Transvascular fluid dynamics in the pulmonary vasculature in horses at rest and during exercise

Modest Vengust

Faculty of Veterinary Medicine and Animal Science
Department of Clinical Sciences
Uppsala

Doctoral Thesis
Swedish University of Agricultural Sciences
Uppsala 2010
Abstract

Maximal exercise results in a marked increase in cardiac output (Q) with consequent adaptations in pulmonary macro- and microvasculature. These adaptations change pulmonary hemodynamics and increase fluid and solute movement between the pulmonary circulation and the pulmonary interstitium (across the lung). The purpose of this study was to determine pulmonary circulation transvascular fluid fluxes in a quantitative manner during exercise in horses. This was determined during exercise at 80% VO$_{2}\text{max}$ on a high-speed treadmill until fatigue without any medication, with acetazolamide (Acz) treatment, and with furosemide (Fur) treatment.

Acetazolamide, a carbonic anhydrase (CA) inhibitor, has several effects on pulmonary vasculature and erythrocytes, which influence pulmonary circulation transvascular fluid fluxes and electrolyte changes across the lung. These mechanisms are expressed through its ability to reduce vascular smooth muscle tone and contractility, and to attenuate hydration/dehydration of CO$_2$ via the CA, Jacobs-Stewart cycle and chloride shift (Hamburger shift) inhibition.

Furosemide causes diuresis. The consequence of diuresis is a decrease in plasma volume, right ventricular preload, and Q, which results in reduction in transmural hydrostatic pressures in pulmonary vasculature. Reduction of transmural hydrostatic forces is the mechanism by which Fur is believed to attenuate exercise induced pulmonary hemorrhage. Furosemide has also a dilatory effect on the pulmonary vasculature, and it may affect the chloride shift across the erythrocyte membrane.

Resting, exercise, and recovery arterial and mixed venous blood were sampled from race fit standarbred horses. Blood (BV) and erythrocyte volume (EV) changes across the lung were calculated from changes in plasma protein, hemoglobin and hematocrit. Cardiac output was calculated using Fick equation. Fluid flux across the lung was quantified based on changes in BV and EV across the lung. Integrative physicochemical systems approach was used to describe acid base changes across the lung.

The overall findings of these studies showed that approximately 12 L/min or 4 % of Q moves from the pulmonary circulation into the pulmonary interstitium during exertion in horses. This volume, which left the pulmonary circulation, was derived primarily from the reduction of erythrocytes’ volume across the lung. Acetazolamide attenuated transvascular fluid fluxes in the pulmonary circulation
through attenuation of the erythrocyte volume changes. It did not change Q. Furosemide did not affect erythrocyte volume changes and transvascular fluid fluxes in the pulmonary circulation, but reduced Q. Cardiac output during exercise is indicative of pulmonary capillary recruitment and/or dilatation coupled with the increase in the pulmonary surface area. From the results of our studies we conclude that pulmonary circulation transvascular fluid fluxes are regulated by erythrocyte volume regulation. Hydrostatic transmural gradients across the pulmonary vasculature have a minor effect on pulmonary circulation transvascular fluid fluxes during exercise in horses.

Keywords: pulmonary circulation, pulmonary hemodynamics, water transport, acetazolamide, furosemide, Chloride shift, Jacobs-Stewart cycle, erythrocyte volume regulation, exercise.

Author's address: Modest Vengust, SLU, Department of Clinical Sciences, P.O. Box 7054, 750 07 Uppsala, Sweden, E-mail: mvengust@gmail.com
To all that gave me a hand, a smile, a hope, advice…
Contents

List of Publications 9

Abbreviations 11

Introduction 13

- Pulmonary circulation fluid dynamics adaptation to exercise 13
- Starling’s hypothesis/principle 14
- A quantitative approach to acid-base chemistry 15
- Pharmacologic modulation of pulmonary transvascular fluid fluxes 16
 - Acetazolamide 16
 - Furosemide 18
- Problem identification 20
 - Paper I 20
 - Paper II 20
 - Paper III 21
 - Paper IV 21

Aims of the study 23

Materials and methods 25

- Pre-Experimental Protocol 25
- Experimental protocol 26
- Acetazolamide treatment experiment (paper II and III) 26
- Furosemide treatment experiment (paper IV) 27
- Pulmonary gas collection 27
- Blood sampling and blood analysis 27
- Calculations 28
- Study design and statistical analysis 29

Results and discussion 31

- Transvascular fluid flux from the pulmonary vasculature at rest and during exercise in horses (paper I) 31
- Effects of chronic acetazolamide administration on fluid flux from the pulmonary vasculature at rest and during exercise
Effects of chronic acetazolamide administration on gas exchange and acid-base control in pulmonary circulation in exercising horses (paper III) 36
Effect of furosemide on transvascular fluid fluxes across the lung in exercising horses (paper IV) 37
Methodological considerations (all papers) 40

Summary and conclusions 43

References 45

Acknowledgements 53
List of Publications

This thesis is based on the work contained in the following papers, referred to by Roman numerals in the text:

All papers are reproduced with the permission of the publishers.
The contribution of Modest Vengust to the papers included in this thesis was as follows:

I I declare that most of work for this paper was performed by me.

II I declare that most of work for this paper was performed by me.

III I declare that most of work for this paper was performed by me.

IV I declare that most of work for this paper was performed by me.
Abbreviations

\(A_{\text{tot}} \) weak electrolyte concentrations
BV blood volume
CA carbonic anhydrase
COPD chronic obstructive pulmonary disease
EIPH exercise induced pulmonary hemorrhage
EV erythrocyte volume
\(\text{FiO}_2 \) fraction of inspired oxygen in a gas mixture
Fur furosemide
HPV hypoxic pulmonary vasoconstriction
\(J_{V/A} \) pulmonary circulation transvascular fluid fluxes
PPA pulmonary artery pressure
PVR pulmonary vascular resistance
Q cardiac output
SID strong ion difference
\(\text{VCO}_2 \) rate of elimination of carbon dioxide
\(\text{VO}_{2\text{max}} \) maximal oxygen uptake
\(\text{VO}_{2\text{peak}} \) peak oxygen uptake
Introduction

Pulmonary circulation fluid dynamics adaptation to exercise

Maximal exercise results in marked increase in cardiac output (Q) (Bevegard et al. 1963). Depending on the rate of rise of Q, pulmonary macro- and microvascular pressures increase accordingly (Wagner et al. 1986; Groves et al. 1987, Schaffartzik et al. 1993, Newman et al. 1993). In concert with an increased macro- and microvascular pressures, blood flow redistribution occurs across the lung through the capillary recruitment and consequent increase in the pulmonary surface area (Bake et al. 1968, Hlastala et al. 1996). Changes in pulmonary hemodynamics during exercise increase fluid and solute movement across the alveolar-capillary barrier (Dexter et al. 1951, Johnson et al. 1960). Such adaptations can be associated with the development of clinically apparent pulmonary edema (McKechnie et al. 1979) or the subclinical perivascular edema and/or parenchymal interstitial edema that worsens the pulmonary gas exchange in dogs (Younes et al. 1987), small ruminants (Coates et al. 1984), pigs (Schaffartzik et al. 1993), humans (Schaffartzik et al. 1992, McKenzie et al. 2005) and horses (West et al. 1993).

