Nosema apis*) that cause disease in adult bees. Resolving questions concerning prevalence and characterization of these pathogens using newly developed molecular methods has contributed to a better understanding of host-pathogen interactions and epidemiology in the honey bee system. Furthermore, the attained knowledge contributes to improved disease diagnostics and disease prevention in the beekeeping industry and expands the general field of honey bee epidemiology.

Keywords: *Apis mellifera*, *Melissococcus plutonius*, *Paenibacillus larvae*, deformed wing virus, *Nosema ceranae*, PCR, qPCR, rep-PCR, PFGE.

Author’s address: Eva Forsgren, SLU, Department of Ecology, P.O. Box 7044, 750 07 Uppsala, Sweden
E-mail: eva.forsgren@ekol.slu.se
Dedication

To my parents.
Till mina föräldrar, Walter och Laila.

Life is half spent before we know what it is.

Jacob Cats, Moral Emblems, 1632
Contents

List of Publications 7

Abbreviations 9

1 Introduction 11

2 The honey bee 13
 2.1 The honey bee colony 14
 2.2 Social immunity and pathogen transmission 14
 2.2.1 Step 1 and 2. Pathogen uptake and intake 15
 2.2.2 Step 3. Establishment of the pathogen in the nest 15
 2.2.3 Step 4. Vertical and horizontal transmission between individuals 15
 2.2.4 Step 5. Vertical and horizontal transmission between colonies 15
 2.3 Individual immunity 16

3 Honey bee parasites and pathogens 19
 3.1 Bacteria 19
 3.1.1 Melissococcus plutonius 20
 3.1.2 Paenibacillus larvae 22
 3.2 Parasitic mites 23
 3.2.1 Varroa destructor 23
 3.2.2 Tropilaelaps mercedesae 24
 3.3 Viruses 24
 3.3.1 Deformed wing virus 24
 3.4 Microsporidia-Nosema 26
 3.4.1 Nosema apis 26
 3.4.2 Nosema ceranae 27

4 Methods 29
 4.1 Nucleic acid detection 29
 4.1.1 DNA and RNA extraction 30
 4.1.2 Polymerase chain reaction 30
 4.1.3 Real-time PCR 32
 4.1.4 Repetitive PCR 36
 4.1.5 Pulsed Field Gel Electrophoresis 36
 4.1.6 DNA sequencing 36
5 Conclusions and future challenges 39
References 41
Svensk sammanfattning 53
Acknowledgements - Tack 57
List of Publications

This thesis is based on the work contained in the following papers, referred to by Roman numerals in the text:

IV Forsgren E, Fries I. Comparative virulence of *Nosema ceranae* and *Nosema apis* in European honey bees (Submitted manuscript).

Papers I–III are reproduced with the permission of the publishers: Springer Verlag (I & III) and the Society for General Microbiology (II).
Related publications

Abbreviations

- **AFB**: American foulbrood
- **CCD**: Colony collapse disorder
- **cDNA**: Complementary DNA
- **DNA**: Deoxyribonucleic acid
- **Cq**: Quantification cycle
- **dNTP**: Deoxyribonucleotide triphosphate
- **DWV**: Deformed wing virus
- **EFB**: European foulbrood
- **FRET**: Fluorescence resonance energy transfer
- **NFQ**: Black-hole non-fluorescent quencher
- **OIE**: Office International des Epizooties (World Organization for Animal Health)
- **PCR**: Polymerase chain reaction
- **PFGE**: Pulsed field gel electrophoresis
- **Rep-PCR**: Repetitive PCR
- **RNA**: Ribonucleic acid
- **RT**: Reverse transcriptase
- **RT-qPCR**: Quantitative real-time RT-PCR
- **QC**: Quality control
- **qPCR**: Quantitative real-time PCR
1 Introduction

Honey bees are important not only for the honey they produce; they also are vital pollinators of agricultural and horticultural crops. It has been estimated that one-third of the human diet can be traced directly or indirectly to bee pollination (Delaplane & Mayer, 2000; McGregor, 1976) and the economic value of pollination is estimated to several billion dollars (Anonymous, 2009; Anonymous, 2008b). Furthermore, a decline in pollinators is a global threat to biodiversity and honey bees are key generalist pollinators (Jaffé et al., 2009). Hence, the honey bee health has a great impact on economy and biodiversity worldwide.

Colony depletion and disease outbreak in managed honey bees is not unusual and has been of great concern for man all through history. However, in recent years there has been an increasing worldwide focus on honey bee health since serious colony losses and a decline in bee populations have been reported all over the world. In 2006, the term Colony Collapse Disorder (CCD) was used to describe a phenomenon of large-scale, unexplained loss of managed honey bee colonies (vanEngelsdorp et al., 2007). Numerous causes for CCD have been proposed (including pathogens), but no single factor alone seems to be responsible. The leading hypothesis today is that CCD may be a syndrome caused by a combination of many different factors working together synergistically (Anonymous, 2009), although honey bee pathogens clearly play an important role in colony collapse.

A large diversity of microorganisms are associated with honey bees (Olofson & Vasquez, 2008; Gilliam, 1997) most of them commensals, but some are pathogens (disease causing organisms) affecting adult bees and brood. Some of these pathogens are more harmful than others and infections may lead to colony collapse. Knowledge of the biology and epidemiology of
these infections is urgently needed for prevention of disease outbreak and colony losses.

Up until recently, reliable analytic techniques for the study of many honey bee pathogens have been lacking. For example, the cultivation-dependent techniques used to study honey bee pathogenic bacteria have proved to be very insensitive (Forsgren et al., 2008; Hornitzky & Smith, 1998). Modern diagnostic technologies offer new approaches to honey bee pathology where specific and critical questions can be answered. These include novel immunological, biochemical and molecular techniques. The use of molecular diagnostics in particular has increased during recent years and has become a powerful tool in laboratories involved in disease diagnostics and research in many fields. However, despite major advances made over the last few years, basic knowledge about some of the honey bee pathogens is still lacking. The increasing worldwide interest in honey bee health together with more focused basic and applied research in this important field will hopefully provide deeper insight. This is much needed if we are to mitigate the negative effects on honey bee populations caused by escalating disease outbreaks.

The work presented in this thesis aimed to investigate epidemiological aspects, such as transmission or virulence, of five disease causing agents, all capable of inducing population depletion and colony collapse. This work has provided important knowledge concerning prevalence as well as characterization of these honey bee pathogens and has further resulted in a better understanding of epidemiology and host-pathogen interactions in the honey bee system. Moreover, the results may help produce more coherent and reliable results from standardized analytic methods. This is a key factor for broadening our general knowledge of infections in honey bees and to further improve diagnostic tools for disease prevention in the beekeeping industry.
2 The honey bee

Two species of the genus *Apis* (the true honey bees), have long attracted the special attention of man. These are the European honey bee, *Apis mellifera* (*Figure 1*), and the physically smaller but very similar Asian honey bee, *Apis cerana* (*Figure 3*). These species have been of particular interest to man because they produce large amounts of honey and can be kept as “domesticated animals” in movable nests or hives. During the past centuries, the European honey bee has been transported all over the world and is widely distributed. The Asian honey bee is restricted to South East Asia, China, eastern Russia and Japan but is to some extent being actively replaced by *A. mellifera*.

Honey bees are well studied insects. Many detailed descriptions of the biology of the honey bee can be found in the literature, for example Seeley (1995) and Winston (1987). Some of the basic features of the honey bee, *A. mellifera* in temperate climate are described below.

