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Abstract
Purpose of Review The rapid development of remote sensing
technology hasmade dense 3D data available from airborne laser
scanning and recently also photogrammetric point clouds. This
paper reviewsmethods for extraction of individual trees from 3D
data and their applications in forestry and ecology.
Recent Findings Methods for analysis of 3D data at tree level
have been developed since the turn of the century. The first
algorithms were based on 2D surface models of the upper
contours of tree crowns. These methods are robust and pro-
vide information about the trees in the top-most canopy. There
are also methods that use the complete 3D data. However,
development of these 3D methods is still needed to include
use of geometric properties. To detect a large fraction of the
tallest trees, a surface model method generally gives the best
results, but detection of smaller trees below the top-most canopy
requires methods utilizing the whole point cloud. Several new
sensors are now available with capability to describe the upper
part of the canopy, which can be used to frequently update
vegetation maps. Highly sensitive laser photo detectors
have become available for civilian applications, which
will enable acquisition of high-resolution 3D laser data
for large areas to much lower costs.
Summary Methods for ITC delineation from 3D data provide
information about a large fraction of the trees, but there is still
a challenge to make optimal use of the information from the

whole point cloud. Newly developed sensors might make ITC
methods cheaper and feasible for large areas.

Keywords Airborne laser scanning (ALS) . Light Detection
And Ranging (LiDAR) . Photogrammetry . Segmentation .

Individual tree crown (ITC) . Single tree

Background

Accurate models of vegetation are essential for the development
of a sustainable bio-economy based on renewable resources.
There is also a need for methods that can be used to frequently
update the models to monitor changes. Remote sensing methods
should be developed with knowledge of how the methods are
going to be used but also with knowledge of the data sources.

Some years before the turn of the century, remote sensing
technology for 3D mapping became available for civilian ap-
plications. The laser technology had been used since the
1960s, but the availability of advanced Global Navigation
Satellite Systems (GNSS) and Inertial Measurement Units
(IMU) for survey applications made the laser scanning tech-
nology possible. During the beginning of the twenty-first cen-
tury, there has been a revolution in technology useful for 3D
modeling of vegetation covering large land areas. One impor-
tant driving force in the progress of new remote sensing ap-
plications has been the development of new sensors [1••]. The
airborne laser scanning (ALS) technologywas developed with
the primary purpose to create high-resolution digital elevation
models of the ground and for mapping of infrastructure, e.g.,
3D city models. There were extensive efforts in the develop-
ment of algorithms that were used to remove the ‘noise’ orig-
inating from laser returns in the vegetation. Thus, the aim
defines the methods. However, once the new 3D data became
available to scientists in the field of remote sensing for
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vegetation mapping, the power of the data soon became obvi-
ous [2••].

ALS data are highly accurate 3D coordinate-measurements
of light reflections from the ground, vegetation, and other
objects collected from an aircraft. The coordinate measure-
ments are based on the distance derived from Light
Detection And Ranging (LiDAR) combined with the orienta-
tion of the emitted laser light derived from accurate informa-
tion about sensor position and orientation obtained from
GNSS and IMU. Laser scanning has the advantage over pas-
sive optical remote sensing of being comparatively indepen-
dent of light conditions and image geometry. With the high
measurement densities and small footprint sizes (i.e., the sur-
face covered by the laser beam) now available, this means that
also objects below the top-most surface can be measured.

Most ALS systems use time-of-flight measurements: a
short pulse of laser light is emitted and the time is mea-
sured until the reflected light is received. The most well-
known type of ALS data is discrete return data or echo
data. The echoes correspond to high power peaks of the
backscattered light (Fig. 1). Discrete return ALS data are
efficient for analysis of solid surfaces. However, rough or
inclined surfaces and surfaces distributed along the laser
pulse will give rise to a longer duration of moderately
high power of the backscattered light. To analyze this in
detail, the intensity envelope, known as waveform data in
airborne laser scanning, can be recorded. Waveform laser
scanning data are measurements of the power of the
backscattered light at regular time intervals. The reflecting
surfaces may be characterized from the waveform by the
intensity (i.e., amplitude) and echo width (i.e., duration)
of the corresponding peaks.