During intense exercise, horses develop substantial hypoxemia (Wagner et al. 1989; Dempsey and Wagner 1999), which is believed to be the major mechanism for altered pulmonary fluid fluxes. Hypoxemia results in pulmonary vasoconstriction (hypoxic pulmonary vasoconstriction, HPV) of small pulmonary arteries, which increases pulmonary microvascular pressure and can, in turn, affect pulmonary capillary water permeability (Mairbaurl et al. 2002). Similar adaptations to hypoxemia are observed in high-altitude intolerance in humans and animals (Hecht et al. 1962, Maggiorini et al. 2001, Swenson et al. 2002) and other chronic respiratory diseases such as chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, and obstructive sleep apnoea (Weitzenblum et al. 1981, Weir and Olschewski 2006).

Hypoxemia stimulates a rise in the intracellular Ca2+ concentration in pulmonary vasculature smooth muscle cells, which results in their consequent vasoconstriction (Jabr et al. 1997). Hypoxic pulmonary vasoconstriction can be induced with (Furchgott and Zawadzki 1980, Stenmark and Mecham 1997) or without intact endothelium (Murray et al. 1990) via various mechanisms, such as changes in membrane potential, increase in free cytosolic Ca2+, increases in Ca2+ sensitivity of contractile apparatus, and myosin light chain phosphorylation (Harder et al. 1985, Madden et al. 1985, Mauban et al. 2005).

Starling’s hypothesis/principle

Study of water movement across the capillary wall is based on Starling’s hypothesis (Starling, 1896a), which states that a balance between the hydrostatic and oncotic pressures across capillary walls holds the blood within a systemic circulating system of water-permeable vessels. In subsequent work by Landis (1927) Starling’s hypothesis was summarized with the following equation:

\[
J_v/A = L_p((P_c - P_i) - (\pi_c - \pi_i)), \tag{1}
\]

where \(J_v/A\) is the relationship between the filtration or reabsorption rate of fluid per unit area of capillary wall, \(L_p\) is the hydraulic permeability of the capillary wall, \(P_c\) is capillary pressure, \(P_i\) is hydrostatic pressure of the interstitial fluid, \(\pi_c\) is oncotic pressure of plasma, and \(\pi_i\) is oncotic pressure of the interstitial fluid.

Later, the work of Pappenheimer and Soto-Rivera (1948) transformed Starling’s hypothesis into Starling’s principle. They estimated the quantitative relations between the arterial, venous, and capillary pressures and demonstrated how these pressures could be estimated in isolated
perfused hindlimbs of dogs and cats. Starling’s principle states that fluid movements across microvascular walls are determined by differences in hydrostatic and oncotic pressure.

Starling’s principle is used to explain fluid movement across the systemic circulation. However, it is less successfully utilized to understand fluid dynamics across the pulmonary circulation (Starling, 1896b; Michel, 1997; Effros and Parker, 2009).

A quantitative approach to acid-base chemistry

The application of a physicochemical approach to the regulation of acid-base status in intra- and extracellular space clarifies the link between fluid and electrolytes in physiological aqueous solutions (Stewart 1978, Stewart 1981, Stewart, 1983). It quantifies the relative contributions of three independent variables: strong ion difference (SID), weak electrolyte concentrations (A_{tot}), and PCO$_2$ to changes in dependent variables ([H$^+$], [HCO$_3^-$]) in aqueous solutions. Changes in [H$^+$] can be achieved only by changing one or more of these three independent variables. The system is constrained by three fundamental physical laws: conservation of mass, electro-neutrality and the equilibrium constraints on dissociation reactions.

Strong ions are by definition electrolytes that, based on their K_A, completely dissociate in physiological aqueous solutions. The net effect of the presence of strong ions can be expressed in terms of the difference between the total concentration of strong base cations and strong acid anions. This is termed strong ion difference (SID):

$$[SID] = \Sigma[\text{strong cations}] - \Sigma[\text{strong anions}]$$ \hspace{1cm} (2)

Weak electrolytes are only partially dissociated in H$_2$O. A_{tot} is used to express the total available anionic charge of the weak electrolytes, which consist of associated (HA) and dissociated (A$^-$) forms:

$$[A_{tot}] = [A^-] + [HA]$$ \hspace{1cm} (3)

Carbon dioxide, a major end product of cell metabolism is moderately soluble in H$_2$O. The amount of dissolved CO$_2$ (dCO_2) is directly proportional to its partial pressure (PCO$_2$) in the gas phase and its solubility coefficient (SCO$_2$):

$$dCO_2 = SCO_2 \cdot PCO_2$$ \hspace{1cm} (4)
Dissolved CO₂ reacts with H₂O to form carbonic acid (H₂CO₃), which further dissociates into H⁺ and HCO₃⁻ (hydration of CO₂); HCO₃⁻ then further dissociates to form H⁺ and CO₃²⁻:

\[
\text{H}_2\text{O} + \text{CO}_2 \rightleftharpoons \text{H}_2\text{CO}_3 \rightleftharpoons \text{H}^+ + \text{HCO}_3^- \rightleftharpoons \text{H}^+ + \text{CO}_3^{2-}.
\]

(5)

During exercise CO₂ moves down its partial pressure gradient from a working muscle into the circulation and is then removed via the respiratory system.

Pharmacologic modulation of pulmonary transvascular fluid fluxes

Pulmonary fluid dynamics can be selectively altered to determine in detail the events specific for physiology of pulmonary transvascular fluid fluxes or to determine the events associated with the pathophysiology of lung diseases. For the purpose of this thesis pulmonary transvascular fluid fluxes were studied after acetazolamide and furosemide administration. Both drugs have very specific pharmacological activities and are used extensively clinically and experimentally to cause changes in pulmonary circulation that can alter transvascular fluid fluxes.

Acetazolamide

Acetazolamide (N-(5Sulfamoyl-1,3,4-thiadiazol-2yl) acetamide), a carbonic anhydrase inhibitor, has several clinical and investigational applications (Pocker and Watamori 1973). It has been previously used in horses experimentally to evaluate the effect of acidosis on exercise responses (Rose et al. 1990, Hodgson et al. 1991). Acetazolamide also reduces HPV and effects pulmonary vascular resistance (PVR) (Lloyd 1966; Rudolph and Yuan 1966, Morray et al. 1988).

Carbonic anhydrase catalyzes the reversible reaction involving the hydration/dehydration of CO₂ (Maren 1967) as shown by:

\[
\text{CO}_2 + \text{H}_2\text{O} \rightleftharpoons \text{H}_2\text{CO}_3 \rightleftharpoons \text{H}^+ + \text{HCO}_3^-
\]

(6)

Carbonic anhydrase (CA) catalyzes the hydration/dehydration of CO₂ and enhances the Jacobs Stewart cycle and chloride exchange several folds (Maren 1967, Kifor et al. 1993). Jacobs-Stewart cycle (Jacobs and Stewart 1942) enables optimal CO₂ elimination across the lung by transformation of intravascular HCO₃⁻ to molecular CO₂. Bicarbonate is transported into erythrocytes in exchange for Cl⁻ by band 3-mediated anion exchange.
Hydrogen ion combines with intraerythrocytic HCO$_3^-$ to generate molecular CO$_2$, which diffuses across the erythrocyte membrane and capillary endothelium into the alveolar space (Jacobs and Stewart 1942; Maren 1967).

Carbonic anhydrase is metabolically closely interlinked with the activity of anion exchanger (AE1) forming a capnometabolon (Kifor et al. 1993). Therefore, inhibition of CA reduces the hydration/dehydration reaction of CO$_2$ (Swenson and Maren, 1978) and decreases AE1 transport activity (Sterling et al. 2001). Impaired CO$_2$ dehydration reaction and attenuation of Cl$^-$ movement across the erythrocyte membrane may reduce transvascular fluid fluxes across the lung.

