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Abstract
Aim: To evaluate the potential of models based on opportunistic reporting (OR) com-
pared to models based on data from a systematic protocol (SP) for modelling species 
distributions. We compared model performance for eight forest bird species with 
contrasting spatial distributions, habitat requirements and rarity. Differences in the 
reporting of species were also assessed. Finally, we tested potential improvement of 
models when inferring high-quality absences from OR based on questionnaires sent 
to observers.
Location: Both datasets cover the same large area (Sweden) and time period 
(2000–2013).
Methods: Species distributions were modelled using logistic regression. Predictive 
performance of OR models to predict SP data was assessed based on AUC. We quan-
tified the congruence in spatial predictions using Spearman's rank correlation coef-
ficient. We related these results to species characteristics and reporting behaviour 
of observers. We also assessed the gain in predictive performance of OR models by 
adding inferred absences. Finally, we investigated the potential impact of sampling 
bias in OR.
Results: For all species, and despite the sampling biases, results from OR overall 
agreed well with those of SP, for the nationwide spatial congruence of habitat suit-
ability maps and the selection and directions of species–environment relationships. 
The OR models also performed well in predicting the SP data. The predictive perfor-
mance of the OR models increased with species rarity and even outperformed the SP 
model for the rarest species. No significant impact of observer behaviour was found.
Main conclusions: Relatively simple analyses with inferred absences could produce 
reliable spatial predictions of habitat suitability. This was especially true for rare spe-
cies. OR data should be seen as a complement to SP, as the weakness of one is the 
strength of the other, and OR may be especially useful at large spatial scales or where 
no systematic data collection protocols exist.
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1  | INTRODUC TION

Habitat suitability models are important tools to predict species' dis-
tributions (Elith & Leathwick, 2009), and for conservation and man-
agement (Franklin, 2013; Lawler, Wiersma, & Huettmann, 2011). These 
models require occurrence data collected across a variety of habitat 
types and covering a broad spatial extent (Bonney et al., 2009). Such 
large biodiversity surveys are costly, and volunteer “citizen science” re-
cording can constitute a promising alternative (Devictor, Whittaker, & 
Beltrame, 2010) capable of producing large datasets with value for a 
wide range of ecological applications (Bonney et al., 2009). Citizen sci-
ence data have been successfully used to improve knowledge in many 
research areas such as mapping the distribution of invasive species 
(Delaney, Sperling, Adams, & Leung, 2008), predicting seasonal dynam-
ics of pathogens (Altizer, Hochachka, & Dhondt, 2004) or assessing the 
effect of the environment on breeding success (Rosenberg, Lowe, & 
Dhondt, 1999). These data can also be used to model species’ habi-
tat suitability or to describe population trends and range change (Kery 
et al., 2010; Mair, Harrison, Räty, et al., 2017; Snäll, Kindvall, Nilsson, 
& Pärt, 2011). Moreover, citizen science allows the development of a 
science–society interface, raising awareness of nature conservation is-
sues and allowing the dissemination of knowledge in society (Johnson 
et al., 2014; Price & Lee, 2013).

Citizen science is however a broad concept that can take different 
forms (Brown & Williams, 2018; Pocock, Tweddle, Savage, Robinson, & 
Roy, 2017) from highly systematic protocols (SP) to systems only based 
on opportunistic reporting (OR) with no sampling design (Pocock 
et al., 2017; Tulloch, Possingham, Joseph, Szabo, & Martin, 2013). A 
trade-off often arises between data quantity and quality (Devictor 
et al., 2010). At one end of the gradient are data from SP based on a 
network of sites, which are regularly surveyed, usually during specific 
time periods (Pocock et al., 2017). Representative sampling is ensured 
through a regular, stratified or random spatial distribution of sites and 
a precise protocol. A complete species list is recorded for each sampled 
site. Such monitoring programmes can produce high-quality data with 
little or no bias. At the other end in OR, volunteers are free to select 
the sampling period and location (Pocock et al., 2017). They may record 
only some of the species they found. Due to its greater flexibility, this 
type of citizen science creates large amounts of data, but with limita-
tions (e.g. the data are “presence-only”) and biases, for example uneven 
sampling effort across space or time, or an oversampling of rare or em-
blematic species (Bird et al., 2014). Consequently, care is required to 
analyse OR data to avoid false inferences about species distributions.

While justifiable concerns exist around the quality of OR data, the 
potential biases may be counter-balanced by the much larger sample 
size of data collected by volunteers (Hochachka, Martin, Doyle, & 
Krebs,  2000; Schmeller et  al.,  2009). Moreover, various solutions 
exist to analyse this kind of data, such as presence–background 

methods (e.g. Maxent) or inferring non-detections from records 
of other species, thus making the data suitable for occupancy–de-
tection models (Bradter et  al.,  2018; Isaac, van Strien, August, de 
Zeeuw, & Roy,  2014; van Strien, van Swaay, & Termaat,  2013). 
However, Bradter et  al.  (2018) found that logistic regression with 
high-quality inferred absences performed at least as well as more 
specialized methods.

Despite increasing amounts and availability of data from OR, 
there is a lack of evaluation of their reliability for habitat suitability 
modelling of species with different ecology, geographical distribu-
tions and observation biases. Particularly, it is important to compare 
results from OR against data from SP to evaluate the reliability of OR 
(Mair, Harrison, Jönsson, et al., 2017). Such comparative evaluation 
is needed to provide guidance on the best use of existing data and 
to direct future data collection. Indeed, although data from OR have 
drawbacks they may nevertheless fill a gap for some species or habi-
tat types poorly covered by SP. Rather than seeing these OR data as 
a poor, low cost alternative, we advocate to investigate their poten-
tial advantages and uniqueness, testing their performance in relation 
to species characteristics and observation processes. A reason is the 
enormous amounts available, for example currently >1.3 billion re-
ports on www.gbif.org. This further motivates validating data from 
OR, defining their limitations and assets, and providing recommen-
dations on how to deal with biases and improve model quality.

The overall aim of this study is to evaluate models based on OR 
compared to models based on SP concerning overall predictive per-
formance for multiple species that are reported differently by ob-
servers. We studied eight forest bird species and applied habitat 
suitability models to two independent citizen science datasets, one 
OR and one SP covering the same large area (the whole of Sweden) 
and time period (2000–2013). We evaluated the predictive perfor-
mance of all models, and at different spatial scales. Additionally, we 
evaluated the congruence of the spatial predictions between OR and 
SP. We then investigated the relative importance of species charac-
teristics, ecological requirements, geographical distribution, rarity, 
detectability, observer identifiability and interest, on the predictive 
performance of the habitat suitability models. Finally, we investi-
gated whether the observed differences between models based 
on OR and SP can be explained by potential sampling bias between 
habitat types.

2  | METHODS

2.1 | Study species

We selected eight forest bird species according to the following cri-
teria: (1) they are of particular interest to bird watchers, and hence, 

K E Y W O R D S
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citizen science data have a high potential to fill data gaps; (2) they are 
relatively well-studied, allowing assessment of whether the species–
habitat relationships suggested by models are realistic; (3) they vary 
in rarity, but are not so common as not to be consistently reported 
by some active reporters, a pre-requisite for our method of obtain-
ing inferred absences; and (4) they have varied climate and habitat 
niches (e.g., tree species dominance), and most are considered to be 
negatively influenced by modern forest management. Hence, our 
study can provide a broader perspective of how citizen science data 
can facilitate the conservation of boreal forest birds. Eight species 
were selected: the hazel grouse (HG), Tetrastes bonasia; the Siberian 
jay (SJ), Perisoreus infaustus; the Siberian tit (ST), Poecile cinctus; the 
long-tailed tit (LTT), Aegithalos caudatus; the red-breasted flycatcher 
(RBF), Ficedula parva; the grey-headed woodpecker (GHW), Picus 
canus; the lesser spotted woodpecker (LSW), Dendrocopos minor; 
and the three-toed woodpecker (TTW), Picoides tridactylus.

The occurrence data covered the whole country, but two spe-
cies occur only in the north (SJ, ST), three only in the south (RBF, 
LTT, LSW) and three have a more widespread distribution (HG, 
TTW, GHW). Most of these species are more or less specialists of 
old-growth forest (e.g., cavity nesters) and are negatively affected 
by intensive forest management (but to a lesser extent for HG and 
LTT) (Jansson & Angelstam,  1999; Swenson & Angelstam,  1993). 
See also Appendix S1 for further details on habitat requirement for 
each species. Their forest preferences range from coniferous forest 
(SJ, TTW, ST) to mixed (HG, GHW, LTT) and deciduous forest (LSW, 
RBF). Apart from the long-distant migrant RBF, all species are basi-
cally resident, but eruptive movements or nomadism occurs in some 
species.

2.2 | Data from the Systematic Protocol (SP)

The Swedish Bird Survey is a national monitoring programme, where 
the data are collected by volunteer ornithologists along 2  ×  2  km 
quadratic routes on fixed location, regularly distributed along a grid 
with 25-km resolution across Sweden. A total of 716 squares are dis-
tributed across the country, and a portion of them is surveyed once 
per year between May and July. Each square is composed of eight 
transects of 1 km and eight points counts, but only transects data 
were used in this study. We obtained a total of 13,244 transects, see 

Appendix S2 for details. For each transect, bird observations were 
converted to presences or absences per species.

