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A B S T R A C T   

Heat dissipation from organic matter decomposition is a well-recognized proxy for microbial activity in soils, but 
only a few modeling studies have used heat signals to quantify microbial traits such as maximum substrate 
uptake rate, specific growth rate, mortality rate, and growth efficiency. In this contribution, a hierarchy of 
coupled mass-energy balance models is proposed to estimate microbial traits encoded in model parameters using 
heat dissipation and respiration data from glucose induced microbial activity. Moreover, the models are used to 
explain the observed variability in calorespirometric ratios (CR)—the ratio of heat dissipation to respiration rate. 
We parametrized four model variants using heat dissipation and respiration rates measured in an isothermal 
calorimeter during the lag-phase only or during the whole growth-phase. The four variants are referred to as: (i) 
complex physiological model, (ii) simplified physiological model, (iii) lag-phase model, and (iv) growth-phase 
model. Model parameters were determined using three combinations of data: A) only the heat dissipation 
rate, B) only the respiration rate, and C) both heat dissipation and respiration rates. We assumed that the ‘best’ 
parameter estimates were those obtained when using all the data (i.e., option C). All model variants were able to 
fit the observed heat dissipation and respiration rates. The parameters estimated using only heat dissipation data 
were similar to the ‘best’ estimates compared to using only respiration rate data, suggesting that the observed 
heat dissipation rate can be used to constrain microbial models and estimate microbial traits. However, the 
observed variability in CR was not well captured by some model variants such as the simplified physiological 
model, in contrast to the lag- and growth-phase model that predicted CR well. This suggests that CR can be used 
to scrutinize how well metabolic processes are represented in decomposition models.   

1. Introduction 

The activity of microorganisms in soils—a crucial driver of carbon 
(C) cycling—is mediated by functional traits that determine microbial 
responses to environmental conditions. To assess these traits, measure-
ments of microbial respiration rate are often combined with stable 
isotope tracing. This combination allows estimating traits such as mi-
crobial C use efficiency (CUE: ratio of microbial growth over substrate 
consumption) (Manzoni et al., 2018), maximum substrate uptake rate, 
specific growth rate (Blagodatskaya et al., 2014), and the tradeoffs be-
tween growth rate and yield (Lipson et al., 2009; Blagodatskaya et al., 
2014). Using respiration rate and other types of C-based data, trait-based 
models are being developed to identify microbial physiological prop-
erties that affect heterotrophic respiration and more in general C cycling 
in soils (Allison, 2012; Manzoni et al., 2014; Malik et al., 2020). How-
ever, estimating microbial traits as encoded in model parameters from 

respiration data is challenging—even simple models are typically 
overparameterized (Marschmann et al., 2019). Furthermore, respiration 
data only provide limited information of decomposition processes. For 
example, the oxidation state of organic matter cannot be obtained only 
from CO2 data but the combination of CO2 with oxygen uptake rate 
(Maskow et al., 2010). This leaves a potential gap between theory 
development and testing, which can be partly filled by leveraging 
complementary information, such as that provided by heat exchange 
measurements (Braissant et al., 2013; Maskow and Paufler, 2015; 
Chakrawal et al., 2020). Here, we explore the potential of heat dissi-
pation measurements for estimating microbial traits encoded in model 
parameters. 

Recently, with the increasing use of calorimetry and calores-
pirometry in soil science, there has been renewed interest in the ener-
getic aspects of organic matter decomposition in soils (Maskow and 
Babel, 1998; Harris et al., 2012; Bölscher et al., 2016; Amenabar et al., 
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2017; Arcand et al., 2017; Herrmann and Colombi, 2019). Concurrent 
measurements of heat dissipation and respiration rates from the same 
soils offer new insights on the metabolic pathways of substrate utiliza-
tion, providing information to build and constrain physiologically 
detailed soil C cycling models (Hansen et al., 2004; Chakrawal et al., 
2020). Following this rationale, here we develop a hierarchy of coupled 
C and energy balance models sufficiently detailed to allow estimating 
microbial traits as encoded in model parameters. 

In a macrochemical view, microorganisms oxidize a substrate via 
catabolic processes and perform biosynthesis via anabolic processes 
during the decomposition of organic matter in soils. The Gibbs energy 
dissipated from catabolic processes drives the biosynthesis and heat is 
exchanged with the environment (Von Stockar et al., 2006). This heat 
dissipation rate can be measured using isothermal calorimeters in 
real-time (Barros Pena, 2018). Moreover, the ratio of heat dissipation to 
respiration rate—referred to as the calorespirometric ratio (CR)—in-
tegrates the energetics and the kinetics of microbial growth (Hansen 
et al., 2004; Wadsö and Hansen, 2015; Chakrawal et al., 2020). CR is 
useful to identify the quality of organic matter (in terms of its degree of 
reduction) and the metabolic pathways of microbial growth (Hansen 
et al., 2004; Chakrawal et al., 2020). For example, under aerobic con-
ditions, deviations from CR of 469 kJ mol− 1 CO2 indicate the presence of 
anaerobic pathways. Along these lines, here we study the causes of 
variability in observed CR using our coupled C and energy balance 
models and assess whether CR can be used to test model predictions of 
microbial metabolism. 

Despite the extensive use of heat exchanges from soils to understand 
microbial activity (Barros Pena, 2018; Herrmann et al., 2014), only a 
few attempts have been made to estimate microbial traits from such data 
(Barja and Núñez, 1999; Nuñez et al., 1994; Wadsö and Hansen, 2015). 
Nuñez et al. (1994) and Barja and Núñez (1999) estimated apparent 
yield, half saturation constant, and maximum specific growth rate from 
heat dissipation data; however, their approach focused mainly on the 
exponential growth-phase. Wadsö and Hansen (2015) used CR to esti-
mate growth yield assuming aerobic conditions. However, they 
neglected the dynamic nature of growth and decay of microbial meta-
bolic rates in response to substrate addition, which can provide infor-
mation on several additional functional traits. In fact, the dynamics of 
microbial decomposition of a single substrate can be described by 
Monod kinetics, which contains two parameters; i.e., the maximum 
substrate uptake rate and the half-saturation constant. The microbial 
biomass balance contains two additional parameters; i.e., growth effi-
ciency and microbial mortality constant. In this study, these four model 
parameters are treated as microbial functional traits. 