In horses (Rose et al. 1990, Hodgson et al. 1991) and humans (Kowalchuk et al. 1992, Kowalchuk et al. 1994), CA inhibition impairs CO$_2$ transport and its elimination in lungs. Moreover, chronic CA inhibitors cause a state of systemic acidosis by blocking renal reabsorption of bicarbonate (metabolic acidosis) and tissue CO$_2$ retention (respiratory acidosis) (Swenson 1998, Swenson 2000). An inadequate or absent hydration/dehydration reaction increases the rate of rise of P$_a$CO$_2$ and reduces rate of rise of VCO$_2$ during exercise (Swenson and Maren, 1978; Rose et al. 1990, Hodgson et al. 1991, Kowalchuk et al. 1992, Kowalchuk et al. 1994).

Independent of CA inhibition (Shimoda et al. 2007), Acz also reduces HPV (Deem et al. 2000, Hohne et al. 2004). Deem et al. (2000) observed that Acz reduces HPV by 50% and reduced the rate of rise by 40% in isolated blood perfused rabbit lung. More recently Hohne et al. (2004) reported a complete inhibition of HPV in dogs exposed to FiO$_2$ of 0.10 after treatment with Acz. Acetazolamide prevents a rise in [Ca$^{2+}$] in response to hypoxia in pulmonary artery smooth muscle cells (Hohne et al. 2007).

Acetazolamide, through CA inhibition, results in venous and arterial hypercapnia. Reports on the effects of hypercapnia and acidosis on pulmonary vasoconstriction are contradictive. Gordon et al. (1999) reported that hypercapnic acidosis in intact newborn piglets has no effect on hypoxic pulmonary artery pressure (PPA) under acute conditions, whereas 60-80 min of sustained acidosis resulted in a marked increase in both baseline and hypoxic pulmonary vascular resistance (PVR). Extracellular acidosis has been shown to increase PVR in isolated dogs’ pulmonary lobes (Lloyd 1966), and in both, calves (Rudolph and Yuan 1966) and children (Morray et al. 1988), with congenital heart disease and associated pulmonary hypertension.
The slowing of the rate of CO₂ hydration/dehydration by Acz (Swenson and Maren, 1978) also results in increase in intracellular CO₂ and intracellular [H⁺]. Raffestin and McMurtry (1987) reported that increase in pulmonary smooth muscle intracellular [H⁺] also decreases PVR in isolated rats’ lungs. However, Shimoda et al. (2007) reported that the effect of increased intracellular [H⁺] on PVR is independent of mechanisms that involve pulmonary smooth muscle cell intracellular acidification or a change in its membrane potential.

Acetazolamide activity through CA inhibition, HPV reduction and influence on PVR can influence pulmonary circulation macro- and microvascular pressures. The purpose of this study was to ascertain whether indeed a reduction in pulmonary vascular pressures could influence pulmonary circulation transvascular fluid fluxes.

Acetazolamide

Acetazolamide (Acz) is a carbonic anhydrase (CA) inhibitor that reduces the production of hydrogen ions. It decreases pulmonary vascular resistance (PVR) and pulmonary capillary filtration pressure (PCFP) and has been used in the treatment of pulmonary edema. Acetazolamide also reduces intracellular acidification in smooth muscle cells and affects the permeability of the blood-gas barrier. The mechanism by which Acz decreases PVR is not fully understood, but it may involve changes in epithelial tight junctions and paracellular leakage.

Furosemide

Furosemide (Fur) (4-chloro-N-[2-furylmethyl]-5-sulfamoylanthranilic acid) is a rapidly acting loop diuretic, which is used extensively to modulate fluid balance throughout the body (Kirkendall and Stein 1968, Kim et al. 1971). Loop diuretics are actively secreted into the proximal renal tubules and inhibit the active re-absorption of electrolytes in the thick ascending limb of the loop of Henle (Odlind 1979). These drugs act on the luminal surface of the epithelial cells to inhibit Na⁺, K⁺, and Cl⁻ transport, which leads to a reduced renal interstitial hypertonicity, the reduction of water absorption, and diuresis (Greger and Wangemann 1987).

Furosemide is widely prescribed for management of racehorses experiencing exercise induced pulmonary hemorrhage (EIPH) (Arthur 1991). It is usually administered at least 4 h before race-time, and the dose, depending on the administrative racing jurisdiction, is limited to 250 or 500 mg without adjustment for body weight (Arthur 1991). Hinchcliff et al. (2009) reported that Fur at a dose of 500 mg decreased the incidence and the severity of EIPH in Thoroughbreds racers. The effect of Fur on EIPH is dependent on the dose and the time of administration before the exertion (Lester et al. 1999). Premedication with furosemide may help decrease or prevent from occurrence of EIPH through 1) the effect of diuresis on blood and plasma volume (Hinchcliff et al. 1991, Hopper et al. 1991, Hinchcliff and McKeever 1998), 2) Fur direct effect on the pulmonary vasculature (Lundergan et al. 1988, Greenberg et al. 1994, Hinchcliff and McKeever 1998), and 3) furosemide-induced bronchodilatation (Olsen et al. 1992a, Rubie et al. 1993, Almirall et al. 1997). Additionally, Fur can also influence erythrocytes’ fluid release across the lung. Thus the various
beneficial effects of Fur on EIPH, as discussed further in detail, may influence pulmonary circulation transvascular fluid fluxes.

Direct pulmonary vasodilatation and improved pulmonary compliance effects of Fur (and other diuretic drugs) is probably related to 1) prostaglandin release and the initial pressor actions to activation of the renin-angiotensin system (Silke 1993, Lundergan et al. 1988) and 2) to an effect on Na⁺/K⁺/2Cl⁻ co-transport or chloride-mediated refilling of intracellular calcium stores (Greenberg et al. 1994). It should be emphasized that hemodynamic properties of Fur are beneficial at rest and in patients with mild physical impairments due to ventricular dysfunction. The actions during exercise, however, are more varied and less beneficial (Silke 1993). Nevertheless, it is prudent to evaluate the option that pulmonary vasodilatation and improved pulmonary compliance caused by treatment with Fur may cause changes in pulmonary circulation transvascular fluid fluxes in horses during submaximal exercise.

Furosemide has a weak bronchodilator effect when inhaled in asthmatic humans (Bianco et al. 1988) or given intravenously to horses with (Rubie et al. 1993) or without the pulmonary obstructive disease (Olsen et al. 1992). The bronchodilatory effect of furosemide is mediated through prostanoid production (Olsen et al. 1992b, Rubie et al. 1993, Almirall et al. 1997). Bronchodilation reduces the effect of exercise induced alveolar hypoxia and consequent pulmonary vasoconstriction of small pulmonary arteries, which increase pulmonary microvascular pressure (Mairbaurl et al. 2002). Increased pulmonary microvascular pressure reduces transmural hydrostatic forces, which are traditionally believed to be the regulator of pulmonary fluid dynamics.

The nonselective inhibition of Na⁺/K⁺/2Cl⁻ by Fur was also observed in erythrocytes; however, inhibition of Na⁺/K⁺/2Cl⁻ cotransport does not
influence erythrocyte volume regulation (Kracke and Dunham 1987). Furosemide can, however, affect the erythrocyte fluid volume by attenuating the chloride shift (Hamburger shift) across the erythrocyte membrane (Bretcher 1971, Lambert and Lowe 1980, Guizouarn et al. 2001). Erythrocyte volume regulation greatly contributes to pulmonary circulation transvascular fluid dynamics; therefore, Furosemide attenuation of the chloride shift may have significant effect in vascular fluid fluxes across the lung.