2.3 | Data from opportunistic reporting

Species observations were downloaded for the period 2000–2013 
from the Swedish Species Observation System (Artportalen). See 
Appendix S3 for a detailed description of our procedure for oppor-
tunistic reporting (OR) data extraction and cleaning, which is here 
summarized: as some Swedish Bird Survey records are sometimes 
reported in the OR database, we removed these observations in 
order to keep data from OR independent from data from SP. We also 
excluded uncertain observations (e.g. uncertain location) and those 
with a spatial inaccuracy greater than 500  m. Following Bradter 
et  al.  (2018), we choose logistic regression for our modelling (see 
Section 2.8). As these models require presence–absence data, we 
used a specific method to infer absences based on questionnaires 
sent to observers. We first identified a subset of 20 observers for 
each species that had reported the highest number of unique loca-
tions in Sweden between 2000 and 2013, to ensure using records 
from many different locations, rather than many observations. To 
ensure good geographical coverage, we further divided Sweden 
into four geographical regions and identified the 20 reporters that 
had reported the most locations of the eight species in each region. 
Thereafter, we sent a questionnaire to the 94 observers identified 
asking about their skills and habits for identifying and reporting the 
eight focal species. We received 60 responses. To infer the absences 
for a species, we used the reports from observers that stated they 
always reported the focal species when found and were able to iden-
tify the species by sight and sound. We then inferred absences when 
and where other species but not the focal species were reported 
by these observers, keeping only inferred absences with a minimum 
search effort corresponding to more than five bird species recorded.

2.4 | Data amount per species and protocol

Observations from both OR and SP were aggregated into three 
time periods to match with the forest predictors, which were only 
available for 2000, 2005 and 2010 (see below): 2000–2002 (“2000” 

TA B L E  1   Data amounts per species and dataset

Hazel 
grouse

Siberian 
jay

Siberian 
tit

Long-
tailed tit

Red-breasted 
flycatcher

Grey-headed 
woodpecker

Lesser spotted 
woodpecker

Three-toed 
woodpecker

Presences OR 6,105 2,828 593 15,397 1,515 5,237 16,746 4,017

Inferred 
absences OR

4,831 6,357 5,650 3,024 7,361 5,168 3,343 4,561

Presences SP 633 826 121 441 65 81 180 305

Absences SP 12,611 12,418 13,123 12,803 13,179 13,163 13,064 12,939

Note: The number of presences, absences and inferred absences in data from the systematic protocol (SP) and from opportunistic reporting (OR), for 
eight forest bird species.
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henceforth); 2003–2007 (“2005”); 2008–2013 (“2010”). The three 
periods were then analysed together in a single model. The number 
of records obtained by species after data cleaning from the whole 
period 2000–2013 is detailed in Table 1.

2.5 | Environmental data

We chose a set of environmental predictors based on existing knowl-
edge about the species ecology (Appendix S1) that can be grouped 
into three categories: climate, forest and landscape.

2.5.1 | Climate predictors

We used mean monthly temperature and precipitation from the 
EURO4M Mesan data, on a grid with a mesh size of around 5 km2 
(Landelius, Dahlgren, Gollvik, Jansson, & Olsson,  2016). We used 
mean monthly temperature and precipitation across the whole pe-
riod 1989–2010 in spring (April to June) and winter (December to 
February) as predictors in our analyses.

2.5.2 | Forest predictors

Depending on the species ecology, we included the most relevant 
predictors among forest age, forest volume, % of spruce, % pine, % 
coniferous and % deciduous trees (Appendix S1). We used a spatially 
explicit description of the forest composition and structure based on 
estimates combining satellite imagery with data from the National 
Forest Inventory of Sweden (i.e., kNN data, Reese et al., 2003). This 
dataset is available for the years 2000, 2005 and 2010 with a pixel 
size of 25 by 25 m.

2.5.3 | Grain size

For each species, the environmental predictors were computed for a 
1 × 1 km square centred on each transect mid-point for SP data and 
each record for OR. This scale has often been chosen in other stud-
ies of these species (three-toed woodpecker: Angelstam, Angelstam, 
Ekelund, & Schlaepfer,  2004; grey-headed woodpecker: Gjerde, 
Sætersdal, & Nilsen, 2005; hazel grouse: Hofstetter, Arlettaz, Bollmann, 
& Braunisch, 2015; long-tailed tit: Lindbladh, Felton, Trubins, & Sallnäs, 
2011) and constitutes a suitable comprise between territory/home 
range sizes of the eight species. For the forest data, we computed the 
mean value of all 25 × 25 m pixels inside the 1-km2 grid.

2.5.4 | Landscape predictors

We included the mean elevation of the site (1 × 1 km square) and 
the percentage of forest in 1 × 1 or 3 × 3 km square buffers, as some 

species avoid open areas and prefer large or well-connected forest 
patches and have minimum habitat size requirements (Appendix S1). 
To compute this last predictor, we considered only forest 25 × 25 m 
pixels with a total standing tree volume larger than 25 m3/ha from 
the raster of forest volume (kNN data), which corresponds to the 
minimum volume for the classification as young forest in Brotons, 
Mönkkönen, Huhta, Nikula, and Rajasärkkä (2003). We also in-
cluded as predictor the Euclidean distance to the nearest city to 
estimate site accessibility, as this may explain the sampling bias in 
OR (more reports from more accessible areas). Finally, we included 
the total number of bird observations reported in Artportalen for 
each sampling period and the total numbers of bird records around 
each observation in OR (1 km2), as a proxy of the sampling effort 
(see Appendix S4). As not all transects in SP are necessarily sampled 
every year and because the three periods vary in duration, we also 
tested to include the number of times a transect was surveyed as a 
predictor in SP models.

2.6 | Species characteristics

To investigate how predictive performance of the habitat suitability 
models varied depending on species characteristics (i.e., ecological 
requirements, geographical distribution, rarity or detectability), we 
described and classified species based on six main characteristics, 
see Table 2 (see also Appendix S1 for other characteristics).

2.7 | Observer's behaviour and data characteristics

Based on the 60 questionnaires, we assessed how observers’ be-
haviour differed for each of the targeted species. We calculated the 
percentage that declared to always report observations of a focal 
species and that are confident in their own ability to recognize the 
species (by sight and sound). We further estimated this percentage 
among the observers that had reported the species in its main dis-
tribution area (as the recognition rate is expected to decrease when 
the species become rarer, but the reporting rate may increase). We 
also assessed the impact of prevalence (ratio presence/absence) and 
sample size in data from OR, as it may impact the predictive perfor-
mance of the model (Barbet-Massin, Jiguet, Albert, & Thuiller, 2012; 
Cumming,  2000; McPherson, Jetz, & Rogers,  2004). Finally, we 
computed a global index for the quality of reporting, as the summed 
scores of recognition and reporting for each species.

2.8 | Statistical analysis

For each species, we proceeded as follows:

1.	 National-level presence–absence (SP and OR) data were modelled 
using logistic regression, a standard method for binary data 
(Faraway,  2006), using a Binomial distribution and a logit link. 
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For each species, predictors were first chosen according to our 
knowledge of the species ecology (Appendix S1). Then, we 
performed a model selection retaining the model with lowest 
AIC (Akaike's information criterion [Akaike,  1974]), one model 
per species and per data type. This included testing all possible 
combinations of predictors and biologically reasonable quadratic 
effects and interactions between predictors.

2.	 The best model per species and dataset selected in step 1 was 
then evaluated by cross-validation. We evaluated the ability of 
the model based on OR to predict the observations from SP. We 
also evaluated the predictive performance of the models based 
on SP using a leave-one-out cross-validation, excluding succes-
sively each transect from the training data and using the excluded 
transect for validation. We produced a ROC curve and computed 
an AUC score (area under the receiver-operating curve) for each 
model. For further understanding of the predictive performance 
of the national model at finer spatial scales, we also present AUC 
for the main distribution area, specifically a convex polygon con-
taining 90% of the presences in data from SP.

3.	 As the absolute predictions from SP and OR were not directly 
comparable, because the non-systematic sampling changes the 
prevalence of presences in OR data compared to SP data, we 
ranked the predictions (from the lowest to the highest score) to 
compare the relative habitat suitability. We then quantified the 
congruence in spatial predictions between models from OR and 
SP data by calculating the Spearman rank correlation coefficient 
between the predictions. Predictions were computed for the 
whole of Sweden in a grid of 1 km2 cell size, using forest predic-
tors of 2010.

4.	 We investigated how the model performances and differences of 
congruence between models from OR and SP data were related 
to the specific species characteristics and reporting behaviour of 
observers (the observation process). We tested if the differences 
in AUC between models based on OR and SP varied depending on 
these predictors (see Sections 2.6 and 2.7) using linear regression.