In calorimetric experiments, microorganisms are often activated by 
adding an external substrate (e.g., glucose), and the heat response is 
measured against a control without the added substrate. Since micro-
organisms are inactive before substrate addition, often a lag is observed 
before the exponential growth-phase. This distinction allows separating 
calorimetric incubation experiments into two groups, 1) lag-phase and 
2) growth-phase (including the decline in activity following substrate 
depletion). In our experiments, we added glucose, which generates lag- 
and growth-phases lasting approximately 4–6 h and 48–120 h, respec-
tively. The lag-phase experiments focus mainly on microbial mainte-
nance activities, while the growth-phase experiments provide 
information also on microbial growth kinetics (Harris et al., 2012; 
Herrmann et al., 2014; Herrmann and Bölscher, 2015). Therefore, 
leveraging experimental observations at different time scales, it is 
possible to focus on specific aspects of microbial responses (maintenance 
vs. growth). In addition, this allows simplifying models by removing 
processes that occur at a much longer (or shorter) scales, thus limiting 
the number of parameters to estimate. Building on this idea, we select 
models with a suitable level of complexity for each type of experiment 
and test whether the model parameters estimated using only respiration 
or only heat dissipation data are comparable to those estimated using 
both data sources. 

Specifically, we ask three questions, using glucose addition experi-
ments as a case study: 1) Do heat dissipation and respiration rates from 
microbial decomposition of soil organic matter contain complementary 
information, or is one of these rates alone sufficient to estimate micro-
bial functional traits such as the maximum rate of substrate uptake, half- 
saturation constants, microbial mortality constant, and growth effi-
ciency? 2) Can we reliably estimate at least some microbial traits from 
the exponential growth-phase data, and are these estimates comparable 
to those obtained using data from longer incubation studies? 3) Can a 
simple model help to interpret the observed variability in CR across 
different soil treatments and time scales? 

2. Materials and methods 

2.1. Data 

Two incubation experiments with concurrent measurements of heat 
dissipation and respiration rates were carried out. The two experiments 
differed in incubation length: one focusing on the lag-phase and the 
other including the growth-phase as well. 

2.1.1. Soil 
Soil samples for both incubations were taken from the Ultuna Long- 

Term Soil Organic Matter experiment (Uppsala, Sweden; 60◦N, 17◦E; 
Herrmann and Witter, 2008). The experiment was started in 1956 on a 
postglacial clay loam (36.5% clay, 41% silt, and 22.5% sand) classified 
as a Eutric Cambisol (Fao, 1998). Since then, soils (2 × 2 m blocks) have 
been treated with different nitrogen fertilizers or organic amendments, 
and all treatments are replicated in four blocks (Table S1 in the Sup-
plementary Information; see (Herrmann and Witter, 2008) and refer-
ences therein for further details). Nitrogen was applied at sowing at a 
rate of 80 kg N ha− 1 year− 1, and the organic amendments every other 
year in the autumn at a rate of 8 Mg ha− 1 ash-free organic matter. In 
June 2010, eight sub-samples to a depth of 7 cm were taken from each 
replicate block, sieved through a 2-mm sieve, composited and mixed per 
replicate block, and stored frozen at − 18 ◦C. 

2.1.2. Lag-phase incubation (LPI) experiment 
The following soil treatments were selected for the lag-phase incu-

bation experiment: (i) Peat, (ii) Peat + N, (iii) Sawdust (SD), (iv) 
Sawdust + N (SD + N), (v) Farmyard Manure (FYM), (vi) Green Manure 
(GM), (vii) Straw and (viii) Straw + N. The selected soil treatments 
received a similar amount of organic matter, but of different composi-
tion. In June 2017, soil samples were thawed and wetted to 45% of their 
water holding capacity (WHC) and pre-incubated for 8 day at 20 ◦C to 
allow the microbial respiration flush from fresh organic matter released 
due to the sampling and freezing procedure to subside (Herrmann and 
Witter, 2008; Coucheney et al., 2013). 

Six aliquots of each replicate soil (4 g) were amended with either 
Milli-Q water or glucose at five concentration levels (0.417, 4.17, 41.7, 
166.7, and 333.3 μmol glucose-C g− 1 soil; 60 μL per gram of soil bringing 
the water content to 55% of WHC) and incubated for 5.5 h at 20 ◦C in a 
TAM Air isothermal calorimeter (TA Instruments, Sollentuna, Sweden). 
The rate of heat dissipation was recorded at an interval of 15 min, and 
CO2 was measured using bicarbonate traps simultaneously in the same 
vessel (Herrmann and Bölscher, 2015). A disadvantage of using bicar-
bonate traps is that it provides only the total amount of CO2 released at 
the end of the experiment and not the time evolution. However, for a 
short incubation during the lag-phase, the respiration rate is assumed to 
be constant and can be approximated by the total CO2 produced divided 
by the incubation time. Microbial biomass C (Table S1) was determined 
by fumigation extraction (Vance et al., 1987) using a kec factor of 0.45 
for conversion to microbial biomass-C (Wu et al., 1990). 

2.1.3. Growth-phase incubation (GPI) experiment 
The growth-phase data (48 h) on heat dissipation and respiration 
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rates were derived from a published data set (Harris et al., 2012). Five 
soil treatments were selected: (i) Ca(NO3)2, (ii) (NH4)2SO4, (iii) Straw +
N, (iv) farmyard manure, and (v) sewage sludge. Briefly, duplicate 
samples (either 5 or 20 g) were amended with either DI-water or with 
4.17 μmol glucose-C per gram of soil. The 5 g soil samples were inserted 
into a TAM Air isothermal calorimeter, and the rate of heat dissipation 
was measured continuously over a 48 h incubation period at 25 ◦C. In a 
parallel set of samples (20 g soil samples), CO2 production rate was 
measured using a portable infrared gas analyzer (EGM-4, Environmental 
Gas Monitor, PP systems, U.K.) at different time intervals over a 48 h 
incubation period at 25 ◦C. 

2.2. Mass and energy balances 

A hierarchy of mass and energy balance models is proposed to 
simulate the heat and C fluxes from the substrate-induced response of 
microbial biomass in soils (Fig. 1A). In the experiments we aim to model, 
a known amount of external substrate (in our case glucose) is added to 
soils, and the microbial response is measured as respiration and/or heat 
dissipation rates. Since these rates are measured against a control that 
had not been amended, the observed microbial activity can be assumed 
to be caused only by the external substrate. Priming of the native organic 
matter could also occur, but was neglected here. 