Problem identification

Paper I

At the outset of this thesis work fluid movement across the pulmonary circulation at rest and during exercise had not been quantified. Lymph flow studies had provided some evidence on pulmonary circulation transvascular fluid fluxes. Even though the pulmonary lymph flow is mixed with lymph flow from nonpulmonary tissues (Demling and Gunter 1982, Drake *et al.* 1986) and the conducting airways (Wagner *et al.* 1998), increased exchange of fluid across pulmonary capillaries correlates with increased lymph flow from lungs (Coates *et al.* 1984).

Fluid movement across the pulmonary circulation cannot be quantified using the Starling’s equation. This is because of several factors, including inability to define forces governing these events in lung compartments, lung compartments are not fully recognized/determined and water transport across the membrane is also regulated independently of solute transport (aquaporins) (King *et al.* 2004). In addition, pulmonary circulation is protected from fluid leakage/edema formation by several mechanisms, which are properties solely found in the pulmonary vasculature and lacking in systemic vessels (Effros and Parker 2009). Based on that, a simple Starling model cannot be readily applied to study pulmonary circulation transvascular fluid fluxes (King *et al.* 2004, Effros and Parker 2009). Therefore, we conducted a study where fluid movement across the lung was quantitatively assessed by comparison of blood volume differences between mixed venous blood and arterial blood (across the lung) in horses at rest and during exercise.

Paper II

Hypoxemia indirectly contributes to fluid accumulation in the pulmonary interstitium (Mairbaurl *et al.* 2002), which is most often seen in HPV of the acute high-altitude intolerance in humans (Maggiorini *et al.* 2001, Swenson 2002).
et al. 2002). Hypoxic pulmonary vasoconstriction can be managed with carbonic anhydrase inhibitors, such as Acz. Acetazolamide exerts its therapeutic effects through reduction or prevention of vasoconstrictory effects of hypoxemia on pulmonary microvasculature (Schoene et al. 2001). It will also cause CO$_2$ retention and acidosis. It has been documented that hypercapnia can per se impair gas exchange with its influence on pulmonary arterial pressure (Brimioulle et al. 1991). Together with increased [H$^+$] it has a prominent role in generalized edema formation in human COPD patients (Karadag et al. 2004); however, it should not result in accumulation of fluid in lungs (Haberkern and Bland 1981).

The ability of Acz to reduce or prevent vasoconstrictory effects of hypoxemia on pulmonary microvasculature is already established (Schoene et al. 2001). However, CO$_2$ retention and acidosis influence on lung fluid balance in horses (and other mammals) at rest and during exertion (under hypoxemic conditions) is not known. Thus, the research plan to study this was undertaken in paper II.

Paper III
Effects of CO$_2$ retention and acidosis on acid base and electrolyte balance across the lung in pulmonary circulation in horses or other animals or a human at rest and during exertion have also not yet been described. A quantitative approach to acid-base chemistry was used to determine the electrolyte changes across the lung. Another objective was to link pulmonary gas exchange and electrolyte changes to pulmonary circulation transvascular fluid fluxes.

Using the integrated physicochemical systems approach, it is possible within each fluid compartment to describe the influence of three independent variables, strong ion difference (SID), PCO$_2$ and total concentrations of weak acids and bases (A_{tot}) on [H$^+$] and [HCO$_3^-$], which are considered dependent variables (Stewart 1983). In paper III we hypothesized that Hamburger (chloride) shift and the Jacobs-Stewart cycle play a critical role in acid base homeostasis across the lung.

Paper IV
Furosemide may attenuate EIPH through a reduction in transmural hydrostatic pressures in pulmonary capillaries, which is attributed to decrease in plasma volume and right ventricular preload as a result of diuresis (Hinchcliff et al. 1991; Hinchcliff and McKeever 1998), dilatory effect of Fur on the pulmonary vasculature (Lundergan et al. 1988, Olsen et al. 1992a, Greenberg et al. 1994, Hinchcliff and McKeever, 1998) and

In addition, Fur may affect the chloride shift (Hamburger shift) across the erythrocyte membrane via the Cl/HCO₃⁻ exchanger (AE1, Band 3) (Bretcher 1971, Lambert and Lowe 1980), which is a part of the erythrocyte volume regulation mechanisms (Guizouarn et al. 2001). Thus, the action of Fur to decrease transmural hydrostatic pressures in pulmonary capillaries and attenuation of the chloride shift are both potential mechanisms by which Fur may reduce or attenuate fluid fluxes across the lung. Therefore, in conducting the experiments for paper IV, we hypothesized that pre-exercise treatment with Fur will attenuate transpulmonary fluid fluxes in horses during intense exercise.
Aims of the study

- To quantify transvascular fluid fluxes in the pulmonary circulation at rest and during exercise in horses,
- To quantifiably determine adaptation of transvascular fluid fluxes in the pulmonary circulation at rest and during exercise in horses after treatment with the carbonic anhydrase inhibitor acetazolamide,
- To determine blood gas and electrolyte adaptation across the lung during exercise in horses after treatment with acetazolamide,
- To determine the interrelation between acid base and electrolyte balance and pulmonary circulation transvascular fluid fluxes,
- To quantifiably determine adaptation of transvascular fluid fluxes in the pulmonary circulation at rest and during exercise in horses after treatment with furosemide.
Materials and methods

Six race fit Standardbred horses were used for each study. Different horses were recruited for each experiment with owner/trainer consent. The study protocols were approved by the Animal Care committee according to the Guide to the Care and Use of Experimental Animals (Canadian Council on Animal Care, Ottawa, Ontario). All horses were returned to owners healthy and resumed their normal training and racing activities.

All studies (paper I to IV) had similar experimental protocols for exercise regimens and sampling, apart from administration of Acz (Paper II, III) or furosemide (Paper IV).

Pre-Experimental Protocol

Horses were familiarized to the treadmill over a period of one week. During the first three days horses were given repeated walking exercise on the treadmill for 20 min. daily (15 min. walk, 5 min. slow pace) at 10% treadmill inclination, followed by two days of light exercise with the respiratory mask. Before every treadmill exercise horses were weighed, fitted with a safety harness, hobbles, and heart rate meter (Equistat Model HR-8 A, EQB Inc., Unionville, PA, USA).

On day six peak O$_2$ uptake (VO$_{2\text{peak}}$) was determined for each horse, which comprised three treadmill exercise periods: warm-up, incremental exercise, and recovery. During the warm-up period the horses walked on horizontal treadmill with no incline for 5 min at 2-3 m/s and then trotted for 5 min at 4-5 m/s. At the end of this 10 min warming-up period the treadmill was inclined to 10% and the speed increased to 8 m/s. The incremental exercise then consisted of a stepwise increase of velocity of 1 m/s every 60 s. An open flow through system was used for collection of pulmonary gases throughout the entire exercise protocol. Peak O$_2$ uptake was determined as the point at which no further increase in VO$_2$ occurred,
despite an increase in speed, or a level of exercise where the horse could no longer maintain pace with the treadmill speed. Three days following the determination of VO$_{2 \text{peak}}$, the horses were hand walked for 15 min daily. The experimental protocol was then conducted on the fourth day.

Experimental protocol

Prior to experiment, the of the mid cervical region over both jugular veins was clipped, desensitized with lidocaine 2.5% and prilocaine 2.5% cream (lidocaine 2.5% and prilocaine 2.5%; AstraZeneca Pharmaceuticals LP, Wilmington, DE, USA) and aseptically prepared. Pulmonary Swan-Ganz catheter (Baxter Healthcare Corp., Irvine, CA, USA) and a 150 cm long central venous polyethylene blood catheter (#240, Becton Dickinson, Sparks, MD, USA) were placed aseptically via the left and right jugular vein into the pulmonary artery for mixed central venous blood sampling and core body temperature measurements. Correct catheter placement was ascertained by observing characteristic pressure waveforms on an oscilloscope (Criticare 1100, Criticare Systems Inc., Waukesha, WI, USA). A 20 Gauge catheter (Insysy-W, Infusion Therapy Systems Inc., Sandy, UT, USA) was inserted into the facial or transverse facial artery. A 30-cm long extension tubing with a three way stopcock was connected to intravenous and arterial catheters. Catheters and extension tubing were sutured to the skin.