The natural vegetation has a complex structure compared to
artificial objects. The ideal situationwould be a system that could
measure every part of each tree, e.g., stem, branches, needles, and
leaves. The laser systems are close to this situation. Since the
systems were originally designed to emit pulses and receive at
least some energy from the ground, they are usually sensitive
enough to measure all parts of the vertical vegetation structure.
However, the vegetation causes an attenuation of the signal that
is a function of the penetration depth [3].

Another approach to obtain detailed 3D data describ-
ing the tree crowns is derivation of photogrammetric
point clouds. The development of computer vision algo-
rithms now makes it possible to automatically produce
3D models using matching of overlapping aerial images.
This triangulation technique is only possible if the same
feature can be identified in two or several images that
cover a common area, in other words solving the cor-
responding problem. To identify the same feature in
several images it must be illuminated with sun light.
The position errors increase with the distance to the
object, i.e., the flight altitude, and decrease with the

length of the base-line, i.e., the distance between the
positions of exposures. The corresponding problem be-
comes more difficult with low ratio between the dis-
tances to the object and base-line because world fea-
tures are then viewed from different angles and thus
appear differently in the images. The corresponding
problem is also more difficult in forested areas because
other trees may be in the line of sight. This makes it
difficult to measure the sides of tree crowns, small trees
between tall trees, and the ground between trees. The
corresponding problem becomes easier with lower flight
altitudes and several images overlapping the same area,
for example, using images acquired from Unmanned
Aerial Vehicles (UAV).

In addition to at least two overlapping images, stereo-
photogrammetric techniques require known camera interi-
or and exterior orientations. The interior orientation is
mainly the position of the perspective center and the ra-
dial distortion curve and is determined through a camera
calibration process. The exterior orientation is the location
and angles (i.e., the relationship between image and object
space) and is determined from GNSS and IMU measure-
ment and block triangulation using ground control points
with known positions. The block triangulation is often
combined with bundle block adjustment, which deter-
mines the relative orientation of multiple images by min-
imizing the errors at image points that appear on several

Fig. 1 The emitted pulse is reflected from different surfaces, resulting in
a waveform that can be used to derive discrete returns
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images but have unknown ground positions as well as
errors at the ground control points and the perspective
centers [4].

The images can then be matched together to identify the
same objects in several images. Commonly used matching
approaches are feature-based matching and semi-global
matching [5]. Feature-based matching derives a vector of fea-
tures around each object in the different images and connects
the points by finding the nearest neighbor in feature space.
Semi-global matching is based on minimization of a pixel-
wise matching cost with an additional smoothness constraint
that penalizes disparity changes [6]. Semi-global matching
can generate very dense point clouds with a resolution corre-
sponding to the original images, but it requires more compu-
tational resources than feature-based matching [5]. Following
the matching, the 3D coordinates are calculated through
space-forward intersection, which is based on the light rays
through the two camera centers passing through the corre-
sponding image points and intercepting at the same ground
point [4]. Compared to ALS data, the disadvantages are that
photogrammetric point clouds generally appear smoother and
might have problems with occlusions and artefacts from mis-
matches [7] and only the top-most surfaces can be represented.
An advantage is that the points can be assigned colors from
the corresponding pixels in the images.

UAVs are promising for detailed mapping of vegetation al-
though they cover smaller areas per time unit than convention-
al airplanes [8]. As an example, a UAV flight at 200 m above
ground level resulted in images with pixel size 5 cm that were
used to derive point clouds and a surface model where trees
were identified with local maxima detection [9].

3D data are now available from a diverse set of sensors and
sensor platforms: ALS, aerial images collected using air-
planes, stereo-images collected from satellite systems, and
images collected from UAVs. Several of these techniques are
becoming useful for vegetation mapping because digital ele-
vation models (DEM) have been produced by ALS for large
areas. This increases the usefulness of techniques for vegeta-
tion mapping that can produce 3D data for the upper parts of
tree canopies because the data are normalized by subtraction
of an already existing DEM. Thus, this enables the use of other
data sources than ALS to update vegetation heights, for ex-
ample, photogrammetry from aerial images or satellite
images.