5.	 We investigated the gain in predictive performance (AUC) of 
models based on OR by progressively increasing the number of 
inferred absences in the data. We randomly drew a subset of in-
ferred absences from 0.05% to 100% of the amount of absences 
in the data from SP. At each step, we performed a cross-validation 
and used the model fitted on OR data with this subset of inferred 
absences to predict presences and absences in SP. We repeated 
this procedure 100 times to define a confidence interval, and 
compared the mean AUC of the models based on OR for each 
level of absences, with the AUC of the model based on SP. For 
each species, we estimated the gain in AUC by subtracting the 
maximum AUC (as the threshold was obtained with very few in-
ferred absences, this maximum AUC was based on the model with 
10% of absences) with the minimum AUC (AUC in the model with 
0.05% of absences). This 10% threshold was chosen as it corre-
sponds to the asymptote for all species (see Section 3) and to keep 
results comparable as we do not have the same total number of 
absences for all species.

6.	 Finally, we assessed whether the observed differences between 
models based on OR and SP can be explained by potential sam-
pling bias between habitat types. For each habitat predictor and 
each species, we compared the distribution of the data from OR 
and SP, for example distribution of presences and absences along 

TA B L E  2   Species ecological characteristics

Ecological characteristics Definition Expected impact on data quality Source

Mean home range Mean home range of the species during the 
whole year

Species with large home ranges are likely to 
have a lower probability of detection

Literature

Variation in home range 
through the year

Difference in home range between breeding 
and non-breeding season

All species except the red-breasted flycatcher 
are present in Sweden year-round, and the 
home range is larger in the non-breeding 
season. This change in home range between 
seasons may explain differences in prediction 
between OR and SP (the latter being collected 
during the breeding season only)

Literature

Body mass Mean body mass of the species Larger species are more likely to be detected Literature

Longevity Reported lifespan of the species Affect the probability to repeatedly see the 
species at the same site in different time 
periods

Literature

Rarity Inverse of the number of presences from the 
systematic protocol (SP)

Rare species may be of higher interest to 
observers and be more consistently reported

Estimated 
based on 
our data

Climate range Difference in temperature (max–min) in the 
90% main distribution area of the species

Species with narrow climatic distribution range 
might be less easily identified by observers 
outside the main distribution range, and SP 
datasets from the breeding season may not 
capture the full climatic range of species

Estimated 
based on 
our data

Note: The six main ecological characteristics investigated for impacts on the predictive performance of the habitat suitability models. See Appendix 
S1 for literature references.
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a gradient of forest age, % of forest, % of deciduous tree, etc. 
We also compared these distributions with the distribution of 
these predictors at national scale. The observed distribution for 
the whole of Sweden is obtained based on grid with cell size of 
1 × 1 km covering the whole of Sweden. Other distributions are 
based on an 1 km2 square around each observation (e.g. % of for-
est), for both presences and absences and both protocol (OR and 
SP). We then compared the histograms for OR, SP and the whole 
of Sweden per class of percentage.

All analyses were performed using R software 3.6.0 (R Core Team, 
2019). Model selection was performed based on AIC using the dredge 
function of the package MuMIn (Barton, 2009). Cross-validation was 
performed using the package AUC (Ballings & Van den Poel, 2013).

3  | RESULTS

3.1 | Congruence between models from OR and SP

3.1.1 | Spatial congruence

A high congruence in habitat suitability maps from OR and SP models 
was observed for all the species at national scale (Figure 1). Spearman's 
rank correlation coefficient ranged between 0.78 (three-toed wood-
pecker) and 0.99 (Siberian tit). Overall, models from SP predicted a 
slightly higher habitat suitability in the northwest for four species, but 
the pattern was opposite for Siberian tit. Otherwise, differences be-
tween predictions from OR and SP models varied between species.

3.1.2 | Model predictors

Although there were some differences, the main selected predictors 
were the same in models based on data from OR and SP (Appendix 
S5). Furthermore, predictors and their associated coefficient estimates 
were mainly in accordance with our expectations based on available 
knowledge about the species ecology (Appendix S1). However, some 
unexpected effects were also observed for some predictors in models 
based on data from OR, as for example a small negative effect of forest 
age on grey-headed woodpecker occurrence (Appendix S5).

3.1.3 | Model evaluation

For almost all species, models built on OR data can discriminate be-
tween presences and absences in SP almost as well as models built 

on SP data themselves (Figure S6.1 and Table S6.1). For one species 
(red-breasted flycatcher), the model built on OR data was even bet-
ter at predicting SP data than the model based on SP. The largest dif-
ference between the predictions of the models from OR and SP was 
observed for the three-toed woodpecker (delta AUC SP-OR = 0.04, 
Figure S6.1). Models from OR and SP both had a satisfactory (>0.7) 
or good (>0.8) predictive performance. The AUC scores for the final 
models ranged from 0.75 (red-breasted flycatcher) to 0.93 (Siberian 
tit) for SP, and from 0.74 (three-toed woodpecker) to 0.93 (Siberian 
tit) for OR (Figure S6.1, Table S6.1).

When assessing the model performance for making predictions 
in the main distribution area, the predictive performance decreased 
for all species, but we did not observe strong differences between 
the predictions of models based on OR and SP. Models based on 
OR were almost as good as those based on SP in discriminating 
presences and absences in data from SP, with only slightly lower 
AUC scores. For the red-breasted flycatcher, the model based on 
data from OR remained better than the one based on data from SP 
(AUC = 0.59 for SP vs. AUC = 0.65 for OR). We noticed however 
that model performances for the species with the highest AUC at 
national scale (e.g. Siberian tit) did not perform better for the main 
distribution area (Figure S6.2 and Table S6.1).

3.2 | Effects of sampling biases

OR data contained much more observations in the most densely 
populated areas. Distance to cities was a better proxy for sampling 
effort than total number of observations per time period in 1 km2, 
which did not improve the model (Appendix S4). Besides the geo-
graphical bias towards populated areas, OR data were also biased 
by habitat type, but only for open habitats (Appendix S7). The most 
densely forested landscapes, with higher percentages of forest in 
1 km2 squares, were under-sampled in the OR data.

3.3 | Differences explained by species ecological 
characteristics

The predictive performance of models based on data from OR be-
came significantly closer to those based on data from SP with in-
creasing species rarity (Figure 2a, R2 = .64, p = .018). For the rarest 
species (red-breasted flycatcher), the model based on data from OR 
was even better than the one based on SP at predicting presences 
and absences in the SP data (Figure S6.1). Species further tend to 
be more consistently reported (percentage of observers that always 
report the species) in OR with increasing rarity (Figure 2b, R2 = .49, 

F I G U R E  1   Spatial predictions (and difference between them) using models based on data from opportunistic reporting (OR) and 
systematic protocol (SP) for the eight bird species. The maps on the left and middle correspond to ranked predictions for habitat suitability 
from OR and SP, respectively. Spearman’ rank correlations between these two maps are presented for each species. The map on the right 
shows the difference between these two maps. Green areas correspond to low difference, while blue indicates that OR predicts a higher 
habitat suitability than SP, and yellow indicates the opposite
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p = .055). We found no support for other associations between the 
predictive performance of the OR model and species characteristics 
(Appendix S8).

3.4 | Impact of observer's behaviour and data 
characteristics

Contrary to our expectations, the relative predictive performance 
of models based on data from OR in comparison with SP (difference 
in AUC) could not be explained by differences in observer's skills 

or consistency in reporting, so the agreement between models was 
not higher for well reported or more easily recognizable species. 
The global index of reporting quality did not explain the differences 
in AUC between models based on data from OR and SP (R2 = −.24, 
p =  .22, Figure S9.1). Similarly, the prevalence and sample size did 
not significantly impact the predictive performance of the models.

Although no significant relationship was detected, it can be no-
ticed that our best model based on data from OR, that exceeded 
the predictive performance of the model based on SP, was obtained 
for the red-breasted flycatcher that was both among the most easily 
recognizable and consistently reported species (Figure 3). The model 

F I G U R E  2   Predictive performance 
of the models in relation to the rarity of 
the species. (a) Difference in predictive 
performance between models based 
on data from opportunistic reporting 
(OR) and systematic protocol (SP) in 
relation to the rarity of the species. The 
predictive performance is estimated 
based on the AUC (area under the curve) 
of the models. The rarity of the species 
is defined as the inverse of the number 
of presences in SP. The species are 
designated by their acronyms: Siberian 
jay (SJ), Siberian tit (ST), hazel grouse 
(HG), three-toed woodpecker (TTW), 
grey-headed woodpecker (GHW), lesser 
spotted woodpecker (LSW), long-tailed tit 
(LTT), red-breasted flycatcher (RBF). (b) 
Reporting rate in relation to the rarity of 
the species. The reporting rate is defined 
as the percentage of observers in the 
OR questionnaire that always report the 
species at the national scale. The rarity of 
the species is defined as the inverse of the 
number of presences in SP
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with the poorest performance was obtained for three-toed wood-
pecker, a species considered to be among the most difficult to iden-
tify by observers (poorly recognized by call) (Figure 3).