2.2.1. Complex physiological model 
We considered a two pool (substrate and microbial biomass) model 

to simulate substrate decomposition similar to Panikov (1996) and 
Blagodatsky and Richter (1998) (Fig. 1A). Microbial cell constituents 
can be divided into two categories; i.e., P- and U-components (Panikov, 
1996). The P-components (e.g., ribosomes or rRNA and ribosomal pro-
teins, etc.) are necessary for growth, and the U-components (e.g., sec-
ondary metabolism, protective pigments, reserved substances, transport 
systems of high affinity, etc.) are needed for survival. In the starvation 
state, microorganisms maintain the U-components, but as soon as a 
substrate is added, P-components increase exponentially, giving rise to 
microbial growth. Therefore, P- and U-components can be interpreted as 
proxies of the growing and non-growing microbial populations, 
respectively (following the notation in Stenström et al. (1998)), and we 
use this terminology thereafter. The index of physiological state, r, de-
fines the proportion of P-components in the total microbial C and thus 
represents the active fraction of microbial biomass. 

The substrate is taken up by microorganisms following Monod ki-
netics with an apparent growth efficiency Y (van Bodegom, 2007). Mi-
crobial mortality (turnover) is assumed to follow a first-order function of 
microbial C and to recycle necromass in the substrate compartment. The 
mass balances of substrate C (CS), microbial C (CB), and CO2 can be 
written as (expressed in C-mol g− 1 soil h− 1), 

Fig. 1. (A) Schematic of the two-pool (substrate CS, 
and microbial biomass CB) complex physiological 
model. The substrate is taken up at rates U1 and U2 

by the growing and the non-growing populations of 
microorganisms. The growing population utilizes a 
substrate with growth efficiency Y (thus growth 
rate = YU1); in contrast, the non-growing popula-
tion uses substrate only to sustain its maintenance 
costs (thus maintenance rate = U2). The total CO2 
production rate is given by RCO2 = (1 − Y)U1 + U2, 
and the total rate of heat dissipation as Rq = −

ΔHGU1 − ΔCHS U2, where ΔHG and ΔCHS are the 
enthalpy changes (kJ C-mol− 1 substrate) of the 
metabolic reactions of the growing and non- 
growing populations, respectively. (B) The com-
plex physiological model is simplified to the 
‘simplified physiological model’ when the growing 
population is the dominant form of microbial 
biomass, the ‘lag-phase model’ when the non- 
growing population is the dominant form, and the 
‘growth-phase model’ when the substrate is not 
limiting. The index of physiological state r controls 
the proportion of total microbial C into the growing 
and the non-growing populations. These three 
models were calibrated and validated using 
observed datasets from growth-phase and lag-phase 
incubation experiments, except the growth-phase 
model that was only calibrated (see Table 1).   
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dCS

dt
= − U1 − U2 + kdCB, (1)  

dCB

dt
=YU1 − kdCB, (2)  

dCO2

dt
=(1 − Y)U1 + U2. (3) 

The substrate uptake rates U1 and U2 fuel microbial growth and 
maintenance, respectively, and are defined as follows, 

U1 =
ksCSCB

CS + KM1
r, (4)  

U2 =
msCSCB

CS + KM2
(1 − r), (5)  

where ks and ms are the maximum substrate uptake rates; and KM1, and 
KM2 are the half-saturation constants for the growing and non-growing 
populations, respectively, and r is the index of physiological state. The 
quantity Y × ks is the maximum specific growth rate (μmax). 

The governing equation for r is based on Panikov (1996) and given as 
follows, 

dr
dt

=
Yks CS

CS + KM1
r
(

CS

CS + Krc
− r

)

, (6)  

where Krc is the half-saturation constant for the rate of physiological 
state increase. Equation (4) describes changes in r that are driven by 
substrate availability: as CS increases when r is low, the active fraction of 
the microbial population increases, but as r nears the substrate- 
dependent value of CS

CS+Krc
, its growth stabilizes. When CS decreases, the 

term CS
CS+Krc 

also decreases, causing r to be reduced. 
We then coupled the C balance equations to heat dissipation. In an 

isothermal, closed, and constant volume system with no external source 
of energy, the only source of heat is derived from the chemical reactions 
within the system. Thus, the rate of heat production can be expressed as 
the rate of reaction (i.e., the rate of substrate uptake) multiplied by the 
enthalpy change of the reaction (i.e., the amount of heat dissipated per 
unit substrate utilized). Heat is released only from the metabolism of 
microorganism; therefore, the heat dissipation rate is written as, 

Rq = − ΔHG U1 − ΔCHS U2, (7)  

where Rq is the rate of heat dissipated in kJ g− 1 soil h− 1, and ΔHG and 
ΔCHS are the enthalpy changes (kJ C-mol− 1 substrate) of the metabolic 
reactions of the growing (substrate ‘G’) and non-growing populations, 
respectively. In the latter, the substrate is mineralized without growth, 
so ΔCHS is simply the enthalpy of combustion of the substrate (subscript 
‘C’ for ‘combustion’ and ‘S’ for ‘substrate’). 

Generally, calorimetric experiments run for a few days, and the ox-
ygen concentration in the reaction vials is not limiting the reaction. 
Therefore, when a substrate (glucose) is metabolized aerobically, the 
microbial growth reaction can be written as (Kleerebezem and Van 
Loosdrecht, 2010), 

CS +

(
γS − YγB

4

)

O2 → YCB +(1 − Y)CO2 + ΔHG (8)  

where γS (for glucose, γS = 4) and γB = 4.2 are the degrees of reduction 
of the substrate and microbial C, respectively. It is worth noting that Eq. 
(8) is only a macrochemical representation of complex biochemical re-
actions resulting in microbial growth. By writing the enthalpy balance of 
Eq. (8) and using the enthalpy of combustion as the reference state, we 
obtain ΔHG as follows, 

ΔHG =ΔCHS − YΔCHB (9)  

where ΔCHS and ΔCHB are the enthalpies of combustion of the substrate 

and microbial biomass (ΔCHB = − 492 kJ C-mol− 1 biomass is the 
average standard enthalpy of combustion of bacteria (Popovic, 2019); 
ΔCHS = − 469 kJ C-mol− 1 glucose is the standard enthalpy of combus-
tion of glucose (Wagman et al., 1982)). 

In the following sections, we present a set of simplifications to the 
complex physiological model (Fig. 1B). These simplified models were 
used to describe the observed heat dissipation and respiration datasets. 
Afterward, a three-pronged approach is introduced to estimate micro-
bial traits. 