Delineation Methods

Overview

Individual tree crown (ITC) methods are algorithms to delin-
eate tree crowns from raster images or high density point
clouds. They are used for estimation of stem attributes such

as tree height, stem volume, and tree species and to produce
extensive lists of geo-located trees based on the delineated tree
crowns. Many algorithms have been developed for extraction
of individual trees, e.g., [10••] and all methods are not covered
in this article. However, the main types of algorithms are de-
scribed and examples are presented. The algorithms can be
divided into surface model methods, where the point cloud
is simplified into a raster, and 3D methods, which utilize in-
formation from the whole point cloud, where the 3D methods
can be further divided into cluster methods applied to point
data and voxel-based methods.

To identify individual trees from a point cloud, each tree
crown must contain several points, which defines the required
minimum point density. The aim is usually to delineate only
points from the canopy, whichmeans that the height above the
ground of each point must be calculated and a DEM is needed.
The height above the ground is also needed to estimate tree
height and other tree attributes. Although the DEM is impor-
tant for the tree crown delineation, this review does not cover
classification of ground points and derivation of the DEM,
which has been reviewed in other studies, e.g., [11].

Surface Model Methods

Automatic detection of individual trees from ALS data can be
done by deriving a surface model representing the upper con-
tour of the canopy and identifying local maxima in the surface
as treetops. A digital surface model (DSM) is first created and
the value of a raster cell is set to the maximum height of laser
return within the raster cell. The DEM is subtracted from the
DSM to obtain a normalized DSM (nDSM) with canopy
heights, a so-called canopy height model (CHM) (Fig. 2).
One advantage of this approach is that 2D image analysis
methods can be applied. Several image analysis algorithms
for detection of trees in 2D aerial images were developed
already before 3D measurements became available by the in-
troduction of ALS [12, 13]. For example, treetops were as-
sumed to be more illuminated by sun light compared to sides
or spaces between tree crowns. Also, the illumination and tree
crown geometry was modeled in 3D to derive 2D templates
that were matched with the 2D aerial images [14]. The image
analysis algorithms that had been adapted to tree detection in
aerial images were also used for 3D data fromALS, mostly by
deriving CHM images. For example, local maximum filters
were used to detect treetops. It was also possible to delineate
tree crowns using algorithms already developed for aerial im-
ages [15, 13]. However, the 3D data of tree crowns obtained
from ALS made it possible to make assumptions and use 3D
models of the tree crown geometry to improve the delineation.

The first sub-problem is how to create a surface that de-
scribes the tree crowns. The laser pulses penetrate through the
canopy, which is an advantage because data are available also
from trees in the lower parts of the vegetation layer and from
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the ground. However, if the aim is to describe the upper con-
tour of a tree crown, the penetration will add noise that will
make it more difficult to separate trees that are close to each
other. Another consideration is returns from the ground and
objects close to the ground inside a tree crown because of the
penetration of the laser pulses. The question arises whether the
interpolation should be performed using all returns or only
returns from the canopy. Also, if height values are interpolated
outside tree crowns there is a higher risk that small trees are
hidden below the interpolated surface. Therefore, a canopy
raster could first be created using morphology operations in
order to create a canopymap without holes inside tree crowns.
This map could then be used to only interpolate values inside
canopies. One way is to use the maximum laser height within
each raster cell and then use triangulated irregular network
(TIN) interpolation to set values for empty raster cells [1••].
Also, an elastic surface can be applied using active contour
algorithms [16]. However, there are several decisions to make,
for example what cell size should be used. The choice of cell
size depends on the size of the tree crowns and the measure-
ment density. It is not easy to evaluate the result because the
canopy is not easy to define. It is important to keep in mind
that information is lost after any kind of interpolation because
the 3D data is then represented by a surface, thus data below
the surface are discarded.

The second sub-problem when applying surface
models is how to know the optimal scale. A multi-
scale approach is needed if there is a variable tree
crown size. The optimal selection of scale depends on
the size of the trees that are to be measured and is
therefore not known in advance. Trees can be detected
by finding local maxima in the surface model. However,
several local maxima could be found in the tree crown of one
individual tree.