3.5 | How many inferred absences do we need?

The predictive performance of models based on data from OR in-
creased with increasing number of inferred absences (Figure  4). 
However, very few inferred absences were required to reach the 
maximum AUC. For all species, the plateau in AUC was reached 
around the 1% level of the total number of absences in data from 
SP (around 10 inferred absences). However, the relatively high vari-
ability in AUC at the 1% level for most species suggests that a higher 
number of inferred absences (up to 5% or 10% depending on species) 
will lead to more stable results (Figure 4). Note that the inferred ab-
sences are of high quality in that each inferred absence corresponds 
on average to 23 to 83 observations depending on species (minimum 
six; Figure 4a). The increase in predictive performance of the model 
varied among species, ranging between 1% (Siberian tit) and 20% 
(hazel grouse) to reaching performance asymptote at around 1% in-
ferred absences. The AUC increased more for models with an initial 
low AUC at a low percentage of inferred absences (Figure 4b).

4  | DISCUSSION

Our study provides evidence that habitat suitability models from OR 
can provide similar predictions of habitat suitability as models from 
SP, for multiple species with varied characteristics, ecological require-
ments and observation biases. These findings widens the inferences 

compared to studies of single bird (Bradter et al., 2018) and fungal 
(Mair, Harrison, Jönsson, et al., 2017) species. Indeed, models from 
both OR and SP data were highly congruent, and in accordance with 
the available knowledge on species ecology. Furthermore, models 
from OR predicted data from SP almost as accurately as the models 
from SP themselves. Some of the local mismatches (e.g. three-toed 
woodpecker in the north) may be explained by the lack of northern 
OR data, or by the poor quality of some forest predictors in this area, 
especially where forest age is high (Bradter et  al.,  2018). For one 
species (red-breasted flycatcher), the model based on data from OR 
provided even better predictions than those based on SP. This result 
is especially robust given the fact that our cross-validation of the 
OR models used an independent dataset constituting a more diffi-
cult test than the test used to assess the predictive performance of 
the model based on data from SP. Indeed, our thorough data clean-
ing procedure and our protocol to infer absences based on ques-
tionnaires should have made the quality of our OR dataset higher 
than many earlier evaluated datasets (Barbet-Massin et  al.,  2012). 
However, this work was straightforward and we thus show that with 
some relatively simple analyses and inferred absences, OR can pro-
vide reliable spatial predictions of habitat suitability at large spatial 
scales or in areas where no systematic protocols exist. In accordance 
with Bradter et al. (2018) and Huang and Frimpong (2015), we dem-
onstrate that logistic regression using inferred absences produce 
reliable results that may outperform other methods based on pres-
ences paired with background or pseudo-absence data.

The high congruence between OR and SP models is striking con-
sidering the sampling biases in data from OR. OR data contain much 
more data from densely populated areas and more open habitats. 
This bias towards urban area or more accessible sites seems frequent 
in studies using citizen sciences data (Callaghan et al., 2020; Millar, 

F I G U R E  3   Reporting scores for the most comprehensively (red-breasted flycatcher) and the most restrictively (three-toed woodpecker) 
reported species in comparison with the mean for the eight species for different reporter's behaviour and data characteristics: the 
percentage of observers that always report the species (at national scale), the percentage of observers that can identify the species (at 
national scale), the percentage of observers that always report the species (in the main distribution area of the species, defined by a convex 
polygon containing 90% of the presences in systematic protocol), the percentage of observers that can identify the species (in the main 
distribution area of the species), the sample size in opportunistic reporting (OR) and the prevalence (ratio between the number of presence 
and the number or absences) in OR
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Hazell, & Melles, 2019; Neyens et al., 2019; Sumner, Bevan, Hart, & 
Isaac, 2019). We included the distance to cities in our models, as a 
proxy for accessibility, which better accounted for this bias than the 
number of reports per spatial unit. As only presences were reported 
in our dataset, this last variable may fail to represent well the real 
sampling effort. In accordance with our results, other studies show 
that large amounts of data in OR can compensate for bias and pro-
duce reliable results when sampling thresholds are met (Callaghan 
et  al.,  2020; Horns, Adler, & Şekercioğlu,  2018). Accessibility also 
probably explains the bias towards open habitat in OR data, although 
also other factors can be involved, for example higher visibility for 
bird watching, or higher interest for forest edges that combine 
various habitat types. This known bias (e.g., Kallimanis, Panitsa, & 
Dimopoulos, 2017) may therefore induce better reporting of edge 
species than strict forest interior species.

Models based on OR produce predictions congruent to those 
based on SP for all eight species. More specifically, we detected an 
increase in relative predictive performance of the OR models (com-
pared with SP) among rare species, in accordance to Sardà-Palomera 
et al. (2012), possibly because the SP sites typically rarely match the 
habitat requirement of these species (Ottvall et al., 2009). The low 
predictive performance of SP models for rare species can also be 
due to the low prevalence of these species in SP data. Such impact 
of prevalence on predictive performance has previously been shown 
(Cumming, 2000; Huang & Frimpong, 2015; McPherson et al., 2004). 
This is unlikely the case in OR but may be a problem in SP. Indeed, we 
did not find any effect of prevalence on the predictive performance 
of OR models, probably due to the high sampling effort for all focal 
species. On the contrary for SP, for red-breasted flycatcher our data-
set contained only 65 presences for 13,179 absences. This may also 
explain the lower predictive power of the model based on SP for this 
species compared to the OR model.

We did not detect any relationship between difference in pre-
dictive performance of OR and SP models and the reporting quality 
between species. However, the rarest species were the most con-
sistently reported in OR, in agreement with studies on butterfly and 
dragonfly species (van Strien et al., 2013). We therefore agree with 
previous work, which includes organism groups other than birds, 
that OR data may be of particular value for species where system-
atic reports do not exist or require high sampling effort, for example 
longhorn beetles (Snäll, Forslund, Jeppsson, Lindhe, & O'Hara, 2014) 
or lynx (Louvrier et al., 2019). The reporting rate of rare species is 
also likely to increase with observers' expertise (Johnston, Fink, 
Hochachka, and Kelling (2018). Other study observed an interaction 
effect between the prevalence/ubiquity of the species and the sam-
pling effort that impact on the predictive performance of models 
based on OR (Steen, Elphick, & Tingley, 2019). Note though that in 
amphibians and reptiles, common rather than rare species seem to 
be better reported (Tiago, Pereira, and Capinha (2017).

Accounting for the impact of observer expertise on detection 
probability can improve the model fit and the predictive perfor-
mance of models (Johnston et  al.  (2018), but including it in mod-
els does not necessarily improve estimates of population trends 
(Eglington, Davis, Joys, Chamberlain, & Noble, 2010). We agree with 
Tulloch and Szabo, (2012) that even if an observer effect is not in-
cluded in the model, collecting information on observer behaviour 
helps identifying OR data issues and controlling them.

Also the risk of misidentification varies depending on both rar-
ity and observer skills, with more false-positive reports of rare spe-
cies by skilled observers but more false-positive reports of common 
species by less experienced observers (Farmer, Leonard, & Horn, 
2012). The impact of misidentifications on model performance is 
difficult to assess and vary between studies (Cruickshank, Bühler, 
& Schmidt, 2019; Ruiz-Gutierrez, Hooten, & Campbell Grant, 2016). 
We assume that the risk of misidentification of rare species is quite 
low in our dataset due to high self-validation control carried out by 
the bird watching community.

F I G U R E  4   How much absences are enough? (a) Increase in 
predictive performance with the percentage of absences included 
in the models of each bird species (upper graphs). The percentage 
of absences on the x-axis is expressed in relation to the number 
of absences in systematic protocol (SP). 100% is the equivalent of 
including the same number of inferred absences as the number 
of absences in the SP, see Table 1 for the total number of inferred 
absences per species. As the maximum AUC (area under the curve) 
is rapidly reached, we scaled the x-axis from 0% to 10% to improve 
visibility. As each inferred absence correspond in average to many 
bird observations, we also present for each species the number 
of observations per inferred absences to have an estimation 
of the sampling effort that each inferred absence represents 
(lower graphs). (b) Gain in predictive performance with inferred 
absences among species. For each species, we estimated the gain 
in predictive performance by subtracting the maximum AUC (see 
threshold in the curve Figure 4a) with the minimum AUC. As the 
threshold for maximum AUC is obtained with very few absences, 
we defined the maximum AUC based on the model with 10% of 
absences and the minimum AUC based on the model with 0.05% of 
absences. The AUC gain of adding inferred absence decrease when 
the AUC of the model with 0.05% of absences increase. This means 
that adding inferred absences will have more impact on improving 
model quality if the model without inferred absences has a low 
quality (low or medium AUC)
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We did not find any other relationship between the predictive 
performance of the OR models and species ecological character-
istics. However, we focused on a selection of forest specialists, 
thus a small number of species resulting in low statistical power. 
Another study on 195 birds species showed a significant impact 
of body size, diet and habitat specialization on detectability 
(Johnston et al., 2014). Moreover, lower population density, small 
body size or less charismatic species may also result in lower de-
tection (Fitzpatrick, Preisser, Ellison, & Elkinton,  2009; Steger, 
Butt, & Hooten, 2017). However, our worst model concerned the 
three-toed woodpecker, considered the most difficult species to 
identify by observers (especially by call only). This suggests that 
species characteristics such as identifiability, volume or frequency 
of the song/call has stronger impact on detection in ecosystems 
with low visibility, for example forest. Species that are difficult to 
identify, for example lacking distinguishing features or requiring 
knowledge of vocalizations, are often under-reported in citizen 
science (Crall et al., 2011; Ratnieks et al., 2016; Swanson, Kosmala, 
Lintott, & Packer, 2016).