2.2.2. Simplified physiological model 
Assuming that all microorganisms belong to the growing population, 

the complex physiological model was simplified by fixing r = 1 
(Fig. 1B). Therefore, Eq. (6) becomes redundant, and the resulting mass 
and energy balances are given as follows, 

dCS

dt
= −

ksCSCB

CS + KM1
+ kdCB (10)  

dCB

dt
= Y

ksCSCB

CS + KM1
− kdCB (11)  

RCO2 = (1 − Y)
ksCSCB

CS + KM1
(12)  

Rq = − ΔHG
ksCSCB

CS + KM1
(13) 

Equation (10)‒(13) are hereafter referred to as the ‘simplified 
physiological model’. The unknown model parameters encoding mi-
crobial traits are ks, KM, kd, and Y. The initial microbial C (CB0) is also 
regarded as a fitting parameter, because the concentration of active 
biomass is not known; the initial substrate concentration is instead 
assumed to be known. Equations (10) and (11) are also equivalent to 
those used in earlier soil microbial models (Manzoni and Porporato, 
2007; German et al., 2012), which however did not consider the energy 
balance. 

2.2.3. Lag-phase model 
The complex physiological model was reduced to represent lag-phase 

activity after the substrate addition and before microbial growth occurs 
by setting r = 0 (i.e., only the non-growing population is modeled; 
Fig. 1B). Under these conditions, the substrate is used to maintain stable 
microbial biomass (i.e., growth uncoupled microbial activity, Reischke 
et al., 2014). Thus, the respiration (Eq. (3)) and the heat dissipation rates 
(Eq. (7)) become functions of substrate concentration only, because CB is 
constant: 

dCS

dt
= −

k′

sCS

CS + KM2
(14)  

RCO2 =
k′

sCS

CS + KM2
, (15)  

Rq = − ΔCHS
k′

sCS

CS + KM2
, (16)  

where k′

s is the maximum rate of substrate utilization with units C-mol 
substrate g− 1 soil h− 1 (k′

s = msCB). Furthermore, the turnover of mi-
crobial C was neglected because of the longer turnover times compared 
to the lag-phase duration (Spohn et al., 2016). We refer to Eqs. (15) and 
(16) as the ‘lag-phase model’. 

2.2.4. Growth-phase model 
Previous modeling efforts have shown that Eqs. (10)–(13) cannot 

capture the details of the exponential growth-phase that follows the lag- 
phase (Blagodatsky et al., 2000; Blagodatsky and Richter, 1998; Pan-
ikov, 1996). Therefore, we considered an additional model—referred to 

A. Chakrawal et al.                                                                                                                                                                                                                             



Soil Biology and Biochemistry 155 (2021) 108169

5

as the ‘growth-phase’ model—designed to infer microbial traits using 
only data from the initial exponential growth-phase, when substrate 
availability is unlimited (Fig. 1B). Under substrate saturation conditions, 
KM1, KM2 and Krc are negligible compared to CS, and Eqs. (2)–(7) are 
simplified as follows, 

dCS

dt
= − ksCBr − msCB(1 − r) (17)  

dCB

dt
=YksCB r, (18)  

RCO2 =(1 − Y)ksCBr + msCB(1 − r), (19)  

Rq = − ΔHG ksCBr − ΔCHS msCB(1 − r), (20)  

dr
dt

= Yks r (1 − r). (21) 

The analytical solutions of Eqs. (18) and (21) are, 

CB(t) =CB0
(
1 − r0 + r0eYkSt), (22)  

r(t)=
r0eYkSt

1 − r0 + r0eYkSt. (23) 

Inserting Eqs. (22) and (23) in Eqs. (19) and (20) gives analytical 
expressions for the respiration and heat dissipation rates, 

RCO2 (t)= βC0 + βC1eβC2 t, (24)  

Rq(t) = βH0 + βH1eβH2 t, (25)  

where, βCi and βHi (with i = 0, 1, and 2) are defined as 

βC0 = msCB0(1 − r0), (26)  

βC1 =(1 − Y)ksCB0r0, (27)  

βC2 = Yks, (28)  

βH0 = − ΔCHS msCB0(1 − r0), (29)  

βH1 = − ΔHG ksCB0r0, (30)  

βH2 = Yks. (31) 

In Eqs. (24) and (25), βC0 + βC1 and βH0 + βH1 are time-invariant 
quantities representing respiration and heat dissipation rates during 
the lag-phase, respectively (i.e., when t ≈ 0); and βC2 = βH2 is the 
maximum specific growth rate. Equations (24) and (25) are collectively 
referred to as the ‘growth-phase model’. The six unknown parameters 
are βCi and βHi (with i = 0, 1, and 2, Eqs. (26)-(31)), which were esti-
mated separately by nonlinear least-square fitting of Eqs. (24) and (25) 
to observed respiration and heat dissipation rates during the growth- 
phase, respectively. Because these parameters groups are not shared 
between the mass and energy balance equations, the growth-phase 
model was only used for the calibration of heat and respiration data, 
but not for the validation. 

2.3. Microbial trait estimation 

Microbial traits encoded in model parameters were estimated sepa-
rately from the two datasets (Fig. 1). Datasets from the GPI experiment 
were used to parametrize the simplified physiological (Eq. (10)‒(13)) 
and the growth-phase model (Eqs. (24)–(25)), whereas datasets from the 
LPI experiment were used for the lag-phase model (Eqs. (15)–(16)). 

2.3.1. Parameterization of the simplified physiological model using GPI 
data 

For the simplified physiological model, we used a three-pronged 

approach for parameter estimation—using only heat dissipation rate, 
only respiration rate, or both, using five treatments from the GPI dataset. 
These three approaches were identified based on which dataset was used 
for calibration or validation: approach A) when only heat dissipation 
rate was used for calibration and respiration rate for validation, B) when 
only respiration rate was used for calibration and heat dissipation rate 
for validation, or C) when both heat and respiration rates were used for 
calibration (see Table 1). The parameters estimated from approach C 
were considered as the ‘best’ estimates since they were obtained by 
using all available information, and were therefore used as references 
for the parameters from approaches A and B. 