One way to select the scale is to use a variable window size
for the maximum filtering that is based on empirically deter-
mined relationships between tree height and crown diameter
[17]. In that case, the tree detection results are only based on
the crown diameter prediction and there could be large errors
for tree crown diameter predictions from tree height. It is pos-
sible to use data in the neighborhood to estimate the shape of
the tree, information that could be useful for the selection of
scale. However, the neighborhood should be from the same
individual tree crown area which is not known. Another way
is to smooth the surface with Gaussian kernels with different
sigma values (i.e., scale parameters). The un-smoothed sur-
face typically has a structure with local height maxima within
tree crowns. The number of local maxima decreases if the
sigma value increases with sequential smoothing with
Gaussian kernels. According to the scale-space theory, no
new maxima are introduced when the scale parameter is in-
creased [18].

Segmentation of the smoothed surface models from differ-
ent scales will result in overlapping segments. The best seg-
ment out of the overlapping segments from different scales
can be selected using the 3D data within segments. One solu-
tion is to fit a parabolic surface to the 3D data and select the
scale resulting in the smallest residuals [16]. However, multi-
ple criteria can be used, for example size, circularity and con-
vexity [19], or laser-derived tree crown curvature [20]. The
multi-scale problem has also been solved using wavelet anal-
ysis [21].

The third sub-problem is delineation of tree crowns. The
goal is to create polygons that define the boundary between
different tree crowns and between tree crowns and other ob-
jects, for example, the ground. This step is usually combined
with the previous step and is an important part of the task to
select an optimal scale. The 3D data within a segment are used

Fig. 2 Side view of a 2 m wide transect of ALS data from a forest with a CHM derived from the ALS data
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in order to estimate if the segment is only a part of a tree
crown, contains more than one tree crown, or only contains
one individual tree crown. One simple method to delineate
tree crowns is to use the watershed algorithm that can be
explained by the water movements through a landscape. The
rain water falls everywhere and the water moves in the direc-
tion with steepest slopes. For the tree crown segmentation, the
movement is instead upwards to local maxima that are as-
sumed to be treetops. A starting point is placed in every raster
cell above a height threshold. A path is placed from each
starting point by iteratively moving to the neighbor raster cell
with the highest value until a local maximum is reached. The
starting points that reach the same local maximum define a
segment.

There are several steps of a tree detection algorithm with
potential errors in each step. For example, a very good scale
selection strategy is not useful if the surface model includes
large errors. Information is lost in each processing step.
Therefore, a good strategy is to use the original data until it
is possible to make an object-dependent representation and
generalization [22]. One proposed solution is to use geometric
tree models that are fitted to laser data, for example, ellipsoid
models [23]. The models were centered at every raster cell
location. Tree height was set to the height of a CHM. The best
value of the model parameter crown radius (i.e., width of the
ellipsoid) was not known and therefore several radii were
tested. The test yielding the highest correlation with laser data
was saved for the raster cell where the geometric model was
centered. A correlation surface was created through tests at
all raster cells with a canopy height value above a threshold.
The correlation surface was then used as input to watershed
segmentation. Finally, segments were merged based on model
tests using the same geometric tree crown model. Individual
trees have also been detected using the Hough transform, for
which cones were used as the geometric tree model [24].

Algorithms using a CHM as input will typically not detect
trees below other trees because data from these are lost already
when the CHM is created. It is however possible to use surface
methods sequentially from the top layer of the canopy and
downwards by excluding tree crowns delineated in the top-
most canopy layer from the point cloud to reveal data from
lower canopy layers [25]. First, a preliminary segmentation
was performed based on the CHM that had been created from
the complete dataset. The vertical distribution of laser returns
was then analyzed to find the next vegetation layer by identi-
fying a local minimum in each segment and excluding the
ALS data above the local minima from the point cloud that
was used to produce a new CHM using only the lower layer.
The process continued until no further CHM from lower veg-
etation layers could be created [25, 26].