Horses stood still on the treadmill until their heart rate reached their resting value and then were warmed-up as described in the pre-experimental protocol of the VO$_{2 \text{peak}}$ determination. Following the warm-up treadmill speed was set to the velocity and slope inducing 80% of the VO$_{2 \text{peak}}$. Horses were then exercised until fatigued. During recovery horses were walked on the treadmill at 1.7 m/sec for 15 min.

Acetazolamide treatment experiment (paper II and III)

Horses were given Acz (Apo-acetazolamide, Apotex Inc., Ontario, Canada) orally at a dose of 10 mg/kg of BW TID for three days or were not treated (control). Acetazolamide tablets were crushed and mixed with a mixture of molasses and corn oil, and administered orally with a Toomey syringe (C.R. Bard Inc., Covington, GA, USA). Thirty min. before the treadmill protocol horses were given 30 mg/kg of BW of Acz mixed in 8 ml of tap water/kg of BW via a nasogastric tube or were administered tap water only (control).
Furosemide treatment experiment (paper IV)

Horses were given 250 mg of furosemide i.v. or placebo intravenously four hours prior to the treadmill protocol.

Pulmonary gas collection

Pulmonary gas exchange was measured at rest, during exercise, and during the recovery period. Before exercise the respiratory mask was fitted on the horse’s nose. An open flow through system was used for collection of expired gases throughout the entire exercise protocol (Wagner et al. 1989). The expired gas was drawn into the O₂ analyzer (Ametek, Model S-3A/1, Pittsburgh, PA, USA), which measured the concentration of inspired O₂. Inspired O₂ was recorded in 10-second periods throughout the experiment. For analysis the average of three measurements in a 30 second period was used, which coincided with blood sampling intervals.

Blood sampling and blood analysis

Resting arterial and mixed venous blood samples were collected simultaneously under anaerobic conditions twice in a five-minute interval. Further sampling was performed in 60 s intervals during the exercise period until fatigue. During the recovery period sampling was performed immediately after the treadmill was stopped (0 min) and then at one, two, three, five, 10, and 15 minutes into the recovery period. Prior to each sampling 10 mL of blood was withdrawn from catheters and discarded. Blood samples were collected into lithium-heparinized syringes (S-Monovette, Sarstedt AG and Co, Nümbrecht, Germany), stored on ice, and analyzed in duplicate with the Stat Profile M Analyzer (Nova Biomedical Corporation, Waltham, MA, USA) immediately after the treadmill protocol ended. Stat Profile M Analyzer uses conductivity for hematocrit, conductivity/reflectance for haemoglobin and O₂ saturation analysis, ion selective electrodes for analysis of Na⁺, K⁺, Cl⁻, as well as for pH and PCO₂; amperometry for PO₂ and La⁻. Blood O₂ content was calculated from the O₂ saturation and the Hb concentration using standard equations. Total plasma protein was measured using a clinical refractometer (Attago 331, Attago, Tokyo, Japan). The pH, PCO₂, HCO₃⁻ and PO₂ sample values were corrected for the horses’ core body temperature (Model COM-2, Baxter Healthcare Corp., Irvine, CA, USA).

For erythrocyte and whole blood electrolyte analyses, blood samples were repeatedly frozen (−80°C) and thawed (room temperature) to induce erythrocyte lyses.
Calculations

Plasma volume changes across the lung (ΔPV\textsubscript{v-a}) were calculated from changes in plasma protein [PP] at the same time point from central venous to arterial blood (across the lung) (Dill and Costill 1974):

\[
\%\Delta PV_{v-a} = \frac{([PP_v] - [PP_a])}{[PP_v]} \times 100, \tag{7}
\]

where [PP\textsubscript{v}] is the plasma protein concentration in venous and [PP\textsubscript{a}] the plasma protein concentration in arterial blood. To account for changes in plasma volume relative to hematocrit (Hct), the equation 1 was adjusted for changes in the Hct across the lungs.

\[
\%\Delta_{Hct}PV_{v-a} = \frac{([PP_v] \times (1-Hct_v) - [PP_a] \times (1-Hct_a))}{[PP_v]} \times 100 \quad (8)
\]

Changes in erythrocyte volume (ΔEV\textsubscript{v-a}) across the lungs were calculated from changes in hemoglobin [Hb] and hematocrit [Hct] in venous ([Hb\textsubscript{v}], [Hct\textsubscript{v}]) and arterial blood ([Hb\textsubscript{a}], [Hct\textsubscript{a}]) (Costill et al. 1974):

\[
\%\Delta EV_{v-a} = \frac{(((Hb_v) \times (Hct_a / Hct_v)) - 1) \times 100}{ ((Hb_v) / (Hb_a)) \times (Hct_a / Hct_v)} \quad (9)
\]

For calculation of the blood volume (BV) the %ΔEV\textsubscript{v-a} was adjusted for Hct changes across the lung:

\[
\%\Delta_{Hct}EV_{v-a} = \frac{(((Hb_v) \times (Hct_a / Hct_v) \times Hct_a) - Hct_v)}{ ((Hb_v) / (Hb_a)) \times (Hct_a / Hct_v) \times Hct_a} \times 100 \quad (10)
\]

Blood volume changes across the lung were then measured from ΔHctPV\textsubscript{v-a} and ΔHctEV\textsubscript{v-a}:

\[
\%\Delta BV_{v-a} = \frac{(((PP_v] \times (1-Hct_v) - [PP_a] \times (1-Hct_a))}{[PP_v]} \times 100 + (((Hb_v] \times (Hct_a / Hct_v) \times Hct_a) - Hct_v)}{ ((Hb_v) / (Hb_a)) \times (Hct_a / Hct_v) \times Hct_a} \times 100 \quad (11)
\]

Cardiac output (L/min) was calculated based on the Fick principle using VO\textsubscript{2} and blood O\textsubscript{2} content from central venous and arterial blood. Fluid flux (J\textsubscript{V-A} L/min) across the lung was then quantified based on Q and %ΔBV:

\[
J_{V-A} = (Q \times %\Delta BV). \quad (12)
\]

Plasma [H+] was calculated from the measured pH as the antilog.

Strong ion difference was calculated as the sum of strong cations minus the sum of the strong anions:

\[
[SID] = ([Na+] + [K+]) - ([Cl-] + [La-]) \quad (13)
\]
Plasma $[A_{tot}]$ was calculated using a conversion factor of 0.21 mmol/L of plasma protein (Staempfli et al. 1999).

Erythrocyte ion concentrations were calculated from whole blood (w_b) and plasma (p) ion concentration according to Buono and Yeager (1986) and McKelvie et al. (1991).

$$e_{[\text{ion}]} = (w_b_{[\text{ion}]} - (p_{[\text{ion}]} \times (1 - \text{Hct}))) \times \text{Hct}^{-1}$$ (14)

All venoarterial differences for plasma ions and proteins were corrected for $\Delta PV_{v,a}$ using the equation (McKenna et al. 1997):

$$[\text{Ion}]}_{v,a} = ([\text{Ion}]}_v / (1 + (\Delta PV_{v,a})) - [\text{Ion}]}_a$$ (15)

A similar correction was made for erythrocyte ion concentration using $\Delta EV_{v,a}$ (McKenna et al. 1997).