Our results demonstrate that adding even a small number of 
inferred absences can increase the predictive performance of the 
OR models by up to 20%, depending on the initial predictive per-
formance of the model. Absence locations in this study were ac-
tually visited by reporters who consistently report a focal species 
and are skilled in the identification of the species. Furthermore, 
our absence locations fulfilled a minimum search effort thresh-
old. Contrary to Lobo and Tognelli (2011), we note that only 
a low number of inferred absences were required to improve 
our models which cover a large extent, but inferred absences 
can be considered of high quality compared to classical meth-
ods using pseudo-absences (Barbet-Massin et  al.,  2012; Bradter 
et al., 2018), where little is known about the pseudo-absence loca-
tions. Although Lobo and Tognelli (2011) suggest that the number 
of pseudo-absences may be more important than their location, 
covering a large environmental gradient is nevertheless prefer-
able to limit biases (Bradter et  al.,  2018; Lobo & Tognelli,  2011; 
Thuiller, Brotons, Araújo, & Lavorel, 2004). Here, we selected the 
observers to which we sent the questionnaire not only based on 
the number of records they had reported, but also based on the 
spatial distribution of their observations, to achieve a wide spatial 
spread. This simple method focuses more on quality than quan-
tity, with quite few inferred absences but covering a wide area, 
increasing the chances that the environmental space is well cov-
ered. This method can be easily applied to other contexts or taxa, 
and requires only a questionnaire answered by a small subset of 
the most active observers. However, it may not be applicable to 
very common species, as few reporters may consistently report 
such species. It may then be impossible to obtain enough inferred 
absences or to achieve a wide enough spatial distribution of ab-
sences. Alternatively, inferred absences based on historical pres-
ences of other species in atlas data may be applicable (Frimpong, 
Huang, & Liang, 2016; Huang & Frimpong, 2015). We however en-
courage observers to report non-detections or use check-lists, as 

this additional information would likely increase the robustness of 
models based on OR data (Isaac & Pocock, 2015).

In conclusion, although OR data contain biases, models based 
on data from OR can provide reliable predictions of habitat suitabil-
ity. This is especially true for rare species difficult to detect with-
out a high observation effort in time and space. We think that OR 
data should be seen as a complement to SP, rather than an alter-
native, as the weakness of one is the strength of the other (Miller, 
Pacifici, Sanderlin, & Reich, 2019). Different methods also exist to 
combine these data (Fletcher et al., 2019; Isaac et al., 2020; Miller 
et  al., 2019b). Moreover, OR often promotes the establishment of 
long-term networks of observers and provide an information ex-
change platform between scientists, society and conservationists 
(Sullivan et  al.,  2009). However, it is clear that OR programmes 
cannot fully substitute long-term SP programmes, the latter often 
designed to answer specific ecological questions dependent on rep-
licated sampling (Bayraktarov et al., 2019).

ACKNOWLEDG MENTS
We thank all the volunteer observers for reporting species in the 
Swedish Species Observation System (Artportalen), the participants of 
our questionnaire and the volunteers and coordinators of the Swedish 
Breeding Bird survey (Lund University). We thank Johan Nilsson, Johan 
Södercrantz and Ragnar Hall for advising on the design of our question-
naire and Johan Nilsson for extracting observations from Artportalen. 
We also thank Laura Janousek for her useful comments on earlier ver-
sions of the manuscript. The opportunistically collected data were ob-
tained from the Swedish Species Observation System funded by the 
Swedish Environmental Protection Agency. This research was funded 
through the 2015–2016 BiodivERsA COFUND call for research pro-
posals, with the national funder Formas and SLU.

DATA AVAIL ABILIT Y S TATEMENT
Species observation data are available from the Swedish Lifewatch 
website (www.analy​sispo​rtal.se) and in Dryad Digital Repository 
https://doi.org/10.5061/dryad.8w9gh​x3jj (Henckel et al., 2020). 
Presence-only data and inferred absences from opportunis-
tic reporting for the eight species are also accessible from dryad. 
National forest data (“kNN-Sweden”) can be downloaded from 
http://skogs​karta.slu.se, data on urban areas from https://www.
scb.se/hitta-stati​stik/regio​nal-stati​stik-och-karto​r/geoda​ta/oppna-
geoda​ta/tator​ter/, data on settlements from https://www.scb.se/
hitta-stati​stik/regio​nal-stati​stik-och-karto​r/geoda​ta/oppna-geoda​
ta/smaor​ter/, and data on elevation from http://www.lantm​ateri​
et.se/en/Maps-and-geogr​aphic-infor​matio​n/Maps/oppna-data/
hamta-oppna-geoda​ta/#faq:gsd-hojdd​ata-grid-50. The climate data 
(“EURO4M Mesan dataset”) are available through https://esg-dn1.
nsc.liu.se/proje​cts/esgf-liu/ (search for “mesan” after selecting a 
Federated ESFG-CoG Node).

ORCID
Laura Henckel   https://orcid.org/0000-0002-1944-319X 
Tord Snäll   https://orcid.org/0000-0001-5856-5539 

http://www.analysisportal.se
https://doi.org/10.5061/dryad.8w9ghx3jj
http://skogskarta.slu.se
https://www.scb.se/hitta-statistik/regional-statistik-och-kartor/geodata/oppna-geodata/tatorter/
https://www.scb.se/hitta-statistik/regional-statistik-och-kartor/geodata/oppna-geodata/tatorter/
https://www.scb.se/hitta-statistik/regional-statistik-och-kartor/geodata/oppna-geodata/tatorter/
https://www.scb.se/hitta-statistik/regional-statistik-och-kartor/geodata/oppna-geodata/smaorter/
https://www.scb.se/hitta-statistik/regional-statistik-och-kartor/geodata/oppna-geodata/smaorter/
https://www.scb.se/hitta-statistik/regional-statistik-och-kartor/geodata/oppna-geodata/smaorter/
http://www.lantmateriet.se/en/Maps-and-geographic-information/Maps/oppna-data/hamta-oppna-geodata/#faq:gsd-hojddata-grid-50
http://www.lantmateriet.se/en/Maps-and-geographic-information/Maps/oppna-data/hamta-oppna-geodata/#faq:gsd-hojddata-grid-50
http://www.lantmateriet.se/en/Maps-and-geographic-information/Maps/oppna-data/hamta-oppna-geodata/#faq:gsd-hojddata-grid-50
https://esg-dn1.nsc.liu.se/projects/esgf-liu/
https://esg-dn1.nsc.liu.se/projects/esgf-liu/
https://orcid.org/0000-0002-1944-319X
https://orcid.org/0000-0002-1944-319X
https://orcid.org/0000-0001-5856-5539
https://orcid.org/0000-0001-5856-5539


1288  |     HENCKEL et al.

R E FE R E N C E S
Akaike, H. (1974). A new look at the statistical model identification. 

IEEE Transactions on Automatic Control, 19(6), 716–723. https://doi.
org/10.1109/TAC.1974.1100705

Altizer, S., Hochachka, W. M., & Dhondt, A. A. (2004). Seasonal dy-
namics of mycoplasmal conjunctivitis in eastern North American 
house finches. Journal of Animal Ecology, 73(2), 309–322. https://doi.
org/10.1111/j.0021-8790.2004.00807.x

Angelstam, P., Ekelund, P., & Schlaepfer, R. (2004). Dead wood thresh-
old values for the three-toed woodpecker presence in boreal and 
sub-Alpine forest. Biological Conservation, 119, 305–318. https://doi.
org/10.1016/j.biocon.2003.11.014

Ballings, M., & Van den Poel, D. (2013). AUC: Threshold independent per-
formance measures for probabilistic classifiers. Retrieved from https://
cran.r-proje​ct.org/packa​ge=AUC

Barbet-Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). Selecting 
pseudo-absences for species distribution models: How, where and 
how many? Methods in Ecology and Evolution, 3(2), 327–338. https://
doi.org/10.1111/j.2041-210X.2011.00172.x

Barton, K. (2009). MuMIn: Multi-model inference. Retrieved from https://
cran.r-proje​ct.org/packa​ge=MuMIn

Bayraktarov, E., Ehmke, G., O'Connor, J., Burns, E. L., Nguyen, H. A., 
McRae, L., … Lindenmayer, D. B. (2019). Do big unstructured biodi-
versity data mean more knowledge? Frontiers in Ecology and Evolution, 
6, 239. https://doi.org/10.3389/fevo.2018.00239

Bird, T. J., Bates, A. E., Lefcheck, J. S., Hill, N. A., Thomson, R. J., Edgar, 
G. J., … Frusher, S. (2014). Statistical solutions for error and bias in 
global citizen science datasets. Biological Conservation, 173, 144–
154. https://doi.org/10.1016/j.biocon.2013.07.037

Bonney, R., Cooper, C., Dickinson, J., Kelling, S., Philips, T., Rosenberg, K., 
& Shirk, J. (2009). Citizen science: A developing tool for expanding 
science knowledge and scientific literacy. BioScience, 59(11), 977–
984. https://doi.org/10.1525/bio.2009.59.11.9

Bradter, U., Mair, L., Jönsson, M., Knape, J., Singer, A., & Snäll, T. (2018). Can 
opportunistically collected Citizen Science data fill a data gap for hab-
itat suitability models of less common species? Methods in Ecology and 
Evolution, 9(7), 1667–1678. https://doi.org/10.1111/2041-210X.13012

Brotons, L., Mönkkönen, M., Huhta, E., Nikula, A., & Rajasärkkä, A. 
(2003). Effects of landscape structure and forest reserve location 
on old-growth forest bird species in Northern Finland. Landscape 
Ecology, 18, 377–393.