Following approaches A, B, or C, we estimated the maximum rate of 
substrate uptake (ks), half-saturation constant for Monod kinetics (KM1), 
growth efficiency (Y), microbial mortality constant (kd) and initial 
(active) microbial C (CB0). The simplified physiological model was 
solved numerically in Matlab (2020a) using the ordinary differential 
equation solver ode45, a non-linear least square (lsqcurvefit) algorithm 
was used to find the best-fit parameters, and the nlparci and nlpredci 
functions to find the 95% confidence intervals of estimated parameters 
and simulations. To avoid overfitting and to ensure consistent temporal 
resolution of heat dissipation and respiration rate data, we binned the 
observed Rq in a 75 min interval time series (original data was at 15 min 
interval) and took the mean of observed Rq from all the replicates in each 
bin. A similar pre-processing was performed on respiration rate data as 
well. 

2.3.2. Parameterization of the lag-phase model using LPI data 
For the lag-phase model, we followed only approach A and estimated 

the two parameters k′

s and KM2 using the LPI data. These two parameters 
were fitted to the heat dissipation rates averaged across replicates, 
separately for each of the eight soil treatments. 

2.3.3. Parameterization of the growth-phase model using GPI data 
For the growth-phase model, parameters βCi or βHi were estimated 

individually from the fitting of Eq. (24) or (25) to observed heat dissi-
pation and respiration rates from the GPI dataset. However, there are 
five unknowns (ms, ks, Y, CB0, r0) in the expressions of βCi or βHi. 
Therefore, it was not possible to estimate all these five parameters from 
estimated βHi without knowing the value of any two physiological pa-
rameters. Some authors have fixed the values of the ratio of maintenance 
and growth specific uptake rate (ms/ks) and the growth efficiency to 
estimate active and total microbial biomass (Blagodatsky et al., 2000; 
Wutzler et al., 2012). Here, we took a different approach and estimated 
Y from separately estimated values of βC1 and βH1 (see Section 2.4). 
Having calculated Y, we were still left with three equations (either Eqs. 
(26)–(28) or Eqs. (29)–(31)) and four unknowns (ms, ks, CB0, r0). 
Therefore, it was not possible to estimate all five parameters, and we 
used the growth-phase model only to estimate ks and Y. 

2.3.4. Performance metrics 
The obtained model parameters and goodness of the fit were assessed 

using root mean squared error (RMSE) and coefficient of determination 
(r2). The RMSE units are the same as those of the variable being modeled 
but are not reported in the figures due to lack of space. 

2.4. Calorespirometric ratios (CR) 

Calorespirometric ratio (CR) is the ratio of heat dissipation and 
respiration rate. CR has been related to the enthalpic content of the 
organic substrate being decomposed and has been used to diagnose the 
pathways of microbial metabolism (Hansen et al., 2004; Herrmann 
et al., 2014; Wadsö and Hansen, 2015; Chakrawal et al., 2020). In the 
simplified physiological model, CR (CRP) was calculated by taking the 
ratio of Eq. (13) to Eq. (12), 
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CRP =
Rq

RCO2

= −
ΔHG

1 − Y
= −

ΔCHS − YΔCHB

1 − Y
. (32) 

Similarly, CR in the lag-phase and the growth-phase models were 
denoted by CRL and CRG and were obtained by taking the ratios of Eqs. 
(15) and (16), and Eqs. (24) and (25), respectively, 

CRL = − ΔCHS = 469 kJ C − mol− 1 glucose, (33)  

CRG =
βH0 + βH1eβH2 t

βC0 + βC1eβC2 t . (34) 

Further, the ratio of βH1 (Eq. (26)) to βC1 (Eq. (23)) can be considered 

as the calorespirometric ratio 
(

CREG =
βH1
βC1

)

in the exponential growth- 

phase and can thus be used to estimate Y. The relationship between 
CREG and the Y is exactly the same as in Eq. (32). By inserting the 
expression of ΔHG from (9) into Eq. (32), and simplifying, we obtained Y 
as a function of CREG, 

Y =
CREG + ΔCHS

CREG + ΔCHB
. (35)  

2.5. Statistical analyses 

We used two-way ANOVA to test if differences in the observed CR 
among different soil treatments and glucose levels in the LPI experiment 
were significant. Further, a t-test was used to test for the significance of 
differences between the model and experimentally estimated CR values 
for each soil treatment and at each glucose level individually. 

3. Results 

We compared the simulated and observed heat dissipation rates in 
the LPI experiment for all soil treatments (Fig. 2A and B, different 
colors). The parameters, k′

s and KM2, estimated by fitting the observed 
heat dissipation rates to the lag-phase model (Eq. (16)) were used to 
validate the model using observed respiration rates, as shown in Fig. 2C 
and D. Overall, the lag-phase model was able to explain the observed 

Table 1 
Calibration and validation approach for different model variants, data sources, and lists of estimated parameters (see also Fig. 1B).  

Parameterization 
approach 

Calibration Validation Data Model Estimated 
parameters* 

A Heat dissipation rates Respiration rates LPI Lag-phase model (Eq. (15) and 
(16)) 

k′

s and KM2  

GPI Simplified physiological model 
(Eq. (10)‒(13)) 

ks,KM1,Y,kd, and 
CB0  

B Respiration rates Heat dissipation rates GPI Simplified physiological model ks,KM1,Y,kd, and 
CB0  

C Heat dissipation & 
respiration rates 

Assumed to be ‘best’ 
estimates;  
not validated 

GPI Simplified physiological model ks,KM1,Y,kd, and 
CB0  

Growth-phase model (Eq. (24) 
and (25)) 

ks and Y  

*maximum rate of substrate uptake (ks or k′

s), half-saturation constants (KM1 and KM2), microbial mortality constant (kd), growth efficiency 
(Y), and initial (active) microbial biomass C (CB0). 

Fig. 2. Calibration of the lag-phase model 
using observed heat dissipation rates from 
the LPI dataset (panels A and B). Modeled 
and observed heat dissipation rates (Rq) are 
shown for eight different soil treatments 
(panel A) and four different glucose levels, 
in addition to the un-amended control 
(panel B). Validation of the lag-phase model 
using the observed respiration rates (RCO2 )

from the same LPI dataset (panels C and D). 
The error bars represent the 95% confidence 
intervals for the observed or modeled heat 
dissipation and respiration rates.   
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heat dissipation rates across different soil treatments with high accuracy 
(r2 = 0.99) and also predicted respiration rates (r2 = 0.82). However, at 
higher glucose concentrations, the model underestimated the observed 
respiration rates in some soil treatments (Fig. 2D). 