![Figure 1. Honey bee (*Apis mellifera*) on lavender. Photo: Barbara Locke.](image-url)
2.1 The honey bee colony

Feral honey bee colonies usually build their nests in a hollow space, for example, a log cavity. The nest is a shelter for the bees and the comb, with its hexagonal cells, is used for brood rearing and storage of pollen and nectar. Many characteristics of feral colonies have been incorporated into the design of man-made bee hives for apiiculture.

A honey bee colony typically consists of three castes: a single reproductive female - the queen, a few hundred drones and between 40-60,000 worker bees when the colony population peaks in summer. Development of all three castes involves four life stages: egg, larva, pupa and adult. The queen lays either fertilized eggs (i.e., diploid) that normally develop into workers or queens, or unfertilized eggs (i.e., haploid) that develop into drones in the bees wax cells. During larval development, the larvae spin cocoons and change into pupae after workers have capped their cells with wax. The pupae transform into adults within the cells and then chew through the wax cell capping and emerge.

The worker bees are non-reproductive females that exhibit a temporal division of labor throughout their life beginning “in-hive tasks” such as building combs, feeding and tending the brood. After two to three weeks they begin to forage for pollen and nectar. During the summer season, the life-span of the individual bee is no more than 4-5 weeks. The drones are reproductive males with the sole function to mate with virgin queens and they are ejected from the colony at the end of the season.

Beside the individual level reproduction briefly described above, there is a colony level reproduction (i.e., swarming). The old queen leaves the colony with a majority of the workers that locate a suitable nest-site where the new colony settles. The remaining workers and a newly reared virgin queen are left behind; the virgin queen mates with drones during a mating flight, and starts laying eggs, bringing the swarm cycle to completion.

2.2 Social immunity and pathogen transmission

The honey bee colony can be considered a superorganism where each individual bee is dispensable just like a single cell in a human body. Division into two or several colonies is fundamental for colony fitness (Moritz & Southwick, 1992), and the two levels of reproduction are important when discussing pathogen transmission and colony immunity.

Transmission of pathogens can be either horizontal (between individuals within a single generation) or vertical (between an individual from one generation to another in the next generation). In honey bee colonies, these
modes of transmission work on two levels; intra- and inter-colony level (Fries & Camazine, 2001). The colony immune response is based on consequences of pathogenic pressure at both individual and colony level (Cremer et al., 2007). A short résumé of the steps of pathogen invasion into a honey bee colony (Figure 2) is as follows;

2.2.1 Step 1 and 2. Pathogen uptake and intake
A new infection occurs when a pathogen enters the colony either vertically from the mother colony or from outside. Viral infections can be introduced into a colony with mechanical and biological vectors, but horizontal transmission and uptake independent of vectors also exists. Foragers may bring pathogens into the colony from the external environment. Drifting (when forager bees enter a colony other than their own) is example of how an infected bee can introduce a pathogenic agent from a neighbouring colony. Specialised guard worker bees control the nest entrance and may prevent the entry of infected foragers (Drum & Rothenbuhler, 1985).

2.2.2 Step 3. Establishment of the pathogen in the nest
Irrespective of whether a pathogenic agent enters the colony actively or via vertical transmission, the pathogen has to establish itself in the internal environment. Some pathogens successfully multiply within the individual bee or larvae, but hygienic behaviour among honey bees such as constructing nests from antimicrobial materials (Gilliam et al., 1988) or the quick removal of dead and infected individuals (Spivak & Reuter, 2001) are obstacles a pathogen needs to overcome in order to establish an infection in the colony.

2.2.3 Step 4. Vertical and horizontal transmission between individuals
The probability of a healthy bee becoming infected is a function of (a) the infectiousness of the infected individual, i.e., the number of infectious particles it can transfer to its nestmates, (b) contact rate and type of interaction, and (c) the susceptibility of the non-infected individuals. Both horizontal and vertical transmission occurs within the colony (de Miranda & Fries, 2008). Collective defense mechanisms to prevent pathogens from spreading between group members are implemented at any of these steps (Cremer et al., 2007).

2.2.4 Step 5. Vertical and horizontal transmission between colonies
Honey bee pathogens are transmitted vertically when colonies reproduce by colony fission (swarming). Horizontal transmission to neighbour colonies is
also likely to occur with infected drifters, when an infected colony is robbed out or with beekeeping practices that can involve interchanging equipment between colonies.

Figure 2. Pathogen transmission in honey bees. 1. Pathogen entry into host colony. 2. Pathogen entry into individuals. 3. Multiplication within individuals. 4. Transmission between individuals. 5. Transmission between colonies. Solid arrows indicate horizontal transmission. Dotted arrows indicate vertical transmission.

2.3 Individual immunity

Insect immunity shows many similarities to the innate immune response of vertebrates. Innate immunity is the first line of internal defense in a host. This defense allows all animals (and plants) to detect infectious agents and to activate a set of responses for controlling the infection (Dostert et al., 2008). Innate immunity involves a diverse set of actions such as the secretion of antimicrobial peptides, phagocytosis, melanization and enzymatic degradation of pathogens (Hoffman, 2003; Hultmark, 2003). The study of innate immunity in both vertebrate and invertebrate models has shown that some of these mechanisms are ancient, and have been conserved throughout evolution (Hoffman, 2003).
Recent sequencing of the honey bee genome (Weinstock et al., 2006) made analysis of the immune components in honey bees possible. A comparison between the *A. mellifera* genome and the sequenced *Drosophila* and *Anopheles* genomes revealed that honey bees possess only one-third as many genes involved in insect immunity. It has been suggested that the diminished immune capacities in individual bees reflect either the strength of their social immunity or a tendency to be attacked by a more limited set of pathogens (Evans et al., 2006).

*Figure 3. A colony of Asian honey bees, *Apis cerana*. The queen is seen in the middle of the picture surrounded by workers. Photo: Ingemar Fries.*
3 Honey bee parasites and pathogens

Honey bee diseases have been a concern of man for thousands of years, and Aristotle (384-322 B.C.) described such disorders. Considering the high genetic relatedness and high density in the colony, honey bees are afflicted by relatively few diseases. However, some specific pathogens and parasites affecting adult bees, larvae and pupae have adapted to the honey bee colony, and are capable of causing colony collapse. Although many of the pathogens may kill the individual they infect, their effects on the colony are more unpredictable. Some infections may lead to colony collapse, whereas others (although lethal to the individual) are less virulent at the colony level.

This thesis includes work concerning five of the most important disease causing organisms of honey bees which are all capable of causing depletion in honey bee colonies. Results from the studies included in the thesis are presented in chapter 3 and 4, highlighted in bold letters.

3.1 Bacteria

The name “foulbrood” was first introduced as a descriptive name of a honey bee brood disease characterized by a foul smell (Schirach, 1769). The symptoms of foulbrood disease were further described in the late 19th century (Cheshire & Cheyne, 1885), but it was not until 1912 that it became clear that there were actually two honey bee brood diseases assigned the same name (White, 1912); European foulbrood (EFB) caused by the bacterium *Melissococcus plutonius* (Bailey, 1983; Bailey, 1956; Paper I) and American foulbrood (AFB) caused by the spore forming bacterium *Paenibacillus larvae* (Paper II). Both species are gram-positive bacteria belonging to the phylum Firmicutes (Figure 4). *P. larvae* belong to the genus *Paenibacillus* in the family Paenibacillaceae and *M. plutonius* belongs to the monospecific genus *Melissococcus* within the Enterococcaceae family.
3.1.1 *Melissococcus plutonius*