Brown, E. D., & Williams, B. K. (2018). The potential for citizen science 
to produce reliable and useful information in ecology. Conservation 
Biology, 33(3), 561–569. https://doi.org/10.1111/cobi.13223

Callaghan, C. T., Roberts, J. D., Poore, A. G. B., Alford, R. A., Cogger, H., 
& Rowley, J. J. L. (2020). Citizen science data accurately predicts ex-
pert-derived species richness at a continental scale when sampling 
thresholds are met. Biodiversity and Conservation, 29(4), 1323–1337. 
https://doi.org/10.1007/s10531-020-01937-3

Crall, A. W., Newman, G. J., Stohlgren, T. J., Holfelder, K. A., Graham, J., & 
Waller, D. M. (2011). Assessing citizen science data quality: An inva-
sive species case study. Conservation Letters, 4(6), 433–442. https://
doi.org/10.1111/j.1755-263X.2011.00196.x

Cruickshank, S. S., Bühler, C., & Schmidt, B. R. (2019). Quantifying data 
quality in a citizen science monitoring program: False negatives, false 
positives and occupancy trends. Conservation Science and Practice, 
1(7), e54. https://doi.org/10.1111/csp2.54

Cumming, G. S. (2000). Using between-model comparisons to fine-tune 
linear models of species ranges. Journal of Biogeography, 27(2), 441–
455. https://doi.org/10.1046/j.1365-2699.2000.00408.x

Delaney, D. G., Sperling, C. D., Adams, C. S., & Leung, B. (2008). Marine 
invasive species: Validation of citizen science and implications for 
national monitoring networks. Biological Invasions, 10(1), 117–128. 
https://doi.org/10.1007/s10530-007-9114-0

Devictor, V., Whittaker, R. J., & Beltrame, C. (2010). Beyond scarcity: 
Citizen science programmes as useful tools for conservation bio-
geography. Diversity and Distributions, 16(3), 354–362. https://doi.
org/10.1111/j.1472-4642.2009.00615.x

Eglington, S. M., Davis, S. E., Joys, A. C., Chamberlain, D. E., & Noble, 
D. G. (2010). The effect of observer experience on English Breeding 
Bird Survey population trends. Bird Study, 57(2), 129–141. https://
doi.org/10.1080/00063​65090​3440648

Elith, J., & Leathwick, J. R. (2009). Species distribution models: Ecological 
explanation and prediction across space and time. Annual Review 
of Ecology, Evolution, and Systematics, 40(1), 677–697. https://doi.
org/10.1146/annur​ev.ecols​ys.110308.120159

Faraway, J. J. (2006). Extending the linear model with R (Boca Raton). Retrieved 
from https://doi.org/10.1111/j.1467-985X.2006.00446_8.x

Farmer, A. R. G., Leonard, M. L., & Horn, A. G. (2012). Observer ef-
fects and avian-call-count survey quality: Rare-species biases and 
overconfidence. The Auk, 129(1), 76–86. https://doi.org/10.1525/
auk.2012.11129

Fitzpatrick, M. C., Preisser, E. L., Ellison, A. M., & Elkinton, J. S. (2009). 
Observer bias and the detection of low-density populations. Ecological 
Applications, 19(7), 1673–1679. https://doi.org/10.1890/09-0265.1

Fletcher, R. J., Hefley, T. J., Robertson, E. P., Zuckerberg, B., McCleery, 
R. A., & Dorazio, R. M. (2019). A practical guide for combining 
data to model species distributions. Ecology, e02710. https://doi.
org/10.1002/ecy.2710

Franklin, J. (2013). Species distribution models in conservation bioge-
ography: Developments and challenges. Diversity and Distributions, 
19(10), 1217–1223. https://doi.org/10.1111/ddi.12125

Frimpong, E. A., Huang, J., & Liang, Y. (2016). IchthyMaps: A data-
base of historical distributions of freshwater fishes of the United 
States. Fisheries, 41(10), 590–599. https://doi.org/10.1080/03632​
415.2016.1219948

Gjerde, I., Sætersdal, M., & Nilsen, T. (2005). Abundance of two threat-
ened woodpecker species in relation to the proportion of spruce 
plantations in native pine forests of western Norway. Biodiversity 
and Conservation, 14(2), 377–393. https://doi.org/10.1007/
s10531-004-6065-y

Hochachka, W. M., Martin, K., Doyle, F., & Krebs, C. J. (2000). Monitoring 
vertebrate populations using observational data. Canadian Journal of 
Zoology, 78(4), 521–529. https://doi.org/10.1139/z99-246

Hofstetter, L., Arlettaz, R., Bollmann, K., & Braunisch, V. (2015). 
Interchangeable sets of complementary habitat variables allow for 
flexible, site-adapted wildlife habitat management in forest eco-
systems. Basic and Applied Ecology, 16(5), 420–433. https://doi.
org/10.1016/j.baae.2015.02.010

Horns, J. J., Adler, F. R., & Şekercioğlu, Ç. H. (2018). Using opportu-
nistic citizen science data to estimate avian population trends. 
Biological Conservation, 221, 151–159. https://doi.org/10.1016/j.
biocon.2018.02.027

Huang, J., & Frimpong, E. A. (2015). Using historical atlas data to de-
velop high-resolution distribution models of freshwater fishes. 
PLoS One, 10(6), e0129995. https://doi.org/10.1371/journ​
al.pone.0129995

Isaac, N. J. B., Jarzyna, M. A., Keil, P., Dambly, L. I., Boersch-Supan, P. H., 
Browning, E., … O'Hara, R. B. (2020). Data integration for large-scale 
models of species distributions. Trends in Ecology & Evolution, 35(1), 
56–67. https://doi.org/10.1016/j.tree.2019.08.006

Isaac, N. J. B., & Pocock, M. J. O. (2015). Bias and information in biologi-
cal records. Biological Journal of the Linnean Society, 115(3), 522–531. 
https://doi.org/10.1111/bij.12532

Isaac, N. J. B., van Strien, A. J., August, T. A., de Zeeuw, M. P., & Roy, D. 
B. (2014). Statistics for citizen science: Extracting signals of change 
from noisy ecological data. Methods in Ecology and Evolution, 5(10), 
1052–1060. https://doi.org/10.1111/2041-210X.12254

https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1111/j.0021-8790.2004.00807.x
https://doi.org/10.1111/j.0021-8790.2004.00807.x
https://doi.org/10.1016/j.biocon.2003.11.014
https://doi.org/10.1016/j.biocon.2003.11.014
https://cran.r-project.org/package=AUC
https://cran.r-project.org/package=AUC
https://doi.org/10.1111/j.2041-210X.2011.00172.x
https://doi.org/10.1111/j.2041-210X.2011.00172.x
https://cran.r-project.org/package=MuMIn
https://cran.r-project.org/package=MuMIn
https://doi.org/10.3389/fevo.2018.00239
https://doi.org/10.1016/j.biocon.2013.07.037
https://doi.org/10.1525/bio.2009.59.11.9
https://doi.org/10.1111/2041-210X.13012
https://doi.org/10.1111/cobi.13223
https://doi.org/10.1007/s10531-020-01937-3
https://doi.org/10.1111/j.1755-263X.2011.00196.x
https://doi.org/10.1111/j.1755-263X.2011.00196.x
https://doi.org/10.1111/csp2.54
https://doi.org/10.1046/j.1365-2699.2000.00408.x
https://doi.org/10.1007/s10530-007-9114-0
https://doi.org/10.1111/j.1472-4642.2009.00615.x
https://doi.org/10.1111/j.1472-4642.2009.00615.x
https://doi.org/10.1080/00063650903440648
https://doi.org/10.1080/00063650903440648
https://doi.org/10.1146/annurev.ecolsys.110308.120159
https://doi.org/10.1146/annurev.ecolsys.110308.120159
https://doi.org/10.1111/j.1467-985X.2006.00446_8.x
https://doi.org/10.1525/auk.2012.11129
https://doi.org/10.1525/auk.2012.11129
https://doi.org/10.1890/09-0265.1
https://doi.org/10.1002/ecy.2710
https://doi.org/10.1002/ecy.2710
https://doi.org/10.1111/ddi.12125
https://doi.org/10.1080/03632415.2016.1219948
https://doi.org/10.1080/03632415.2016.1219948
https://doi.org/10.1007/s10531-004-6065-y
https://doi.org/10.1007/s10531-004-6065-y
https://doi.org/10.1139/z99-246
https://doi.org/10.1016/j.baae.2015.02.010
https://doi.org/10.1016/j.baae.2015.02.010
https://doi.org/10.1016/j.biocon.2018.02.027
https://doi.org/10.1016/j.biocon.2018.02.027
https://doi.org/10.1371/journal.pone.0129995
https://doi.org/10.1371/journal.pone.0129995
https://doi.org/10.1016/j.tree.2019.08.006
https://doi.org/10.1111/bij.12532
https://doi.org/10.1111/2041-210X.12254


     |  1289HENCKEL et al.