The results from fitting the simplified physiological model to the GPI 
experiment using our three parameterization approaches are presented 
in Fig. 3. Further, the estimated parameters kS, KM, kd, Y, and CB,0 are 
summarized in Tables S3, S4, and S5 for approaches A, B, and C, 
respectively. The simplified physiological model fitted the observed Rq 

with a high degree of accuracy (i.e., r2 > 0.95 in all soils, Fig. 3A1–A5); 
however, the heat dissipation rates during the initial lag-phase (first few 
hours) were not well captured by the model (Table S3). The predicted 
values of RCO2 during the initial lag-phase (Fig. 3A6–A10) matched 
better the observed values compared to the heat dissipation rates. 

With approach B, the calibration of the simplified physiological 

model using RCO2 (Fig. 3B1–B5) predicted the overall shape of the heat 
dissipation rates (Fig. 3B6–B10), but with higher uncertainty (lower r2) 
compared to approach A (Table S4). Including observed respiration rates 
with approach C (i.e., the ‘best’ calibration approach using both respi-
ration and heat dissipation data) did not improve the model fit, since the 
RMSE and r2 values were similar in approaches A and C (Fig. 3C1-C10; 
Table S5). 

The parameters estimated from approaches A and C were nearly 
identical (Fig. 4)—i.e., approach A provided estimates close to the ‘best’ 
values obtained using all available data. In contrast, the mean values of 
the parameters estimated with approach B were different (but still of a 
similar order of magnitude) from those from approach A and C, and had 
much larger uncertainties (Fig. 4). Therefore, heat dissipation rates 
alone can be used to estimate microbial traits. 

Results based on fitting of the growth-phase model in the exponential 

Fig. 3. Calibration and validation of the simplified physiological model using approach A (panels A1–A10) and B (panels B1–B10), and only calibration using 
approach C (panels C1–C10). Measured heat dissipation rates 

(
Rq

)
and respiration rates (RCO2 ) are from the GPI dataset. Modeled and observed heat (and respiration) 

rates are shown as solid lines and open circles, respectively. The root mean square errors (RMSE) and coefficients of determination (r2) are shown for each model fit. 
The three approaches are described in Table 1. 
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growth-phase of the GPI experiment are presented in Fig. 5 and the 
estimated parameters are summarized in Table S6. As it is expected from 
Eqs. (28) and (31), the estimated values of the maximum specific growth 
rates (βH2 and βC2) were similar, indicating that microbial growth rates 
were comparable when estimated from an energetic or C flow stand-
points, even though in this model the two types of data were used 
independently. The maximum uptake rate ks (given by βH2 or βC2 divided 
by the growth efficiency Y, where Y is obtained from Eq. (35)) was close 
to the estimated values from the calibration done using the simplified 

physiological model (green points in Fig. 4A). This lends further support 
to our parameter estimation approach. Moreover, the growth efficiency 
values estimated from the growth-phase model were similar to those 
estimated from the simplified physiological model for the soil treated 
with Ca(NO3)2, but overestimated for other treatments (green points in 
Fig. 4D). Therefore, short-term measurements during the growth-phase 
can be used to estimate growth rates, but not always growth yields. 

The observed and simulated CR for the LPI experiments are shown in 
Fig. 6. The CR for the five soil treatments from the GPI experiment are 

Fig. 4. Comparison of parameters estimated from the simplified physiological model using three estimation approaches (Table 1). (A) Maximum uptake rate ks, (B) 
half-saturation constant KM, (C) microbial mortality constant kd, (D) growth efficiency Y, and (E) initial microbial biomass CB,0. Parameter values from approach A 
are plotted on the y-axes, whereas values from approaches B and C are plotted on the x-axes. The horizontal and vertical bars are the 95% confidence intervals for the 
estimated parameters; 1:1 lines are indicated by black solid lines. 

Fig. 5. Calibration of the growth-phase model using heat dissipation rates (Rq) (top panels A–E) and respiration rates (RCO2 ) (bottom panels F–J) from the GPI 
dataset. Modeled and observed heat (and respiration) rates are shown as a solid line and open circles, respectively. The root mean square errors (RMSE) and co-
efficients of determination (r2) are shown for each model fit. 

A. Chakrawal et al.                                                                                                                                                                                                                             



Soil Biology and Biochemistry 155 (2021) 108169

9

shown in different panels (Fig. 7). We note that the observed CR in the 
GPI experiment are time varying quantities because they were calcu-
lated from the ratio of heat dissipation and respiration rates, which were 
measured at the same time, different from the LPI experiment. The 
simulated CR from the simplified physiological model (dashed lines, 
Fig. 7) are time-invariant values that depend only on the microbial 
growth yield, whereas the simulated CR using the growth-phase model 
(solid black curves) varied through time and better captured the 
observed CR, but only during the exponential growth-phase (i.e., the 
solid black curves stop at the end of this phase). 

4. Discussion 

In this study, we presented a coupled mass and energy balance model 
to interpret the observed heat dissipation and respiration rates from 
substrate-induced responses from soils. Different from earlier energetics- 
based models (Braissant et al., 2013; Hansen et al., 2004; Matheson 
et al., 2004; von Stockar and Birou, 1989), here we proposed a dynamic 
model and a systematic parameter estimation approach that is relevant 
to the quantification of functional traits of microbial communities in 
soils. Using this model, we estimated the maximum rate of substrate 
uptake (ks or k′

s), the half-saturation constant for Monod kinetics (KM1 or 
KM2), growth efficiency (Y), microbial mortality constant (kd), and the 
initial (active) microbial C (CB0) from two different datasets 

(Table S2–S6). Additionally, we used our model to interpret the 
observed CR in both datasets. Model parameters were estimated using 
different approaches (Table 1) to answer the three questions posed in the 
introduction. 

4.1. Can heat dissipation rate alone constrain soil C cycling models? 

Our comparison of parameters estimated from different approaches 
shows that: i) approach A provides accurate estimates despite being 
based only on heat exchange data, and ii) approach C leads to more 
uncertain estimates compared to A and B (Fig. 4). This means that the 
heat dissipation rates alone can be used to characterize microbial 
properties, and information regarding C fluxes can be inferred from the 
energy fluxes, but not vice versa. The main advantage of this approach is 
that it allows leveraging the high-temporal resolution data from calo-
rimeters that are becoming more available. 