Study design and statistical analysis

A cross over design was used when comparisons were made between control and treatment, with horses serving as their own control. The furosemide study was done in a double-blinded fashion.

All data were normally distributed as verified with Shapiro-Wilks test.

Effects of treatment and exercise (time) as well as treatment and exercise (time) interaction on variables were analyzed using a two-way repeated-measures ANOVA. Treatment and exercise (time) were considered as repeated factors.

Pair-wise comparison with Bonferroni adjustment was used only to assess statistical significance of differences between rest and exercise times and between parameters of different treatments at the same specific time point.

Overall effect of treatment with Acz or Fur was defined at rest, during exercise (from first minute to fatigue) and recovery (from first minute of recovery till the end of recovery). Repeated-measures two-way ANOVA was used to compare overall effects between treatments.

A statistical significance level of $P < 0.05$ was used and data are expressed as means ±SE.

Statistical analysis was performed with SPSS statistics 17.0 (SPSS Inc., Chicago, IL, USA).
Results and discussion

Transvascular fluid flux from the pulmonary vasculature at rest and during exercise in horses (paper I)

Transvascular fluxes in lungs of horses (hereafter identified as J_{V-A}) during exercise reached approximately 4% of the Q or 12 L/min (figure 1).

Figure 1. Fluid flux from the pulmonary vasculature (J_{V-A}) at rest, during exercise and recovery. Values are means ± SE (n=6). *, different from rest (P < 0.05). Ftg, fatigue.

In the present study it was established that erythrocyte volume decrease (erythrocyte volume release) across the lung was an important contributor to whole fluid flux from the pulmonary vasculature (figure 2). This was surprising, because this study’s hypothesis was derived from the ability of
horses to develop and sustain high pulmonary macro- and microvascular pressures during exercise (Slonim et al. 1954; Elkins and Milnor, 1971; Wagner et al. 1986; Younes et al. 1987; Newman et al. 1993). Those are derived from increases in PPA during exertion (Erickson et al. 1992; Manohar, 1993; Wagner et al. 1989, Wilkins et al. 2001), which translates into a relatively high pulmonary capillary pressure (Sinha et al. 1996) and consequent increase in the transvascular fluid filtration across the lung (Sinha et al. 1996).

*Figure 2. Fluid flux across the lung from erythrocytes (J_{EV}) at rest, during exercise and recovery. Values are means ± SE (n=6). *, different from rest ($P < 0.05$). Ftg, fatigue.*

In paper I our results were interpreted classically, through changes in pulmonary circulation transmural hydrostatic forces. We concluded that the pulmonary circulation transvascular fluid fluxes are caused by 1) pulmonary capillary recruitment and/or dilatation coupled with the increase in the pulmonary surface area (Bake et al. 1968, Hlastala et al. 1996), 2) increased pulmonary microvascular pressures (Sinha et al. 1996) and 3) changes in the pulmonary transcapillary gradients (Bland and McMillan 1977), and, as determined in this study, erythrocyte volume decrease/erythrocyte fluid release. Pulmonary transvascular fluxes increase as a function of the net transvascular driving pressure: hydrostatic pressure gradient minus protein osmotic pressure gradient (Starling 1896a,b, Bland and McMillan 1977). Hydrostatic pressures are traditionally accepted to be the important determinant of pressure and fluid dynamics in the pulmonary circulation. However, the equilibrium between fluid and solutes in pulmonary vasculature during exercise became altered with active fluid
release from erythrocytes. The dilution of plasma protein reduced plasma colloid osmotic pressure gradient, which, assisted with the increased hydrostatic pressure, favored the fluid out of the pulmonary vasculature restoring the transvascular gradient to its equilibrate state. Therefore, oncotic forces have an important function along with hydrostatic forces in the extent of fluid movement from the pulmonary vasculature during exercise.

Effects of chronic acetazolamide administration on fluid flux from the pulmonary vasculature at rest and during exercise in horses (paper II)

After quantification of pulmonary transvascular fluid fluxes in paper I the objective was put forward to better define the physiologic mechanisms related to J_{VA} through evaluating its response to treatment with Acz (AczTr). Acetazolamide reduces or prevents vasoconstrictory effects of hypoxemia on pulmonary microvasculature (Schoene et al. 2001). Hypoxemia is common in horses during sub- and maximal exercise. In addition, chronic Acz administration causes CA inhibition, which in turn induces hypercapnia. Hypercapnia per se and in combination with metabolic acidosis can express vasoconstrictory or vasodilatory effects on pulmonary vasculature (Brimioulle et al. 1991), and thereby influence pulmonary transvascular fluid fluxes. Disorders that may cause hypercapnia are mostly associated with diseases of lungs, the airways, or both. However, hypercapnia not only arises from the respiratory system but also from diseases affecting the neural, muscular, chest-wall, and circulatory components of the respiratory system. Regardless of the etiology, animals and humans still exercise, at intensities that cause a variable degree of hypoxemia, under pathologic conditions that can enhance or cause severe hypercapnia. Understanding of the effect of hypoxemia, hypercapnia and metabolic acidosis on pulmonary circulation transvascular fluid fluxes is also important for more severely ill patients where lung water dynamics can be compromised even in the absence of exercise.

At rest J_{VA} was not different between Con and AczTr. However, during exercise, J_{VA} increased to a similar level that was reported in paper I. Transvascular fluid fluxes were attenuated in AczTr. Cardiac output was not different between control and AczTr (figure 3).
Figure 3. Fluid flux from the pulmonary vasculature ($J_{V,A}$) at rest, during exercise and recovery in control (Con) and chronic acetazolamide treatment (AczTr). Values are means ± SE (n=6). Ftg, fatigue.

In our first publication we determined that erythrocytes, through their volume regulation, contribute significantly to pulmonary circulation transvascular fluid fluxes. In this study the erythrocyte fluid release across the lung was diminished by chronic treatment with Acz (figure 4).

Figure 4. Erythrocyte volume changes across the lung at rest, during exercise and recovery in control (Con) and chronic acetazolamide treatment (AczTr). All values are means ± SE (n=6). Ftg, fatigue.
Because Q was not affected by Acz it is possible to conclude that the effects of hypoxemia, hypercapnia and acidosis together on pulmonary vasoconstriction during exercise did not have a significant effect on pulmonary circulation pulmonary macro- and microvascular pressures, which would consequently diminish pulmonary circulation transvascular fluid fluxes. However, chronic treatment with Acz affected erythrocyte volume regulation/erythrocyte fluid release across the lung. The mechanism affecting the fluid release from erythrocytes during exercise after AczTr cannot be determined from data gathered in this study. However, there are some mechanisms that, when challenged with hypoxemia, hypercapnia and acidosis, could potentially disable erythrocytes from reducing their volume across the lung, including:

1. Increased intracellular \([\text{H}^+]\) in the erythrocytes would stimulated \(\text{Na}^+/\text{H}^+\) pump on the erythrocyte plasma membrane, which contributes to fluid accumulation in erythrocytes and the erythrocyte volume increase to the extent that \(\text{K}^+/\text{Cl}^-\) co-transport, a part of the system that contributes to erythrocyte volume decrease (Honess et al. 1996, Speake et al. 1997, Gibson et al. 2000), could not compensate for on the passage through the lung capillary bed. \(\text{K}^+/\text{Cl}^-\) co-transport should be activated/stimulated and the \(\text{Na}^+/\text{H}^+\) pump disabled/depressed in blood passing pulmonary capillaries (Honess et al. 1996, Speake et al. 1997, Gibson et al. 2000),

2. Erythrocyte volume regulation could have been affected by prevention of fluid release from the pulmonary circulation into pulmonary interstitial (due to possible direct effect of Acz on pulmonary vascular wall permeability) causing osmolality forces in plasma unfavourable for erythrocytes to complete their volume decrease/fluid release, and

3. Slowing the rate of \(\text{CO}_2/\text{HCO}_3^-/\text{H}^+\) interconversion increased the fraction of total CO\(_2\) in the erythrocyte preventing erythrocyte fluid release, because of increased intracellular osmolality.