Jansson, G., & Angelstam, P. (1999). Threshold levels of habitat compo-
sition for the presence of the long-tailed tit (Aegithalos caudatus) in 
a boreal landscape. Landscape Ecology, 14(3), 283–290. https://doi.
org/10.1023/A:10080​85902053

Johnson, M., Hannah, C., Acton, L., Popovici, R., Karanth, K., & Weinthal, 
E. (2014). Network environmentalism: Citizen scientists as agents 
for environmental advocacy. Global Environmental Change-Human 
and Policy Dimensions, 29, 235–245. https://doi.org/10.1016/j.gloen​
vcha.2014.10.006

Johnston, A., Fink, D., Hochachka, W. M., & Kelling, S. (2018). Estimates 
of observer expertise improve species distributions from citizen sci-
ence data. Methods in Ecology and Evolution, 9(1), 88–97. https://doi.
org/10.1111/2041-210X.12838

Johnston, A., Newson, S. E., Risely, K., Musgrove, A. J., Massimino, D., 
Baillie, S. R., & Pearce-Higgins, J. W. (2014). Species traits explain 
variation in detectability of UK birds. Bird Study, 61(3), 340–350. 
https://doi.org/10.1080/00063​657.2014.941787

Kallimanis, A. S., Panitsa, M., & Dimopoulos, P. (2017). Quality of non-ex-
pert citizen science data collected for habitat type conservation sta-
tus assessment in Natura 2000 protected areas. Scientific Reports, 
7(1), 8873. https://doi.org/10.1038/s41598-017-09316-9

Kery, M., Andrew, R. J., Schmid, H., Schaub, M., Volet, B., Häfliger, G., 
& Zbinden, N. (2010). Site-occupancy distribution modeling to cor-
rect population-trend estimates derived from opportunistic ob-
servations. Conservation Biology, 24(5), 1388–1397. https://doi.
org/10.1111/j.1523-1739.2010.01479.x

Landelius, T., Dahlgren, P., Gollvik, S., Jansson, A., & Olsson, E. (2016). 
A high-resolution regional reanalysis for Europe. Part 2: 2D analysis 
of surface temperature, precipitation and wind. Quarterly Journal of 
the Royal Meteorological Society, 142(698), 2132–2142. https://doi.
org/10.1002/qj.2813

Lawler, J. J., Wiersma, Y. F., & Huettmann, F. (2011). Using species dis-
tribution models for conservation planning and ecological forecast-
ing. In: C. Drew A. Wiersma & Y. Huettmann, (Eds.). Predictive species 
and habitat modeling in landscape ecology (pp. 271–290). New York, 
NY:Springer. https://doi.org/10.1007/978-1-4419-7390-0_14

Lindbladh, M., Felton, A., Trubins, R., & Sallnäs, O. (2011). A land-
scape and policy perspective on forest conversion: Long-tailed 
tit (Aegithalos caudatus) and the allocation of deciduous forests in 
southern Sweden. European Journal of Forest Research, 130(5), 861–
869. https://doi.org/10.1007/s10342-010-0478-9

Lobo, J. M., & Tognelli, M. F. (2011). Exploring the effects of quantity 
and location of pseudo-absences and sampling biases on the per-
formance of distribution models with limited point occurrence data. 
Journal for Nature Conservation, 19(1), 1–7. https://doi.org/10.1016/j.
jnc.2010.03.002

Louvrier, J., Molinari-Jobin, A., Kéry, M., Chambert, T., Miller, D., 
Zimmermann, F., … Gimenez, O. (2019). Use of ambiguous de-
tections to improve estimates from species distribution models. 
Conservation Biology, 33(1), 185–195. https://doi.org/10.1111/
cobi.13191

Mair, L., Harrison, P. J., Jönsson, M., Löbel, S., Nordén, J., Siitonen, J., … 
Snäll, T. (2017). Evaluating citizen science data for forecasting spe-
cies responses to national forest management. Ecology and Evolution, 
7(1), 368–378. https://doi.org/10.1002/ece3.2601

Mair, L., Harrison, P. J., Räty, M., Bärring, L., Strandberg, G., & Snäll, T. 
(2017). Forest management could counteract distribution retractions 
forced by climate change. Ecological Applications, 27(5), 1485–1497. 
https://doi.org/10.1002/eap.1541

McPherson, J. M., Jetz, W., & Rogers, D. J. (2004). The effects of spe-
cies’ range sizes on the accuracy of distribution models: Ecological 
phenomenon or statistical artefact? Journal of Applied Ecology, 41(5), 
811–823. https://doi.org/10.1111/j.0021-8901.2004.00943.x

Millar, E. E., Hazell, E. C., & Melles, S. J. (2019). The ‘cottage effect’ 
in citizen science? Spatial bias in aquatic monitoring programs. 

International Journal of Geographical Information Science, 33(8), 1612–
1632. https://doi.org/10.1080/13658​816.2018.1423686

Miller, D. A. W., Pacifici, K., Sanderlin, J. S., & Reich, B. J. (2019). The 
recent past and promising future for data integration methods to es-
timate species' distributions. Methods in Ecology and Evolution, 10(1), 
22–37. https://doi.org/10.1111/2041-210X.13110

Neyens, T., Diggle, P. J., Faes, C., Beenaerts, N., Artois, T., & Giorgi, E. 
(2019). Mapping species richness using opportunistic samples: 
A case study on ground-floor bryophyte species richness in the 
Belgian province of Limburg. Scientific Reports, 9(1), 19122. https://
doi.org/10.1038/s41598-019-55593-x

Ottvall, R., Edenius, L., Elmberg, J., Engström, H., Holmqvist, N., 
Lindström, Å. K. E., … Tjernberg, M. (2009). Population trends for 
Swedish breeding birds. Ornis Svecica, 19, 117–192.

Pocock, M. J. O., Tweddle, J. C., Savage, J., Robinson, L. D., & Roy, E. 
(2017). The diversity and evolution of ecological and environmental 
citizen science. PLoS One, 12(4), 1–17. https://doi.org/10.1371/journ​
al.pone.0172579

Price, C. A., & Lee, H.-S. (2013). Changes in participants' scientific atti-
tudes and epistemological beliefs during an astronomical citizen sci-
ence project. Journal of Research in Science Teaching, 50(7), 773–801. 
https://doi.org/10.1002/tea.21090

R Core Team (2019). R: A language and environment for statistical comput-
ing. Retrieved from http://www.r-proje​ct.org/index.html

Ratnieks, F. L. W., Schrell, F., Sheppard, R. C., Brown, E., Bristow, O. E., 
& Garbuzov, M. (2016). Data reliability in citizen science: Learning 
curve and the effects of training method, volunteer background and 
experience on identification accuracy of insects visiting ivy flow-
ers. Methods in Ecology and Evolution, 7(10), 1226–1235. https://doi.
org/10.1111/2041-210X.12581

Reese, H., Nilsson, M., Pahlén, T. G., Hagner, O., Joyce, S., Tingelöf, U., … 
Olsson, H. (2003). Countrywide estimates of forest variables using 
satellite data and field data from the National Forest Inventory. 
AMBIO: A Journal of the Human Environment, 32(8), 542. https://doi.
org/10.1639/0044-7447(2003)032[0542:CEOFV​U]2.0.CO;2

Rosenberg, K. V., Lowe, J. D., & Dhondt, A. A. (1999). Effects of for-
est fragmentation on breeding tanagers: A continental per-
spective. Conservation Biology, 13(3), 568–583. https://doi.
org/10.1046/j.1523-1739.1999.98020.x

Ruiz-Gutierrez, V., Hooten, M. B., & Campbell Grant, E. H. (2016). 
Uncertainty in biological monitoring: A framework for data col-
lection and analysis to account for multiple sources of sampling 
bias. Methods in Ecology and Evolution, 7(8), 900–909. https://doi.
org/10.1111/2041-210X.12542