The causative agent of EFB, *M. plutonius*, is a Gram-positive, lanceolate coccus, sometimes pleomorphic and rod-like. The bacterial cells occur singly, in pairs or in chains of various lengths. *M. plutonius* is microaerophilic to anaerobic and needs carbon dioxide for growth. European foulbrood was originally thought to be caused by *P. alvei* (Cheshire & Cheyne, 1885) but was later described as caused by the bacterium *Bacillus pluton* (White, 1912). The organism was first cultivated and characterized by Bailey (1956) who concluded that *Streptococcus pluton* would be a more suitable name for the bacterium. Later, a new monospecific genus *Melissococcus* was created and the type species was named *Melissococcus pluton* (Allen & Ball, 1993; Bailey & Collins, 1982a; Bailey & Collins, 1982b). The name was later modified to *Melissococcus plutonius* (Truper & dé Clari, 1998). Cai and Collins (1994) made a comparative sequence analysis revealing that *M. plutonius* is a close phylogenetic relative of the genus *Enterococcus*. Furthermore, isolates of *M. plutonius* are remarkably homogenous based on morphological, physiological and immunological (Allen & Ball, 1993; Bailey & Gibbs, 1962) as well as genetic studies (Djordjevic et al., 1999; Dancer & Barnes, 1995).
Several other bacteria may be associated with EFB (*Achromobacter euridice, Enterococcus faecalis, Paenibacillus alvei* and *Brevibacillus laterosporus*), and at one time been considered the primary pathogen of EFB. However, no experimental data have been presented to justify such claims. In contrast, infectivity tests causing disease in bee colonies with cultured *M. plutonius* have been reported (Bailey & Locher, 1968; Bailey, 1963) although more severe clinical symptoms were observed when using extracts from naturally EFB infected larvae (Bailey, 1963; Bailey, 1960).

EFB affects mainly uncapped brood, killing honey bee larvae usually when they are 4 to 5 days old. The infected larva move in the brood cell, and instead of the normal, coiled position, the larva die displaced in its cell, twisted around the walls or stretched out lengthways. The color of the larvae changes from pearly white to yellow, then brown and finally, when they decompose, grayish black (Bailey, 1960). Some larvae may also die after the cell is sealed, resulting in sunken capping resembling the symptoms of AFB. If a high proportion of the larvae die, the brood pattern appears patchy and sometimes gives off a foul or sour smell.

The conventional view of EFB is that it is caused by the pathogen *M. plutonius*, but it has also been suggested that *M. plutonius* is a ubiquitous commensal in honey bees (Dancer, 2004). Few studies have been made on actual outbreaks of EFB, and new techniques enables studies of the occurrence and spread of *M. plutonius* in honey bee colonies with and without disease symptoms. Considering the increased incidence of EFB in some parts of the world, deeper knowledge of the epidemiology and virulence of the causative agent is of great importance. In Paper I, we investigated the occurrence and distribution of *M. plutonius* in diseased and healthy larvae in colonies with and without symptoms of EFB using a hemi-nested PCR (Djordjevic et al., 1998).

The obtained data showed a strong correlation between occurrence of *M. plutonius* and clinical symptoms of EFB, and we could conclude that *M. plutonius* is not ubiquitous, but indeed an infectious pathogen. Furthermore, even in colonies with severe symptoms of disease, not all individuals are colonized by the bacterium. *M. plutonius* can be detected in larvae and pupae without any clinical symptoms although mainly detected in diseased larvae within limited areas of the brood (Paper I). In a related article, Belloy et al. (2007) found that the bacterium is more frequent among adult bees compared to larvae in diseased colonies and that more than 90% of the adult bees are carriers of *M. plutonius* in symptom free colonies found in apiaries with the disease. Adult worker bees transmit the bacterium not only within the colony, but also between colonies and apiaries (Belloy et al., 2007; McKee et al., 2003).
3.1.2 *Paenibacillus larvae*

American foulbrood (AFB) is a common bacterial disease affecting apiculture worldwide (Ellis & Munn, 2005). AFB is classified on list B of the World Organization for Animal Health (OIE, Organization International des Epizootics). The definition of “List B” diseases is transmissible diseases which are considered to be of socio-economic and/or public health importance within countries and is significant in the international trade of animals and animal products.

The disease is caused by *Paenibacillus larvae* (Paper II), a spore-forming, Gram-positive rod-shaped bacterium. The vegetative bacterial cell is about 2.5–5 μm by 0.5–0.8 μm and motile due to its peritrichous flagellae. The inactive forms of the bacterium, the endospores, are extremely resilient and may still be infectious after decades (Matheson & Reid, 1992).

The bacterium was first described as *Bacillus larvae* (White, 1906) and has been reclassified several times. A closely related species, *Bacillus pulviferiens*, was described as the causative agent of a rare disease called “powdery scale disease” (Katznelson, 1950), and the two sister species were later named *Paenibacillus larvae* and *Paenibacillus pulviferiens* (Ash et al., 1993; Ash et al., 1991). In 1996, a revised classification to *Paenibacillus larvae* subspecies *larvae* and *Paenibacillus larvae* subspecies *pulviferiens*, respectively, was suggested (Heyndrickx et al., 1996). However, following analysis of brood samples sent to the honey bee diagnostic laboratory at SLU, Uppsala, it was obvious that clinical symptoms of AFB could also be caused by *P. pulviferiens*. This initiated the collaborative study presented in Paper II. After a final revision the bacterium is now classified as one species, *Paenibacillus larvae*, without any subspecies differentiation (Paper II).

Strains of *P. larvae* can be subdivided into genotypes based on rep-PCR (see 4.1.4) using ERIC-primers (Genersch & Otten, 2003; Versalovic et al., 1994). Genotypes differ in prevalence (Loncaric et al., 2009; Peters et al., 2006; Genersch & Otten, 2003) as well as in virulence, course of infection (Genersch et al., 2005) and sensitivity to heat treatment and storage (Forsgren et al., 2008). Other characteristics, such as colony morphology and biochemical properties of the genotypes are further described in Paper II.

Young larvae become infected through ingestion of contaminated food, and the bacterial spores germinate and proliferate in the midgut lumen before they start to breach the epithelium and invade the haemocoel (Yue et al., 2008). The colonization of the larval midgut has been suggested to be one of the key steps in the pathogenesis of *P. larvae* (Yue et al., 2008). Newly hatched larva may become infected by as few as 10 spores (Woodrow, 1942), but the dosage-mortality relationship is greatly
influenced by larval age, larval genetic constitution and bacterial strain (Genersch et al., 2005). Thus, the number of spores needed to cause disease in individual larvae is very variable (Ashiralieva & Genersch, 2006).

The symptoms of the disease are typical; the remains from dead brood in sealed cells consist of a brownish, sticky substance sometimes with a foul smell. If drawn out with a matchstick, the larval remains will form a glue-like thread. If these remains are left to dry, it will eventually form a black scale in the bottom of the cell. These larval remains have been reported to contain as many as 2.5 billion spores (Sturtevant, 1932).

Data presented in Paper II showed that all *Paenibacillus* species/genotypes caused symptoms of AFB in larval bioassays and the polyphasic taxonomic study did not support subspecies differentiation. The extensive experimental study resulted in a final classification of the bacterium as one species, *P. larvae* without any subspecies differentiation and a revision of the OIE-manual (Anonymous, 2008a), where the causative agent of AFB has been changed from *P. larvae* subspecies *larvae* to *P. larvae* without subspecies differentiation.

3.2 Parasitic mites

Mites (Acari or Acarina) are truly ubiquitous and have successfully colonized nearly every known terrestrial, marine, and fresh water habitat. Many kinds of mites parasitize insects and animals where they live and multiply on almost any external or internal surface of their host. Several species have specialized to a life within the tracheal system of insects, including locusts and bumble bees, and at least 40 species have been associated with honey bees (Eickwort, 1988). To date, eight species are known to parasitize *A. mellifera* (Anderson & Morgan, 2007; Anderson & Trueman, 2000; Bailey & Ball, 1991).