To place these results in a broader context, our estimated values of 
microbial traits were compared to those reported in other studies 
(Table S7). The compiled studies focused on microbial communities 
from the top organic soil horizon amended with a single or a range of 
glucose concentrations, using respiration or heat dissipation rate mea-
surements to estimate microbial traits. The range of glucose concen-
trations in the literature compilation is similar to that in both LPI and 
GPI datasets, thereby allowing direct comparisons with our results. In 

Fig. 6. Calorespirometric ratios (CR) from the 
lag-phase incubation experiment: different color 
bars represent soil treatments, and the whiskers 
are the standard errors (four replicates). The 
horizontal dashed line represents the constant 
value of CR equivalent to the enthalpy change in 
the complete combustion of glucose (CRL = 469 
kJ mol− 1 CO2–C). Asterisks denote significant 
differences between the experimental and model 
simulated CR values (p < 0.05). (For interpreta-
tion of the references to color in this figure 
legend, the reader is referred to the Web version 
of this article.)   

Fig. 7. Calorespirometric ratios (CR) from the growth-phase incubation experiments: different gray lines represent the observed CR (three replicates), whereas the 
black dashed and solid lines represent the model simulated CR values using the simplified physiological model (CRP, Eq. (32)) and the growth-phase model (CRG, Eq. 
(34)), respectively. 
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only two of these studies, heat dissipation data were used to estimate the 
parameters of Monod kinetics for glucose mineralization (Nuñez et al., 
1994; Barja and Núñez, 1999). The other studies were based on respi-
ration rate measurements from either a single pulse addition or a range 
of concentrations of glucose. The parameters KM1 and k′

s, estimated 
using the lag-phase model are of a similar order of magnitude (~10− 6 

and ~10− 7 C-mol S g− 1 soil, respectively) as in the previous studies. The 
parameter μmax is equivalent to Y × ks in the GPI dataset, and the esti-
mated values are similar (~0.3 h− 1) to previous studies except one 
(Barja and Núñez, 1999). The growth efficiency values estimated using 
the simplified physiological model from the GPI dataset are towards the 
high range of literature values. The microbial mortality rate 
(kd̃ 0.02 − 0.04 h− 1

) and half-saturation constant (KM2̃10− 6 C-mol S 
g− 1 soil) estimated using the simplified physiological model are also of a 
similar order of magnitude as values reported in previous studies. 
Therefore, based on this comparison with independent studies, we can 
conclude that our estimation approach provides reasonable parameter 
values. 

We also attempted to parameterize the complex physiological model 
(Eqs. (1)–(7)) for the entire duration of GPI experiments (similar to 
Blagodatsky et al., 1998; Blagodatsky and Richter, 1998); however, 
reliable estimation was not possible due to the larger number of pa-
rameters. This suggests that simplified models using only heat dissipa-
tion data can achieve good performance and provide robust estimates of 
microbial traits comparable across studies. 

4.2. Can we estimate selected microbial traits from the growth-phase 
data? 

Our analysis suggests that the fitting of the growth-phase model is 
more accurate than that of the simplified physiological model during the 
first part of the incubations (cf. Figs. 3 and 5). In fact, despite the overall 
good performance, in most soil treatments in the growth-phase incu-
bation dataset, the simplified physiological model failed to capture the 
initial heat dissipation rate for both calibration scenarios. In these in-
cubations, substrates were provided at saturating concentrations, as 
shown by the estimated half-saturation constant (KM1) being almost one 
order of magnitude lower than the amount of glucose added. Under 
these conditions, the kinetics of microbial growth represented by Eq. 
(11) reduces to exponential kinetics, which is mathematically similar to 
the form obtained with the growth-phase model (Eq. (22)). However, 
the parameters in Eq. (11) are estimating using more data points than 
when fitting Eq. (22). The additional data points around the peak and 
along the declining branch of the substrate-induced response constrain 
the parameter values in such a way that the simplified physiological 
model is not capable of capturing both the initial lag-phase and the final 
steep decline. In contrast, the growth-phase model is calibrated using 
data points essentially aligned along the exponential growth curve, 
which allows a more accurate fit at the cost of neglecting information 
from data around the peak and the following decline. 

In samples amended with labile substrates, the substrate-induced 
response has been described in previous studies as the sum of lag- and 
growth-phase contributions (Panikov, 1996; Blagodatsky et al., 2000; 
Wutzler et al., 2012). Here, the growth-phase model accounted for both 
these terms and was able to capture the heat dissipation and respiration 
rates in both lag-phase and growth conditions (Fig. 5). As a result, the 
growth-phase model is more flexible and performs better than the 
simplified physiological model when focusing on growth-phase data. 

In the exponential growth-phase, the estimated apparent efficiency Y 
is a good approximation of the actual growth efficiency because of the 
minimal maintenance load on microorganisms under these conditions 
(Bradley et al., 2018). Therefore, it is not surprising that Y values ob-
tained from the growth-phase model are larger than those obtained 
using the other models. In the case of soil treatments with straw, Y is 
erroneously estimated to be higher than 1 (Table S6). This could be 

caused by the relationship between Y and CR (i.e., Eq. (35)), which only 
accounts for aerobic conditions, and thus, is not valid if other metabolic 
pathways and/or priming of SOM are also active. The effect of other 
metabolic pathways or priming on CR is further discussed in the next 
section. 

4.3. Can a simplified model help to interpret the observed variability in 
CR? 

In the LPI experiment, the added glucose is used mainly for main-
tenance respiration, so that glucose is only catabolized without resulting 
in growth. Thus, during maintenance, complete oxidation of 1-C mol of 
glucose to 1-C mol of CO2 takes place, and 469 kJ C-mol− 1 glucose of 
heat is produced. Therefore, we would expect CR = CRL = 469 kJ C- 
mol− 1 CO2, which is also the CR value implicitly assumed by the lag- 
phase model. However, most soil treatments show significant differ-
ences between observed CR and CRL (Fig. 6, dashed line), and a two-way 
ANOVA indicates that observed CR differ significantly across soil 
treatments but not across glucose levels (Fig. 6). Without microbial 
growth, these deviations can be explained either by the presence of other 
metabolic pathways or priming of soil organic matter (Hansen et al., 
2004; Boye et al., 2018; Chakrawal et al., 2020). 