Regardless of the cause or combination of causes, pulmonary circulation transvascular fluid fluxes commence simultaneously with respiratory gas exchange. They can be affected by factors that influence or interfere with respiratory gas exchange mechanisms. However, pulmonary circulation transvascular fluid fluxes appear to be quite refractory to changes in pulmonary circulation pressures when fluid dynamics across the lung are subject to an acute event such as exercise.
Effects of chronic acetazolamide administration on gas exchange and acid-base control in pulmonary circulation in exercising horses (paper III)

In this study we evaluated 1) effects of CO$_2$ retention and acidosis on acid base and electrolyte balance across the lung and 2) the interrelation between acid base and electrolyte balance and pulmonary circulation transvascular fluid fluxes. We hypothesized that Hamburger shift and the Jacobs-Stewart cycle play a critical role in acid base homeostasis and volume changes across the lung.

In this study we used the integrated physicochemical systems approach to describe acid base changes across the lung in pulmonary circulation in exercising horses without (control) and with CA inhibition (with related metabolic and respiratory acidosis). The physicochemical systems approach was used to describe the influence of three independent variables, strong ion difference (SID), PCO$_2$ and total concentrations of weak acids and bases (A$_{tot}$) on [H$^+$] and [HCO$_3^-$], within each fluid compartment (Stewart 1983).

The full data arrangement in tables in this study was very extensive. For a comprehensive review of results please refer to paper III. In summary however, the following most significant conclusions can be made:

1. Chronic CA inhibition affected exercise time to fatigue: exercise duration at 80% VO$_{2peak}$ was significantly shorter in AczTr (2.6 ±0.2 min) compared to Con (4.7 ±0.2 min, P < 0.0001),

2. Chronic CA inhibition greatly influenced the acid base homeostasis across the lung,

3. Acid base disturbance across the lung was related to retention of CO$_2$ and inhibition of Cl$^-$ flux across the erythrocyte membrane,

4. Volume regulation of erythrocytes and acid base changes across the lung are linked to each other, and

5. A$_{tot}$ and La$^-$ have no influence on acid base status across the lung.

During exercise AczTr attenuated the hydration/dehydration reaction and slowed the equilibration between CO$_2$ species in pulmonary capillaries, which further on increased P$_2$CO$_2$ (Swenson 1998, Swenson 2000). The slowing of the CA reaction means that equilibration between CO$_2$ species is not complete during the transit through the pulmonary capillary. The reflection of these activities is also inhibition of HCO$_3^-$ transport. The decrease in the rate of HCO$_3^-$ dehydration after treatment with Acz increased the erythrocyte [HCO$_3^-$] and consequently reduced the plasma [HCO$_3^-$] (Swenson 1998, Swenson 2000).
Erythrocyte volume decreased across the lung during exercise was attenuated by AczTr. There are several active and passive mechanisms that regulate erythrocyte volume, which are manifest as the erythrocyte regulatory volume increase in peripheral tissues and by the erythrocyte regulatory volume decrease across the lung (Fievet et al. 1990, Gibson et al. 1993, Gibson et al. 1995, Honess et al. 1996, Speake et al. 1997; Juel et al. 1999, Gibson et al. 2000). Based on our results it appears that the major reason for incomplete or absent volume decrease across the lung in AczTr is due to depressed erythrocyte [Cl\(^-\)] efflux and slowed CO\(_2\) dehydration/hydration reaction or Jacobs-Stewart cycle.

Plasma SID\(_{V,A}\) (plasma strong ion difference across the lung) had a positive value in Con and AczTr indicating a reduction in SID across the lung. This was in greater part driven by an influx of Cl\(^-\) from erythrocytes to initiate the Jacobs-Stewart cycle (Jacobs and Stewart 1942, Jennings 1989), which substantially decreases erythrocyte [SID]\(_{V,A}\). Carbonic anhydrase inhibition prevented efflux of Cl\(^-\) from erythrocytes, hence the substantially decreased erythrocyte [SID]\(_{V,A}\) in AczTr. With exception of La\(^+\), other strong ions showed the tendency to counteract changes caused by CO\(_2\) retention and Cl\(^-\) efflux attenuation.

At rest plasma \([H^+]\)\(_{V,A}\) was similar in Con and AczTr, indicating that elimination of CO\(_2\) was increased due to stimulated ventilation kinetics (Swenson and Maren 1978, Ward et al. 1983, Kowalchu et al. 1994). During exercise in Con, despite a concomitant plasma SID decrease across the lung, plasma \([H^+]\)\(_{V,A}\) remained strongly positive (indicating a \([H^+]\) reduction in plasma across the lung). This was due to a substantial PCO\(_2\) reduction and Cl\(^-\) efflux (and SID increase) across the lung. Conversely, in AczTr plasma \([H^+]\)\(_{V,A}\) was affected by CO\(_2\) species retention and erythrocyte Cl\(^-\) shift impairment and was lower than in Con.

CO\(_2\) and Cl\(^-\) changes in erythrocytes across the lung appear to be the major contributors to acid-base and ions balance, as well as volume changes across the lung, in exercising horses, and most likely also in other mammalian species. Therefore, the hypothesis that chloride shift and the CO\(_2/HCO^3^-/H^+\) interconversion are important for pulmonary circulation transvascular fluid fluxes was confirmed.

Effect of furosemide on transvascular fluid fluxes across the lung in exercising horses (paper IV)

Furosemide is prescribed for management of racehorses experiencing EIPH (Arthur 1991). The dose used in this study was 250 mg administered
4 hours before exercise, according to limits imposed in Canada and some US horse racing jurisdictions. Treatment with Fur attenuates the exercise-induced rise in pulmonary capillary blood pressure, which is believed to decrease the occurrence of EIPH via the reduction of the transmural hydrostatic pressures in pulmonary capillaries (Manohar 1993, 1994, Manohar et al. 1994, Kindig et al. 2001).

In this study treatment with 250 mg of Fur (FurTr) four hours before the onset of exercise had no effect on $J_{V,A}$ and did not affect the duration of exercise at 80% V_2max to fatigue (figure 5).

Figure 5. Fluid flux from/into the pulmonary vasculature ($J_{V,A}$) at rest, during exercise and recovery. Values are means ± SE (n=6). Ftg: fatigue. Positive values indicate decrease of $J_{V,A}$ across the lung. Negative value indicate increase of $J_{V,A}$ across the lung.

As well, treatment with Fur did not affect erythrocyte fluid release (figure 6).

However, treatment with Fur reduced Q during exercise: cardiac output increased from 20.9 ±6 L/min and 19.4 ±9 L/min at rest in control and FurTr, respectively, to 299.9 ±16.6 L/min and 247.9 ±13.9 L/min at the first min of exercise in control and FurTr, respectively (P < 0.0001). It returned to resting values during recovery. During exercise Q was lower in FurTr compare to Con (P = 0.01).
This study suggests that the focus with regards to investigation into the initiation and maintenance of pulmonary circulation transvascular fluxes should in greater part shift from pulmonary circulation pressures to erythrocyte volume regulation. Most ion exchange mechanisms in erythrocytes are part of the erythrocyte volume regulation mechanisms (Guizouarn et al 2001). Na+/K+/Cl- co-transport, which carries the major diuretic effect of Fur, does not poses significant volume regulation properties, whereas chloride shift (Hamburger shift) across the erythrocyte membrane (Bretcher 1971, Lambert and Lowe 1980, Kracke and Dunham 1987) can contribute substantially to pulmonary transvascular fluid fluxes. Furosemide blocks anion exchange mechanisms (Hamburger shift) in erythrocytes (Lambert and Lowe 1980); however, water movement across the erythrocyte membrane in this study was similar in Con and FurTr. Therefore, at a dose of 250mg Fur activity on the erythrocyte anion exchange mechanisms also seems unlikely to be of significance in exercising horses four hours after the intravenous administration.