3.2.1 Varroa destructor

The ectoparasitic mite, *Varroa destructor* (Anderson & Trueman, 2000) is an obligate honey bee parasite that feed on the hemolymph of the brood and adults. The parasitism of the mite involve different mechanisms that may weaken the colony, and the role of *V. destructor* as a vector of bacterial, fungal and viral diseases in particular is well documented (Cox-Foster et al., 2007; Yang & Cox-Foster, 2007; Shen et al., 2005; Liu, 1996; Gliński & Jarosz, 1992). Honey bee viruses that normally occur at low, non-epidemic levels have become epidemic as this new route of transmission has appeared (Sumpter & Martin, 2004). The depletion of honey bee colonies infested by
V. destructor is commonly attributed to viral infections, and the mite also act as a biological (reproductive) vector for some viruses (Gisder et al., 2009; Yue & Genersch, 2005), including deformed wing virus, DWV (see 3.3.1 and Paper III).

3.2.2 Tropilaelaps mercedesae

Other external parasites of honey bees are mites in the genus *Tropilaelaps*. *Tropilaelaps clareae*, whose natural host is the giant honey bee, *Apis dorsata*, has also been found on *A. mellifera* throughout South East Asia (De Jong et al., 1982). Recent data redefines the *Tropilaelaps* mite that can reproduce on *A. mellifera* brood as two separate species, *T. clareae* and *Tropilaelaps mercedesae* (Anderson & Morgan, 2007). The other two species (*Tropilaelaps koenigerum* and *Tropilaelaps thaii*) appear to be harmless to *A. mellifera* (Anderson & Morgan, 2007). Heavy colony losses caused by *Tropilaelaps* spp. have been reported (Camphor et al., 2005) and *Tropilaelaps* infestations may be considered more damaging to *A. mellifera* than *Varroa* infestations. The *Tropilaelaps* mites cannot feed on adult bees and die within a few days without access to brood (Woyke, 1987), limiting its expansion to temperate climates with extended brood-free periods. Hence, global climate changes may have a direct effect on the occurrence, emergence and spread of *Tropilaelaps* mites.

3.3 Viruses

Virus infection in bees was first described by White (1913) who observed that a filterable agent from diseased larvae could cause sacbrood disease in honey bees. Since then, at least 18 honey bee viruses have been reported worldwide (Ribière et al., 2008; Chen & Siede, 2007; Ellis & Munn, 2005). Many viruses associated with insects can cause asymptomatic infections, and honey bees may carry virus which generally provoke no visible symptoms. The recent introduction of the *V. destructor* to *A. mellifera* colonies worldwide has changed the situation. Several studies implicate that the combination of this parasitic mite and certain viral infections may pose a serious threat to the health of honey bee colonies (Nordström et al., 1999; Ribière et al., 2008; Berenyi et al., 2006; Chen et al., 2006; Ball, 1993; Ball & Allen, 1988).

3.3.1 Deformed wing virus

Deformed wing virus is one of the few viruses that cause well-defined disease symptoms in infected bees. As the name of the virus indicates, one of
the characteristic symptoms is deformed or poorly developed wings in the newly emerged bees from affected colonies.

Deformed wing virus belongs to the genus Iflavirus, consists of a single, positive strand RNA genome and produces a 30nm icosahedral particle (Lanzi et al., 2006). Previous studies of the genetic variability and population structure have described DWV to be rather homogenous (Berenyi et al., 2007; Fujiyuki et al., 2006), but the results presented in Paper III revealed considerable heterogeneity and polymorphism.

Overt DWV infections are invariably associated with V. destructor infestations (Martin, 2001) while in the absence of the mite, DWV seem to persist as a covert infection (deMiranda & Genersch, 2009). The mite acts as a mechanical vector but is also a potential biological vector, since DWV is able to replicate within mites (Yue & Genersch, 2005; Ongus et al., 2004). Development of deformed bees with crippled wings is positively correlated to the DWV titers in the parasitizing mites (Gisder et al., 2009; Bowen-Walker et al., 1999).

Colonies of European honey bees infested by Tropilaelaps spp. can occasionally contain bees emerging with crippled wings (Sharma et al., 1994; Sihag & Singh, 1991; Burgett & Akratanakul, 1985). Both the Tropilaelaps and Varroa mites feed on honey bee brood, and Varroa mites transmit viral particles when feeding on the hemolymph of pupae or adult bees. To investigate whether DWV could be linked to Tropilaelaps infestation of European honey bee colonies, brood and adult bees from one Tropilaelaps spp. infested A. mellifera colony was assayed for DWV (Paper III). A quantitative real-time RT-PCR assay (RT-qPCR) was developed to quantify DWV in infested brood and Tropilaelaps mites.

Recently presented data redefines the Tropilaelaps reproducing on A. mellifera brood as two separate species (Anderson & Morgan, 2007). We used these new species criteria to identify the Tropilaelaps species in our samples as T. mercedesae (Paper III).

Our results strongly indicated that infestation of A. mellifera by T. mercedesae is linked to DWV infections similar to those that occur with Varroa infestations, and that the viral load in infested pupae is positively correlated to the amount of virus present in the corresponding mites (Paper III). The extremely high DWV titers in the infesting mites compared to corresponding infested pupae suggests viral replication in the mites. Direct evidence for DWV replication within the T. mercedesae similar to the Varroa-DWV association has recently been presented (Dainat et al., 2009). Thus, it is highly probable that symptoms in A. mellifera colonies infested by T.
mercedesae are due to DWV infections similar to the interaction between DWV, A. mellifera and V. destructor (Sumpter & Martin, 2004).

3.4 Microsporidia-Nosema

Microsporidia are obligate intracellular parasites belonging to the cluster Fungi (Sina et al., 2005). Thus, taxonomically microsporidia are highly specialized parasitic fungi dispersing between hosts as spores. Nosema is a genus within microsporidia causing infection in the ventriculus (nosemosis) of adult honey bees. Adult bees contract infectious spores mostly through combs soiled with feces from infected bees (Bailey, 1955), or through contaminated food/water (L’Arrivée, 1965). Digested spores germinate in the midgut extruding the polar filament with great force. To initiate infection, the cell membrane of an epithelial cell must be penetrated by the polar filament and the diplokaryotic sporoplasts become injected into the host cell cytoplasm. Following injection, the sporoplasm matures into a mother cell (meront) that multiply inside host cells. Two types of spores are produced, internal spores germinating inside the host cell and responsible for the between-cell transmission and external spores representing the transmission between hosts. When released into the midgut, the external spores may germinate and reinfect the epithelium, but most of them accumulate in the bee’s rectum and are voided with the feces providing new sources of infection (Fries, 1993).

In A. mellifera, nosemosis was for decades thought to be exclusively caused by Nosema apis, but recent studies have shown that another Nosema species, Nosema ceranae (earlier considered restricted to A. cerana) also infect A. mellifera (Huang et al., 2007; Fries et al., 2006; Higes et al., 2006). Infection experiments have demonstrated that both parasites are cross-infective across host species, but that N. apis develops less well in A. cerana compared to N. ceranae in A. mellifera (Fries, 1997; Fries & Feng, 1995).

3.4.1 Nosema apis

Nosema apis was first described by the German researcher Enoch Zander (1909). N. apis is known to be distributed in honey bees worldwide (Ellis & Munn, 2005; Matheson, 1993), and causes serious problems to apiculture in temperate climates. At colony level, infections of N. apis are correlated with winter loss of colonies, poor spring build-up and reduced honey yield (Fries, 1988).