Sardà-Palomera, F., Brotons, L., Villero, D., Sierdsema, H., Newson, S. E., 
& Jiguet, F. (2012). Mapping from heterogeneous biodiversity moni-
toring data sources. Biodiversity and Conservation, 21(11), 2927–2948. 
https://doi.org/10.1007/s10531-012-0347-6

Schmeller, D. S., Henry, P.-Y., Julliard, R., Gruber, B., Clobert, J., Dziock, 
F., … Henle, K. (2009). Advantages of volunteer-based biodiversity 
monitoring in Europe. Conservation Biology, 23(2), 307–316. https://
doi.org/10.1111/j.1523-1739.2008.01125.x

Snäll, T., Forslund, P., Jeppsson, T., Lindhe, A., & O'Hara, R. B. (2014). 
Evaluating temporal variation in Citizen Science Data against tempo-
ral variation in the environment. Ecography, 37(3), 293–300. https://
doi.org/10.1111/j.1600-0587.2011.00544.x

Snäll, T., Kindvall, O., Nilsson, J., & Pärt, T. (2011). Evaluating citi-
zen-based presence data for bird monitoring. Biological Conservation, 
144(2), 801–810. https://doi.org/10.1016/j.biocon.2010.11.010

Steen, V. A., Elphick, C. S., & Tingley, M. W. (2019). An evaluation of strin-
gent filtering to improve species distribution models from citizen sci-
ence data. Diversity and Distributions, 25(12), 1857–1869. https://doi.
org/10.1111/ddi.12985

Steger, C., Butt, B., & Hooten, M. B. (2017). Safari Science: 
Assessing the reliability of citizen science data for wildlife 

https://doi.org/10.1023/A:1008085902053
https://doi.org/10.1023/A:1008085902053
https://doi.org/10.1016/j.gloenvcha.2014.10.006
https://doi.org/10.1016/j.gloenvcha.2014.10.006
https://doi.org/10.1111/2041-210X.12838
https://doi.org/10.1111/2041-210X.12838
https://doi.org/10.1080/00063657.2014.941787
https://doi.org/10.1038/s41598-017-09316-9
https://doi.org/10.1111/j.1523-1739.2010.01479.x
https://doi.org/10.1111/j.1523-1739.2010.01479.x
https://doi.org/10.1002/qj.2813
https://doi.org/10.1002/qj.2813
https://doi.org/10.1007/978-1-4419-7390-0_14
https://doi.org/10.1007/s10342-010-0478-9
https://doi.org/10.1016/j.jnc.2010.03.002
https://doi.org/10.1016/j.jnc.2010.03.002
https://doi.org/10.1111/cobi.13191
https://doi.org/10.1111/cobi.13191
https://doi.org/10.1002/ece3.2601
https://doi.org/10.1002/eap.1541
https://doi.org/10.1111/j.0021-8901.2004.00943.x
https://doi.org/10.1080/13658816.2018.1423686
https://doi.org/10.1111/2041-210X.13110
https://doi.org/10.1038/s41598-019-55593-x
https://doi.org/10.1038/s41598-019-55593-x
https://doi.org/10.1371/journal.pone.0172579
https://doi.org/10.1371/journal.pone.0172579
https://doi.org/10.1002/tea.21090
http://www.r-project.org/index.html
https://doi.org/10.1111/2041-210X.12581
https://doi.org/10.1111/2041-210X.12581
https://doi.org/10.1639/0044-7447(2003)032[0542:CEOFVU]2.0.CO;2
https://doi.org/10.1639/0044-7447(2003)032[0542:CEOFVU]2.0.CO;2
https://doi.org/10.1046/j.1523-1739.1999.98020.x
https://doi.org/10.1046/j.1523-1739.1999.98020.x
https://doi.org/10.1111/2041-210X.12542
https://doi.org/10.1111/2041-210X.12542
https://doi.org/10.1007/s10531-012-0347-6
https://doi.org/10.1111/j.1523-1739.2008.01125.x
https://doi.org/10.1111/j.1523-1739.2008.01125.x
https://doi.org/10.1111/j.1600-0587.2011.00544.x
https://doi.org/10.1111/j.1600-0587.2011.00544.x
https://doi.org/10.1016/j.biocon.2010.11.010
https://doi.org/10.1111/ddi.12985
https://doi.org/10.1111/ddi.12985


1290  |     HENCKEL et al.

surveys. Journal of Applied Ecology, 54(6), 2053–2062. https://doi.
org/10.1111/1365-2664.12921

Sullivan, B. L., Wood, C. L., Iliff, M. J., Bonney, R. E., Fink, D., & Kelling, S. 
(2009). eBird : A citizen-based bird observation network in the bio-
logical sciences. Biological Conservation, 142(10), 2282–2292. https://
doi.org/10.1016/j.biocon.2009.05.006

Sumner, S., Bevan, P., Hart, A. G., & Isaac, N. J. B. (2019). Mapping species 
distributions in 2 weeks using citizen science. Insect Conservation and 
Diversity, 12, 382–388. https://doi.org/10.1111/icad.12345

Swanson, A., Kosmala, M., Lintott, C., & Packer, C. (2016). A generalized 
approach for producing, quantifying, and validating citizen science 
data from wildlife images. Conservation Biology, 30(3), 520–531. 
https://doi.org/10.1111/cobi.12695

Swenson, J. E., & Angelstam, P. (1993). Habitat separation by sympat-
ric forest grouse in Fennoscandia in relation to boreal forest suc-
cession. Canadian Journal of Zoology, 71(7), 1303–1310. https://doi.
org/10.1139/z93-180

Thuiller, W., Brotons, L., Araújo, M. B., & Lavorel, S. (2004). Effects of 
restricting environmental range of data to project current and fu-
ture species distributions. Ecography, 27(2), 165–172. https://doi.
org/10.1111/j.0906-7590.2004.03673.x

Tiago, P., Pereira, H. M., & Capinha, C. (2017). Using citizen science data to 
estimate climatic niches and species distributions. Basic and Applied 
Ecology, 20, 75–85. https://doi.org/10.1016/j.baae.2017.04.001

Tulloch, A. I. T., Possingham, H. P., Joseph, L. N., Szabo, J., & Martin, 
T. G. (2013). Realising the full potential of citizen science monitor-
ing programs. Biological Conservation, 165, 128–138. https://doi.
org/10.1016/j.biocon.2013.05.025

Tulloch, A. I. T., & Szabo, J. K. (2012). A behavioural ecology approach 
to understand volunteer surveying for citizen science datasets. 
Emu - Austral Ornithology, 112(4), 313–325. https://doi.org/10.1071/
MU12009

van Strien, A. J., van Swaay, C. A. M., & Termaat, T. (2013). Opportunistic 
citizen science data of animal species produce reliable esti-
mates of distribution trends if analysed with occupancy mod-
els. Journal of Applied Ecology, 50(6), 1450–1458. https://doi.
org/10.1111/1365-2664.12158

BIOSKE TCH
The authors have expertise in modelling and evaluating citi-
zen science data for a variety of purposes. Both institutes 
(ArtDatabanken and CEH) have their own bioinformatics and IT 
infrastructure for biodiversity citizen science data collection and 
analysis, involving multiple taxa at national scale (Sweden and 
UK). All authors are experienced and interested in testing and 
developing new methods, models and protocols for citizen sci-
ence to produce reliable and useful information in environmental 
conservation, management and policy.

Author contributions: L.H. and T.S. co-conceived the idea; L.H., 
T.S., U.B., M.J. and N.I. defined the questions and the methodo-
logical approach; L.H. and U.B. analysed the data; L.H. wrote the 
manuscript; L.H., T.S., U.B., M.J. and N.I. edited the manuscript; 
and T.S. obtained the funding.

SUPPORTING INFORMATION
Additional supporting information may be found online in the 
Supporting Information section.

How to cite this article: Henckel L, Bradter U, Jönsson M, Isaac 
NJB, Snäll T. Assessing the usefulness of citizen science data 
for habitat suitability modelling: Opportunistic reporting 
versus sampling based on a systematic protocol. Divers Distrib. 
2020;26:1276–1290. https://doi.org/10.1111/ddi.13128

https://doi.org/10.1111/1365-2664.12921
https://doi.org/10.1111/1365-2664.12921
https://doi.org/10.1016/j.biocon.2009.05.006
https://doi.org/10.1016/j.biocon.2009.05.006
https://doi.org/10.1111/icad.12345
https://doi.org/10.1111/cobi.12695
https://doi.org/10.1139/z93-180
https://doi.org/10.1139/z93-180
https://doi.org/10.1111/j.0906-7590.2004.03673.x
https://doi.org/10.1111/j.0906-7590.2004.03673.x
https://doi.org/10.1016/j.baae.2017.04.001
https://doi.org/10.1016/j.biocon.2013.05.025
https://doi.org/10.1016/j.biocon.2013.05.025
https://doi.org/10.1071/MU12009
https://doi.org/10.1071/MU12009
https://doi.org/10.1111/1365-2664.12158
https://doi.org/10.1111/1365-2664.12158
https://doi.org/10.1111/ddi.13128