In our experiments, CR values are above 200 kJ C-mol− 1 CO2, indi-
cating mostly aerobic conditions (Chakrawal et al., 2020). Because CR is 
the ratio of heat to CO2 production rates, values higher than 469 kJ 
C-mol− 1 CO2 indicate either additional heat production or lower CO2 
production than complete oxidation of glucose. Additional heat could be 
released as a result of priming because the metabolism on soil organic 
matter may produce large amounts of heat, but a smaller amount of CO2, 
if highly reduced organic matter is undergoing decomposition (Chak-
rawal et al., 2020). Evidence from Arcand et al. (2017) further suggests 
that the long-term amendment of soils with organic materials (e.g., 
straw) can reduce nutrient availability for the microbial community 
compared to inorganic amendments (e.g., Ca(NO3)2). As a result, N 
mining via priming of soil organic matter would be induced along with 
glucose mineralization (Arcand et al., 2017). This could be the case in 
the Peat and Peat + N treatments because peat has high lignin content 
with a higher degree of reduction compared to carbohydrates (Turetsky 
et al., 2000; Worrall et al., 2016). Moreover, peat samples have large 
organic matter content, so that some priming is likely (Fig. 6). 

In contrast, CR values lower than 469 kJ C-mol− 1 CO2 indicate either 
lower heat production or higher CO2 production compared to complete 
glucose oxidation. For example, when glucose is not completely oxidized 
to CO2, both the amount of heat dissipated and CO2 produced would be 
reduced. This would be the case during fermentation or combined 
fermentation and aerobic decomposition. However, their ratio (CR) 
could still decrease (see Chakrawal et al. (2020) for details). This could 
explain the CR values lower than 469 kJ C-mol− 1 CO2 for treatments 
other than Peat and Peat + N (Fig. 6). 

In the GPI experiment, CR values vary in the range of 150–700 kJ C- 
mol− 1 CO2 during the incubation, generally decreasing during the 
growth-phase and recovering after the peak of heat dissipation rate 
(Fig. 3). CR values are higher than 469 kJ C-mol− 1 CO2 during the early 
phase of the incubation but becoming lower than this threshold during 
the growth-phase. This indicates a transition from the early lag-phase, 
when microbial metabolism is uncoupled from growth and substrate is 
catabolized only for maintenance, to the growth-phase, when meta-
bolism is coupled with growth and substrate is catabolized in association 
with anabolism. Since the coupling of catabolism and anabolism is 
different at different stages of microbial metabolism, the rates of CO2 
and heat production are not always proportional; thus, their ratio, CR, 
also varies through time. Under different assumptions on the type of 
microbial metabolism, the time variation of CR can be explained using 
the growth-phase model, but not the simplified physiological model. 

In fact, in the simplified physiological model, a time-invariant value 
of CR is assumed, which misses the observed variability (dashed line 
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Fig. 7). This is because the CR from the simplified physiological model 
depends only on the microbial growth efficiency (Eq. (32)), which is 
comparable across soil treatments (Table S3). For growth efficiency in 
the range of 0.4–0.8, Eq. (32) would predict CR ranging from 364 to 440 
kJ C-mol− 1 CO2; more importantly, CR would always be less than 469 kJ 
C-mol− 1 CO2 for glucose. Similar to systems with negligible microbial 
growth, the deviation of CR from the 364–440 kJ C-mol− 1 CO2 range in 
systems under aerobic growth conditions is indicative of the presence of 
other pathways of glucose metabolism or of priming of soil organic 
matter, which we have not included in our model. Interestingly, without 
incorporating the details of other glucose metabolic pathways and the 
priming of soil organic matter, the relatively simple growth-phase model 
explained the observed CR in the exponential growth-phase better than 
the physiological model (Fig. 7). The improved performance was the 
result of independently fitting heat dissipation and respiration rate data, 
which provided the needed flexibility to capture time-varying CR. 

4.4. Ecological implications 

In addition to the findings presented above, the microbial traits 
estimated using energy fluxes can be used to study the ecological im-
plications of different management of soils, such as the consequences of 
N addition, and of organic vs. inorganic amendments to soils. Moreover, 
the estimated parameters can also be used to study the trade-offs (fast vs. 
efficient growth; Lipson, 2015) in the microbial responses to glucose 
additions among different soil treatments. 

In the LPI experiment, the addition of N generally led to increased 
mineralization of glucose as reflected in the higher amount of heat and 
CO2 released; e.g., in the case of Peat (red line) vs. Peat + N (blue line) in 
Fig. 2B. The estimated microbial traits using the lag-phase model were 
able to capture this difference as shown by higher values of the 
maximum rate of substrate utilization in soils receiving additional N (k′s 
in Table S2). This suggests either higher microbial biomass or higher 
maintenance respiration in soils with more organic N. 

Previously, data from the sludge and (NH4)2SO4 treatments in the 
GPI experiment were used to study the effects of long-term stress by 
heavy metal toxicity and low pH on soils (Harris et al., 2012). The au-
thors concluded that microbial communities under stress perform at 
lower thermodynamic efficiency and thermal yield (analogous to Y; 
Soares, 2019). In contrast, the growth efficiency estimated in our study 
does not show any strong differences among soil treatments indicating 
that microbial responses were dominated by glucose metabolism rather 
than soil treatments. Further, Arcand et al. (2017) also reported similar 
values of thermodynamic efficiency among organic and inorganic 
treatments based on glucose additions. 

Lastly, we did not find any significant trade-offs between the 
maximum growth rate and growth efficiency among different soil 
treatments (Figure S1), possibly because of the relatively small range in 
these traits resulting from the glucose dominated microbial metabolism. 
In fact, it is possible that growth-efficiency trade-offs emerge only across 
very different microbial communities as a consequence of contrasting 
resource availabilities (Lipson et al., 2009; Lipson, 2015), while in our 
experiments, conditions were comparable and determined by the 
amount of added glucose. 

5. Conclusions 

We proposed a hierarchy of coupled C mass-energy balance models 
to estimate microbial traits from calorespirometric experiments. While 
our models are based on glucose metabolism, they can also be used to 
study functional traits of microbial communities utilizing multiple 
substrates or decomposing SOM, as long as the typical microbial 
response is observed; i.e., the lag-phase followed by exponential growth 
and then decay. In the cases of multiple peaks of microbial activity, as 
often observed during diauxic or drying-rewetting experiments, the data 
could be separated into different time periods, and then our models 

could be used to estimate microbial traits in each of them. Thus, our 
approach can be generalized depending on the experimental setup. 

Based on our findings, we advocate using energy fluxes as reliable 
complements or alternatives to mass fluxes such as respiration rates for 
estimating microbial traits and constraining model parameters. More-
over, combining energy to mass fluxes in the calorespirometric ratios 
provides a metric to characterize microbial metabolism that could be 
used to test microbial-explicit models of soil C dynamics. 
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