There is no specific outward sign of disease in individual bees infected with N. apis, although the ventriculus of heavily infected bees may appear
opaque-white and swollen (Fries, 1997). Survival data comparisons from
cage experiments suggest that dosing newly-emerged bees with *N. apis*
may result in a relatively fast death for some bees and a slower death for most
of the bees. Also, spore-loads may vary greatly, with no clear relationship to
survival time (Malone & Giacon, 1996).

3.4.2 *Nosema ceranae*

Nosema ceranae is a microsporidian parasite presently known to infect both
the Asian honey bee, *A. cerana*, and the European honey bee, *A. mellifera*
(Higes et al., 2006; Fries et al., 1996). Recent studies suggest that *N. ceranae*
made a host switch to *A. mellifera* over 10 years ago, displacing *N. apis* as the
most common *Nosema* infection in many regions of the world (Chen et al.,
2008; Klee et al., 2007; Paxton et al., 2007). It has also been suggested that
N. ceranae may contribute to the recent large numbers of colony losses in
Europe and the United States (Cox-Foster et al., 2007; Martin-Hernandez et al.,
2007; Oldroyd, 2007).

The little data yet available on colony level virulence of *N. ceranae*
infections is contradictory. Several studies from Spain suggest that *N. ceranae*
is a highly virulent parasite at the colony level and that infection eventually
lead to colony collapse unless controlled with antibiotics (Higes et al., 2008;
Martin-Hernandez et al., 2007). However, *N. ceranae* infections are
prevalent in many areas where colonies are left untreated without significant
colony losses linked to *Nosema* infections (Invernizzi et al., 2009; Chen et al.,
2008; Siede et al., 2008).

The effect from infections of *N. ceranae* on the individual bee has been
investigated by Higes et al., (2007a). In cage experiments, bees infected with
N. ceranae all died within eight days post infection. However, this high and
rapid mortality has not been confirmed in other reports using cage
experiments and individual feeding (Mayack & Naug, 2009; Paxton et al.,
2007). Although the ID₅₀ value for *N. ceranae* may be somewhat lower, *N.
ceranae* infections do not induce higher mortality than infection caused by *N.
apis* in our experiments (Paper IV). Furthermore, when investigating the
course of infection, the spore load in the individual bee built up more
slowly with *N. ceranae* compared to *N. apis*, and 12 days after infection the
number of spores was almost the same for both parasites (Paper IV). This is
consistent with results from Paxton et al. (2007) where both parasites reach
approximately 30 million spores in the midgut after 10-12 days, and does
not imply a faster or more effective spore production in *N. ceranae*.

Mixed infections with *N. ceranae* and *N. apis* in individual bees are found
in some areas (Chen et al., 2009; Fries & Forsgren, 2009; Paxton et al.,
In order to study within-host competition, bees were individually fed the two *Nosema* species in three relative frequencies (Paper IV) but no clear competitive advantage was found for either of the two parasites. Even though earlier studies suggest that infections caused by *N. ceranae* are lethal for adult bees, no competitive advantage within the individual bee could be seen (Paper IV). The data actually suggest a tendency for the least common variant to be favored, which could reflect a scenario of negative frequency-dependent selection within the host (Weeks & Hoffmann, 2008). This is to our knowledge the first within-host study of multiple *Nosema* species infections in honey bees.

Collective data on the virulence of *N. ceranae* infections (at colony level as well as individual level) is contradictory. The discrepancies may be due to a number of yet unresolved factors such as climatic differences, different isolates of the parasite, nutritional conditions, larval immune response, hygienic behavior or interaction between *Nosema* and the intestinal microbiota of the honey bee larvae. Synergistic effects of all the factors mentioned above may also be of importance. Furthermore, differences in experimental and detection methods may lead to inconsistent results (see section 4.1.3).
4 Methods

Detection of a disease causing agent is of the utmost importance since accurate diagnoses in a timely manner facilitate preventive actions to reduce or impede the spread of a disease.

According to the Merck Manual of Diagnosis and Therapy (Anonymous, 2006), major options for laboratory diagnosis of a pathogen can be classified into following categories:

- Culture based methods
- Microscopy
- Immunological methods
- Non-nucleic acid based methods
- Nucleic acid based methods

Methods within the above mentioned categories all have advantages and limitations and are frequently used within diagnostic microbiology and various research fields. Recent advances in molecular technology are making it increasingly easy to study microbes. Depending on the target molecule, the molecular detection methods can be separated into two categories; nucleic acid or protein detection techniques. Nucleic acid detection methods and its applications in honey bee pathology will be presented in the following chapter.

4.1 Nucleic acid detection

The success of nucleic acid-based methods relies on detecting a DNA (or RNA) sequence that distinguishes the target organism from all other known microbes and from background material including DNA from the host (animal, plants and other species). Thus, the selection of a species or strain-
specific DNA signature is crucial. This “signature sequence” is a nucleotide sequence unique to a specific taxonomic group, for instance a species or a genotype (Phillippy et al., 2007). Upon choosing the organisms DNA signature, a variety of molecular detection techniques can be used to detect the specific marker. An ideal assay is rapid, easy to perform, inexpensive and have high reproducibility. The choice of method may be based on sample type, technological resources among others.

DNA-based detection can be classified into two major groups: non-amplified (including hybridization-based approaches) and those using DNA amplification by polymerase chain reaction (PCR). Within these groups, the number of alternative methods is continuously increasing.

4.1.1 DNA and RNA extraction

All nucleic acid-based protocols require DNA/RNA extraction; hence the quality of the extracted nucleic acid is a critical factor for all these detection techniques (Albuquerque et al., 2009). Since RNA is easily degraded by the ubiquitous presence of endogenous enzymes, the choice of storage method prior to detection is crucial (de Miranda, 2008; Chen et al., 2007). Errors deriving from storage and sample processing become especially evident with quantitative data (see 4.1.3.). In order to determine the quality of the extracted RNA templates used in Paper III, the amplification of a reference gene (RP49) was included in the assay (de Miranda & Fries, 2008) to ensure accuracy of the quantitative results. The expression of the reference gene (RP49) was unchanged through the experiment thus indicating equal RNA quality in all samples.

Although technical advances have simplified the DNA/RNA extraction, allowing for safer, automated and rapid methodologies, PCR inhibition in complex biological samples may still be a problem (Mackay, 2007; Lantz, 1998; Wilson, 1997). Interference from PCR inhibitors in honey has been reported (Piccini et al., 2002; Dobbelere et al., 2001). The protocol published by McKee and co-workers (2003) and used for larval DNA extractions in Paper I proved to be inappropriate for honey samples and adult bees. Using a commercial DNA isolation kit for purifying DNA from honey (Paper I) or adult bees (Belloy et al., 2007) resolved the PCR inhibition problems in this qualitative PCR.

4.1.2 Polymerase chain reaction

The polymerase chain reaction (PCR) is widely employed and allows for rapid, specific and sensitive amplification of target DNA from test samples. The PCR method utilizes a pair of “primers” (short, single stranded pieces
of DNA) designed to hybridize a particular strand of a DNA target. The primers span a target region that is exponentially duplicated during subsequent reactions. The continuous doubling of the DNA is accomplished by enzymes (polymerases) that string together nucleotides to new, complementary DNA strands. The end product of this duplicated region is referred to as “amplicon”, and usually identified using electrophoresis.

The PCR is user friendly and theoretically simple, although DNA/RNA extraction and PCR reactions must be carefully evaluated and optimized (Wilson, 1997). When PCR is used only for detecting the presence or absence of a specific DNA signature, the method is referred to as qualitative PCR (resulting in a yes or no answer).