Cardiac output indicates the changes in pulmonary capillary recruitment and/or dilatation and the increase in the pulmonary surface area during exercise (Bake et al. 1968, Hlastala et al. 1996). Furosemide caused decrease in Q, which indicates a decrease in pulmonary capillary recruitment, less explicit capillary recruitment and consequent smaller transmural hydrostatic pressures compare to Con. However, this did not
affect $J_{V,A}$. It is then unlikely that horses affected by EIPH would benefit from treatment with 250mg of furosemide four hours before exercise if current etiology theory of the disease is relevant, because Starling forces most probably retain their effect on pre- and post pulmonary capillary vessels. Pulmonary capillaries are very resilient to leakage and changes in transmural hydrostatic forces (Effros and Parker, 2009). The filtration coefficient of the pulmonary capillaries is smaller than that of the extra-alveolar vessels (Schneeberger and Karnovsky 1976, Bhattacharya 1988, Maggiorini et al. 2001). Therefore, the dynamics of water movement in the pulmonary circulation are complex events encompassing gas exchange mechanisms, erythrocyte volume regulation and only then Starling’s forces.

Methodological considerations (all papers)

In our studies we have measured total transvascular fluxes from the pulmonary circulation, which include fluid that contributes to increases in lung lymph flow and total lung water. Lung lymph flow studies implementing different experimental conditions such as exercise (Coates et al. 1984, Newman et al. 1988), left atrial balloon obstruction (Parker et al. 1981), hypoxia (Dauber and Weil 1983), or 100% O$_2$ inhalation (Newman et al. 1983) to induce pulmonary vascular pressure changes or increase lung vascular permeability, would require better defined attention to the uncertainty concerning the tissues drained by the lymphatics and the effect of the lymph nodes themselves on lymph constituents. On the other hand, gravimetric lung fluid dynamic studies only detect variations in the presence of lung water and are unable to account for alterations when changes are to be contributed to the vascular, interstitial, and/or cellular compartments in lungs (Lin et al. 1998). They also require static experimental conditions (Hanel et al. 2003). In contrast to detecting changes in lung fluid dynamics by lung lymph flow or pulmonary gravimetric studies we were able to measure the total fluid flux from pulmonary circulation from changes in BV in vivo and in dynamic experimental settings.

Plasma volume changes associated with exercise were calculated using plasma protein concentration as described by Dill and Costill (1974) (equation 7). Plasma volume changes were then calculated relative to Hct changes in venous and the arterial blood (equation 8) to account for the very unlikely event of: 1) relative plasma volume changes (Hct
decrease/erythrocyte removal) or 2) absolute plasma volume changes (plasma leakage from the pulmonary circulation).

Hemoglobin is confined strictly to erythrocytes and should not be affected by physiologically derived stress or by most pathologically derived alterations. Therefore, erythrocyte volume across the lung was calculated based on changes in Hb (equation 9) (Costill et al. 1974). Equation 9 was also adjusted for possible Hct changes across the lung when used for blood volume calculations.

Methods for calculation of blood volume changes used in this experiment are precise (coefficient of variance from 0.7 to 2.4%) and are able to measure small changes (Dill and Costill 1974, Costill et al. 1974, Harrison 1985). They provide accurate results acutely in exercising subject, which would perhaps include other animals and humans, without need for chronic instrumentation, or, potentially, at patient’s bedside, with chronic instrumentation for continuous monitoring of volume changes across the lung.

In conclusion, methods for calculation of blood volume changes used in these experiments are simple and have been validated and published previously (Dill and Costill 1974, Costill et al. 1974, Harrison 1985).
Summary and conclusions

Regarding the pulmonary circulation transvascular fluid fluxes ($J_{V,A}$):

1. During exertion in horses approximately 4% of Q moves from pulmonary circulation into the pulmonary interstitium,
2. Erythrocyte volume regulation/fluid release across the lung is the most important contributor to $J_{V,A}$,
3. $J_{V,A}$ commence with respiratory gas exchange,
4. $J_{V,A}$ appear to be largely insensible to changes in pulmonary circulation transmural hydrostatic pressures during exercise,
5. CO$_2$ and Cl$^-$ changes in erythrocytes across the lung appear to be the major contributors to acid-base and ions balance, as well as pulmonary circulation transvascular fluid fluxes,
6. Furosemide at the dose of 250 mg given four hours before exercise does not change erythrocyte volume regulation/fluid release across the lung,
7. Furosemide at the dose of 250 mg given four hours before exercise does not affect $J_{V,A}$ in pulmonary circulation despite the decreased Q,
8. Erythrocyte volume regulation/fluid release across the lung is more relevant to $J_{V,A}$ than pulmonary circulation transmural hydrostatic forces.
9. The data in this thesis is a paradigm change in the interpretation of pulmonary circulation transvascular fluid fluxes away from the traditional interpretation, which is based on Starling’s principles, to major influences of the erythrocyte volume decrease across the lung via the Jacobs-Stewart cycle and chloride (anion) exchanger (Band 3 or AE1).
References

Acknowledgments

I wish to acknowledge the support and guidance given by my supervisors, Dr. John Pringle, Dr. Laurent Viel and Dr. George Heigenhauser. I am lucky and greatly honored to be guided through this PhD program by these eminent individuals. They all left a permanent impression on my professional and personal life.

I would like to thank Dr. Henry Staempfli for his great help in my research and clinical progress. His famous saying “Medicine keeps us humble” will forever echo in my ears.

I am grateful to all that gave me their indispensable assistance and advice during the exercise studies (Dr. Wayne McDonell, Dr. Francisco Teixeira, Dr. Aury Moraes, Dr. Luis Arroyo, Dr. Heather Chalmers, Dr. Carolyn Kerr, Dr. Dorothee Bienzle, Gabrielle Monteith, Dan Schnurr).

I would like to thank Dr. Vojteh Cestnik for his support in my research and professional work at the Veterinary faculty Ljubljana.

Finally, but most importantly, I thank my beautiful Katarina, Eva and Petra for their support and inspiration through my PhD work. I am deeply indebted to Maria and Edgar who gave me loving attention, great encouragement, and a warm and cozy escape at all times. I am grateful to Tone, Gorazd, and Katjusa for their love, support and advice. I thank Barbara, Milena and Stane for their support.

Although I cannot share the happiness of achieving the PhD degree with my parents, Andrea and Mihael, they raised me to be the person I am, and to them I owe thanks for my success and happiness. I dedicate this work to both of them.

This study was supported by the:

- Ontario Ministry of Agriculture and Food– Equine Program,
- Department of Clinical Studies at the University of Guelph,
- Slovenian Research Agency grant P4-0053,
• Canadian institutes of health research,
• Department of Medicine at the McMaster University Medical Centre.

The overall PhD program of training was conducted within the Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences. Most of the experimental work was conducted at the Ontario Veterinary College, University of Guelph. Some experimental procedures were performed at Department of Medicine, McMaster University Medical Centre.