A variant of PCR is the RT-PCR referring to the detection of RNA by converting it into complementary DNA (cDNA) with reverse transcriptase (RT) followed by PCR. This method is widely used for detection of honey bee virus since the vast majority of these viruses possess an RNA genome (Blanchard et al., 2008; de Miranda et al., 2008; Blanchard et al., 2007; Genersch et al., 2006; Chen et al., 2005; Grabensteiner et al., 2001). The reliability of the RT-PCR is to a high degree defined by the reverse transcriptase part of the reaction, since the performance of this enzyme is far more variable than that of the thermostable DNA polymerase used for the PCR. The development of a more heat tolerant reverse transcriptase and a single reaction buffer made it possible to carry out the cDNA synthesis and PCR amplification in the same tube. The one-step RT-PCR technique was implemented and used in Paper III.

After designing primers for a specific sequence of the target organism, PCR can be used for microbe detection either from cultured isolates or clinical samples. In honey bee pathology, a number of PCR and RT-PCR applications have been described for detection of pathogens in adult bees, brood, honey, pollen and wax (e.g. Chen et al., 2009; Eyer et al., 2009; de Miranda et al., 2008; Blanchard et al., 2007; Gauthier et al., 2007; Higes et al., 2007b; Genersch et al., 2006; Chen et al., 2005; Tentcheva et al., 2004; Lauro et al., 2003; McKee et al., 2003).

When testing the specificity and sensitivity of a PCR protocol, obtaining promising results with pure cultures of your target organism does not necessarily mean similar efficiencies when analyzing different types of samples. The presence of a large amount of genomic background DNA in complex biological samples is likely to reduce both specificity and the detection level of the assay (Iqbal et al., 1997). With the PCR method used for detection of M. plutonius in Paper I, (Djordjevic et al., 1998), we were able to detect 10fg (10^{−14}) of bacterial DNA extracted from pure culture of
the bacteria. However, when the reaction was carried out on an artificially mixed template, i.e. purified *M. plutonius* DNA + purified DNA from healthy larvae, the detection level decreased 10-fold to 100fg (10⁻¹³). Furthermore, the PCR assay published by Djordjevic *et al.* was used not only for increased detection resolution, but also for increased specificity. In contrast to a PCR assay published by Govan *et al.* (1998), the specificity of the primers used in Paper I was verified. The authors used DNA purified from other honey bee pathogens and a range of saprophytic organisms commonly recovered from honey bee colonies as templates in the PCR reaction. No nonspecific amplicons were produced and the assays specificity for *M. plutonius* was verified.

Multiplex PCR uses several primer pairs targeting different loci in a single PCR reaction. This makes it possible to target more than one pathogen in a single assay. However, the applicability of the method is limited and detection levels may be lower partly due to a higher risk for accumulation of nonspecific products (Gyarmati, 2008). Multiplex PCR systems are published for detection and quantification of *N. apis* and *N. ceranae* (Chen *et al.*, 2009; Martin-Hernandez *et al.*, 2007) and multiple virus infections (Teixeira *et al.*, 2008; Topley *et al.*, 2005; Grabensteiner *et al.*, 2001). Although the primers presented and used in uniplex qPCR in Paper IV, the intention when designing a common reverse primer was to equalize the conditions for both amplifications in a qualitative duplex PCR.

4.1.3 Real-time PCR

In contrast to conventional PCR methods, real-time PCR detects the amplicon as it accumulates (in “real” time) and determines the number of new DNA molecules formed in each reaction. It is the detection process that discriminates real-time PCR from conventional “end-point” PCR assays. Real-time PCR needs a fluorescent reporter that binds to the amplicon and reports its presence by fluorescence. As the amount of product accumulates, a fluorescent signal develops that initially increases exponentially. The number of amplification cycles required for the samples response curve to reach a particular fluorescent threshold is called the quantification cycle (Cq) value. Differences in Cq values reflect the differences in initial amount of template.

There are broadly two major variants for amplicon detection: specific or non-specific. Most of the specific real-time PCR chemistries involve hybridization of a fluorophore-labeled oligoprobe using fluorescence resonance energy transfer (FRET) and a black-hole non-fluorescent quencher (NFQ). The non-specific assays uses dyes that will interact with
any and all double stranded DNA, e.g. SYBRgreen I. In general, the specific and non-specific fluorogenic chemistries detect the amplicon with the same sensitivity (Mackay, 2007), and assays based on SYBRgreen I chemistry can be combined with melting (dissociation) curve analysis in order to discriminate between specific and nonspecific amplicons.

Real-time PCR does not always mean quantitative PCR. The majority of real-time PCR applications in microbiology are for qualitative detection of microbes. However, this technique also allows for quantification of target nucleic acids for many purposes. It is assumed that a direct relationship exist between the amount of target nucleic acid and the actual number of microorganisms in a sample, and to strengthen this association the amplification variability should be minimized. The impact of the variables in each assay is more visual than with ordinary PCR, thus permitting improved assay optimization, standardization and normalization (Ferre, 1992).

The amount of the target DNA molecule or template in a sample can be quantified either relatively or as absolute values/numbers. Relative quantification describes changes in amount of the target sequence compared to a reference sequence. Absolute quantification determines the exact number of target molecules in relation to a specific calibrator unit. The quantification calibrator is most commonly created using a cloned amplicon (Paper III), a portion of the target organism’s genome or the purified amplicon itself (Paper IV). Dilutions should be carried out into defined concentrations of unrelated carrier nucleic acid, e.g. yeast tRNA (Bustin et al., 2009) essential for quantitative recovery of small amounts of nucleic acids in dilute solutions. To date, the method developed and presented in Paper III is the only published method for absolute quantification of DWV particles in a sample.

The quality of quantitative data relies upon a number of PCR variables such as

i) variation in template amount between samples
ii) poor or variable quality template (variations in purification and/or storage)
iii) inhibitors (of both fluorescence and amplification)
iv) variation in performance of DNA polymerase,
v) variation in amplification between sample and calibrators (Mackay, 2007).

Although using standardized and effective nucleic acid extraction methods, some inhibiting compounds may still remain and affect the kinetics of the PCR. The choice of enzymes and buffers may therefore be critical.
As a part in the optimization process of the qPCR described in Paper III, two commercially available one-step RT-PCR kits were compared (ABsolute™ MAX QRT-PCR SYBR® Green Mix from Abgene™ and Bio-Rad iScript™ One-Step RT-qPCR Kit). RNA extractions of virus-infected and uninfected adult bees were made using the column based RNEasy™ protocol (Qiagen) as described in Paper III. RNA from the infected bee was diluted in the uninfected bee extraction to look for possible inhibition. The results are indeed very different. No inhibitory effect from the bee RNA extraction could be seen using the kit from Bio-Rad (Figure 5), whereas the RT-qPCR reaction using the ABgene-kit was clearly inhibited by the bee homogenate (Figure 6).

Figure 5. Real-time PCR using Bio-Rad iScript™ One-Step RT-PCR Kit and DWV specific primers detecting RNA from DWV infected bee diluted in RNA preparation of an uninfected bee. Dilutions 10^{-2}, 10^{-3}, 10^{-4} and 10^{-5} are shown. No inhibitory effect from the bee RNA extract is observed. The Cq value is the same for infected bee diluted in H$_2$O as for infected bee diluted in uninfected bee RNA extraction. No nonspecific products or primer-dimers can be detected by the melt-curve analysis.
Figure 6. Results from a real-time PCR using a One-Step RT-PCR Kit from ABgene and DWV specific primers detecting RNA from DWV infected bee diluted in RNA preparation of an uninfected bee. Dilutions 10^{-2}, 10^{-3}, 10^{-4} and 10^{-5} are shown. The difference in Cq value for the DWV infected bee diluted 10^{-2} in uninfected bee RNA extraction compared to dilution in H$_2$O is 5 cycles. In the 10^{-3}-dilution, the inhibition lower the Cq value by 7 cycles. In the 10^{-4}- and 10^{-5}-dilution, the inhibition is total, and the only produced amplicon is nonspecific primer-dimer.

Quantification is based on the assumption that a direct relationship exists between the amount of the target nucleic acid and the actual number of microorganisms in a sample. However, in microsporidia the presence of multiple non-homologous copies of rRNA is common and genetic analyze of a single spore of *N. bombi* demonstrated non-homologous multiple copies of rRNA (O'Mahony *et al.*, 2007; Gatehouse & Malone, 1998). This concern was addressed before performing the qPCR for *N. ceranae* and *N. apis* presented in Paper IV. A pilot study using generic primers for *Nosema* (Klee *et al.*, 2006) was performed as follows:

Spores of *N. apis* and *N. ceranae* were purified and counted under a microscope. Spore solutions of each parasite were adjusted to 1.5X10^7 spores per ml and DNA was extracted from four aliquots of each solution to be
used as templates in a real-time PCR using SYBRgreen I and the generic primers. The average Cq value for *N. apis* templates was 28.03±1.24 and the average value for *N. ceranae* templates was 28.32±1.03. The result indicates that the method used in Paper IV was not biased in favor of any of the two Nosema species.

4.1.4 Repetitive PCR

Repetitive PCR (rep-PCR) is a molecular typing method based on PCR where strain specific patterns are obtained from PCR amplification of repetitive DNA elements (Versalovic et al., 1994). Two main sets of repetitive elements are commonly used for bacterial typing; the repetitive extragenic palindromic (REP) and the enterobacterial repetitive intergenic consensus (ERIC) sequences (Wu & Della-Latta, 2002; Olive & Bean, 1999). A third repetitive element initially thought to be unique to *Streptococcus pneumoniae* is the BOX sequence, now also found in a number of other bacterial species (Olive & Bean, 1999).

Rep-PCR has become the most widely used method of DNA typing, and has also successfully been used to differentiate strains of *P. larvae* (Paper II; Loncaric et al., 2009; Alippi et al., 2004; Genersch & Otten, 2003; Alippi & Aguilar, 1998).

4.1.5 Pulsed Field Gel Electrophoresis

Pulsed field gel electrophoresis (PFGE) of chromosomal DNA is considered the “gold standard” of molecular typing methods (Olive & Bean, 1999). It is a frequently used nonamplified molecular typing method applicable to a wide range of microorganisms, including *P. larvae* (Paper II; Pentikäinen et al., 2009; Wu et al., 2005).

Preparation of bacterial chromosomal DNA are embedded into small agarose plugs, digested with a restriction enzyme producing different numbers of fragments depending on species or isolate. The plugs are then inserted into an agarose gel and subjected to an electrophoresis with the capacity to separate very large DNA fragments ranging from 10 to 800 kb (Schwartz & Cantor, 1984). The patterns are visualized and data analysis of the gel results accomplished by any of a number of the commercially available software packages e.g. GelCompar II (Applied Maths, Belgium).

4.1.6 DNA sequencing

All molecular genetic methods are based on differences in DNA sequences, thus sequencing would appear to be the best approach to differentiate between microbes. However, for several reasons this is not always the case.
DNA sequencing is often directed at a small region of the chromosome, thus examining only a small portion of the sites which can potentially vary between the organisms. This DNA region must further meet several criteria before it can be used for differentiation, and for bacteria and fungi very few sequences exists that meet these criteria (e.g. the variability of the sequence must be sufficient to differentiate between strains and should not be horizontally transmissible). By contrast, DNA sequencing is considered the gold standard for viral typing (Paper III).

Next-generation DNA sequencing technology offer novel and rapid ways for genome-wide characterization with applications within biology, medicine and other fields (Ansorge, 2009; MacLean et al., 2009). These new sequencing methods generate data allowing the assembly of whole microbial genome sequences in days, which may offer new possibilities for honey bee pathogen diagnosis and characterization in the future.
5 Conclusions and future challenges

Using molecular techniques, we could conclude that M. plutonius (EFB) is not ubiquitous in honey bees, but is indeed an infectious pathogen. Consequently, there are apiaries and areas free of EFB justifying preventive actions to reduce the spread of the disease. Furthermore, not all individuals within a diseased colony are infected by the bacterium; it is mainly found in diseased larvae within limited areas of the brood. Hence, correct sampling of brood is crucial for correct laboratory diagnosis. The majority of the adult bees are carriers of M. plutonius in symptom free colonies found in infected apiaries, and adult worker bees transmit the bacterium between colonies and apiaries. Thus, high densities of honey bee colonies and apiaries promote transmission of EFB.

The collaborative study on Paenibacillus subspecies/genotypes clearly demonstrated that all tested strains of the bacterium caused characteristic disease symptoms of AFB in infected larvae. The taxonomic study did not support subspecies differentiation, and the bacterium was reclassified as one species, P. larvae without any subspecies differentiation. Furthermore, a revision of the OIE-manual was made where the causative agent of American foulbrood is now defined as P. larvae. This will allow for correct diagnosis of diseased brood in the future.

Deformed wing virus is present in T. mercedesae and brood infested by the mite. Similar to Varroa infestations in A. mellifera, T. mercedesae is also linked to DWV infections. Although Tropilaelaps spp. has a limited distribution range today, environmental changes may have a direct effect on the occurrence, emergence and spread of the mite. This could also imply major consequences for the spread of viral diseases.

Even though it has been suggested that infections caused by N. ceranae are lethal to adult bees, there seems to be no substantial differences in individual level virulence between N. apis and N. ceranae in cage
experiments. *N. ceranae* infections do not induce higher mortality than infection caused by *N. apis*, and no competitive advantage within host was found for either of the two parasites.

The increased need for detection and characterization of newly emergent or previously unknown endemic pathogens is a challenge to expand our understanding of infectious diseases in honey bees. The driving factors behind choosing a microbial detection method should be sensitivity, specificity and speed. Hence, nucleic acid detection technologies are quickly displacing the traditional phenotypic assays in diagnostic microbiology. However, there is still a lack of standardization among existing in-house assays which may result in the production of incomparable data. For example, the current lack of consensus in how to best perform and interpret qPCR data together with insufficient reporting of the experimental details in many publications have recently been highlighted (Bustin et al., 2009). Following the MIQE-guidelines (Minimum Information of Quantitative real-time PCR Experiments) should indeed be useful in order to obtain better experimental practices for more reliable qPCR results.

The importance of validated quality control (QC) systems for inter-laboratory tests on nucleic acid analysis and real-time PCR has been proven in various fields. Improved collaboration and expanded/refined quality control systems is important when continuing the challenging study of honey bee pathogens, thus permitting more meaningful comparisons. There is a need for reference standards such as plasmid calibrators, primers, probes and exogenous RNA calibrators for comparison of different reversed transcriptase protocols. Expansion in this field would be greatly facilitated if such standards would be available i.e., from an independent source. Overcoming this challenge would facilitate cooperation and lead to more focused efforts to solve the puzzle of honey bee colony losses world-wide.

The efforts made in the field of honey bee pathology summarized in this thesis show the great importance of a deeper understanding and further development of robust and harmonized methods i.e., nucleic acid detection tools. Furthermore, with the tools demonstrated here, new and refined questions of epidemiological importance can be resolved. Improved knowledge of honey bee pathogens is a key factor in the challenge to ensure honey bee health worldwide. Healthy honey bees will in turn sustain biodiversity and food/feed production, thus affecting the long term health and well-being of humans and animals worldwide.
References

wing virus genotypes from diverse geographic origins indicates recent global distribution of the virus. *Applied and Environmental Microbiology* 73, 3605-3611.

and phylogenetic analysis using reverse transcription-PCR. Clinical and Diagnostic Laboratory Immunology, 8, 93-104.

Svensk sammanfattning

Bisamhällen kan drabbas av många olika sjukdomar och farsoter vilket har varit ett bekymmer för människor i alla tider. De senaste åren har ökande globalt fokus riktats mot honungbin och deras hälsa. Anledning är att allvarliga och ökande förluster av bisamhällen har rapporterats över hela världen. År 2006 användes termen Colony Collapse Disorder (CCD) för att beskriva ett fenomen av storskaliga och oförklarliga förluster av bisamhällen i USA. Man har föreslagit flera olika faktorer som orsak till CCD, men ingen enskild faktor har hittills kunnat pekas ut. Den ledande hypotesen idag är att CCD är ett syndrom orsakat av en kombination av många olika samverkande faktorer. Det är dock troligt att sjukdomsalstrande organismer utgör en mycket viktig faktor.

Mikroorganismer kan vara både skadliga och nyttiga. Nyttogörande mikroorganismer finns inte bara fritt i naturen; de återfinns också i stora mängder på och i alla levande varelser. Varje djurart, inklusive honungsbiet, har en för arten karakteristisk normalflora av mikroorganismer. Det finns många olika nyttogörande mikroorganismer i ett bisamhälle, och förhållandevis få som orsakar sjukdom. De sjukdomsalstrande
mikroorganismerna (patogenerna) i bisamhället inkluderar virus, bakterier och svampar. Dessutom finns en rad parasiter (exempelvis kvalster) som kan orsaka skador hos både biyngel och vuxna bin. Några sjukdomar är mer allvarliga än andra och dessa kan leda till att hela bisamhällen dukar under. Att studera hur bisamhållet och dess sjukdomsalstrare fungerar tillsammans är viktigt för att kunna förebygga och förhindra skador och förluster av bisamhällen.

Syftet med den här avhandlingen har varit att utveckla molekylära detektionsmetoder och med hjälp av dessa undersöka bl.a. överföring och sjukdomsalstrande förmåga (virulens) hos fem mikroorganismer som orsakar allvarliga sjukdomar i bisamhället. I studien ingår två olika bakteriearter, (*Melissococcus plutonius* och *Paenibacillus larvae*) som orsakar sjukdom hos biyngel, ett virus (deformed wing virus, DWV) som gör att bin kläcks med missbildningar, samt två mikrosporidier (*Nosema ceranae* och *Nosema apis*) som orsakar tarminfektioner hos vuxna bin. Här följer en kort sammanfattning av respektive studie.

Europeisk yngelröta - *Melissococcus plutonius*

Slutsatserna vi kunde dra var att *M. plutonius* inte är allmänt förekommande hos honungsbin utan faktiskt en smittsam sjukdomsalstrare. I praktiken betyder det att det finns bigårdar och områden som är fria från Europeisk yngelröta och att förebyggande åtgärder kan minska spridning av sjukdomen. Man hittar bakterien i huvudsak hos sjuka larver inom begränsade områden i yngelramarna. Därför är en noggrann provtagning av sjukt yngel avgörande för att man ska kunna ställa en korrekt diagnos. I symptomfria kolonier i smittade bigårdar är en majoritet av de vuxna bina bärare av *M. plutonius*. Bin kan alltså överföra bakterien mellan kolonier och bigårdar, och hög bitäthet (som t.ex. i Schweiz) främjar spridning av Europeisk yngelröta.

Amerikansk yngelröta - *Paenibacillus larvae*

Studien av *Paenibacillus* visade att samtliga testade stammar av bakterien orsakar Amerikansk yngelröta hos infekterade larver. Resultaten gav inget stöd åt en differentiering i underarter, vilket ledde till att vi kunde omklassificera *Paenibacillus larvae* till en art. Bakterien som orsakar AFB definieras nu enbart som *Paenibacillus larvae*.

Deformed wing virus (DWV)

Vi utvecklade en metod för att bestämma antalet viruskopior i ett prov, och kunde, med hjälp av denna, visa att DWV finns i tropilaelapskvalstret såväl som i det angripna ynglet. Liksom vid varroaangrepp i Europeiska bin, sprider tropilaelaps också DWV. Även om tropilaelapskvalstret har ett begränsat utbredningsområde i dag, kan den globala uppvärmningen ha en direkt inverkan på förekomst och spridning av detta kvalster.

Nosemasjuka - *Nosema apis och Nosema ceranae*

Mikrosporidierna *Nosema apis och Nosema ceranae* är intracellulära parasiter som orsakar tarminfektion (nosemasjuka) hos vuxna bin. Det finns idag relativt lite information om skillnader i skadeverkningar av de båda mikrosporidierna, men vissa uppgifter tyder på att *N. ceranae* har en högre sjukdomsalstrande förmåga. Studier gjorda i Spanien har t.o.m. indikerat att infektioner av *N. ceranae* dödar vuxna bin på någon vecka.

Vi ville studera skillnaderna i sjukdomsalstrande förmåga mellan de två *Nosema*-arterna, och infekterade därför individuella bin med blandningar av *N. apis och N. ceranae* i olika proportioner. För att ha möjlighet att senare mäta andelen *N. apis* respektive *N. ceranae* i dessa bin utvecklade vi en artspecifik kvantitativ analysmetod.

Resultaten från studien visade inga större skillnader i sjukdomsalstrande förmåga mellan *N. apis* och *N. ceranae* i individuella bin. Infektioner av *N. ceranae* orsakade inte högre dödlighet än infektion av *N. apis*, och ingen av de två mikrosporidierna hade några konkurrensfördelar inom bin infekterade av båda *Nosema*-arterna.

Slutsats

Acknowledgements - Tack

A lot of people have contributed in many different ways to the accomplishment of this thesis. I am not even going to try to mention all. I will only give name to a few, and to the rest of you; my sincere thanks!

I would like to start addressing my group of supervisors, Ingemar Fries, Anna Lundhagen, Joachim de Miranda and Pia Ek.

In particular, I would like to thank my main supervisor, colleague and friend, Ingemar. Your scientific guidance has been invaluable. Thank you for giving me this opportunity and endlessly encouraging me to finally get a PhD degree. I know I have been reluctant…..

Anna; as a friend, you are a person very close to my heart. As a supervisor you are always clear, give perspective and comments which make me think in new ways.

Joachim; you possess so much knowledge and you are the person always ready to explain things to me.

Pia; you have followed my progress for many years, and was the first to encourage further education.

My best wishes goes to all the wonderful people at the department of Ecology. Thanks to Carol, Anna-Karin W and others who shared the lab with me over the years. In particular, I wish to thank my good friend and colleague, Lena F for always helping out and being such a positive person.

I also want to thank people outside the department for fruitful collaboration, Mats I, Alejandra, Tobias, Elke, Jaana and Wei among others. Special thanks go to my colleague and dear friend Preben for all support and travel company over the years. Another dear travel companion and former colleague is Anders, who almost got me interested in bird watching……
Thanks to Cynthia S-D for editing my thesis. You know you have a special place in my heart, “professor Cute”. Annika T also gave valuable comments on my thesis. Thank you, “Pinglan”!

To all PhD students at the department of Ecology as well as the group of students at SVA; Thanks! I especially address my new friend Barbara, who is and hopefully will continue to be my “partner in crime”.

Utan min familj hade detta aldrig varit möjligt. Tack mamma och pappa för att ni alltid ställt upp för mej i alla väder. Till mina underbara, vackra, intelligenta och fantastiska barn, Kristoffer, Annie och Ellen; tack för att ni finns! Sist, men inte minst; tack till Peter, min klippa……