Photogrammetric point clouds have been used for forestry
applications, but most analysis has been done with area-based
approaches where summary measures such as mean tree height

and mean stem volume are calculated for a defined area.
However, it has been proposed that ITC delineation from photo-
grammetric point clouds might be possible thanks to the recent
improvements in image matching algorithms [7]. The ap-
proaches developed this far have been based on derivation of a
surface model from the point cloud: local maxima detection and
region growing around the local maxima [7, 27, 28] or delinea-
tion of homogenous areas based on color information combined
with height and slope of the surface model [29].

3D Methods

Since parts of the laser light can pass through the canopy, the
ALS data include measurements of surfaces below the top-
most canopy layer. The measurements originate from the
ground and other objects, including lower parts of the tree
crowns or small trees and shrubs in lower canopy layers.
This may be used to delineate individual tree crowns in three
dimensions from ALS data.

A common approach is to first delineate the trees in the top-
most canopy layer from a CHM or another surface model and
then use this information when analyzing the whole point
cloud. The delineated tree crowns in the top-most canopy
layer may be used as initial values when delineating tree
crowns and shrubs from the point cloud or the ALS returns
assigned to the tree crowns may be excluded to enable analy-
sis of the canopy structure below. Another common approach
is to divide the point cloud into horizontal slices of a certain
vertical thickness, analyze each slice separately to identify tree
crowns in each slice, and aggregate the delineated tree crown
slices to define three-dimensional tree crowns [30, 31].

If the measurement density is high enough, the tree stems
below the top-most canopy can be identified. For very high
density, at least 50 returns per square meter, methods devel-
oped for ground-based laser scanning have been applied such
as skeletonization of the returns from the tree stems and esti-
mation of the stem diameter from returns classified as origi-
nating from the stem [32] and extraction of the returns from
tree stems based on their higher intensity followed by segmen-
tation of the tree stems starting from the bottom [33]. In many
cases, the measurement density is too low to allow estimation
of the stem diameter from the point cloud, but the positions of
the stems can be determined. An application of this is to first
determine an approximate number of stems by clustering of
the ALS data below the top-most canopy layer and then use
the estimated stem number for delineation of individual tree
crowns. This has been done with various 3D methods: k-
means clustering applied to the whole point cloud [34], wa-
tershed segmentation applied to the point density in voxels
derived from ALS data [35], and a normalized cut algorithm
applied to the distance between voxels and the mean intensity
and echo width derived from waveform ALS data [36].
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Delineation of the point cloud may be done with k-means
clustering where the ALS returns are iteratively partitioned
into k clusters in which each observation is assigned to the
cluster with the nearest mean. The clustering requires initial
positions of the clusters that can be derived from local maxima
in a CHM or by other means of identifying treetops from the
ALS data [37, 38]. By scaling the distances in vertical and
horizontal direction differently, the shape of the clusters can
be controlled to make them more elongated in the vertical
direction. To make further use of the information about the
treetops that are delineated from the surface model, the clus-
tering can be adapted to increase the probability to assign ALS
returns within each treetop to the corresponding cluster and to
assign ALS returns close to the top-most canopy surface to the
tallest trees [34].

The mean-shift algorithm is another clustering algorithm
that divides data into groups by locating maxima of the point
density within local regions (i.e., within kernels). The mean-
shift moves a kernel iteratively from the position of each point
towards the local density maximum. One cluster is made up of
points for which the kernel ends up in the same local density
maximum. The only parameter is the kernel bandwidth, al-
though that parameter is critical for the results. Variable kernel
bandwidth for different forest layers has been suggested as a
means to allow smaller clusters close to the ground and larger
clusters in the top-most canopy [39]. Mean-shift assumes that
each tree crown corresponds to a density maximum, which
might not be true. For many tree crowns, most of the ALS
data are located on one side and there is often no clear density
minimum between tree crowns.

Normalized cut is an algorithm to divide data into groups
based on the total feature dissimilarity between the different
groups as well as the total feature similarity within the groups
[40]. Normalized cut has been applied to voxels derived from
ALS data to delineate tree crowns. The features were the dis-
tance between the voxels and the mean intensity and mean
echo width from calibrated waveform ALS data within each
voxel [36]. Normalized cut has also been applied to ALS data
with spectral attributes originating from aerial images [41] or
hyperspectral images [42]. The normalized cut has resulted in
a larger fraction of identified trees, especially for trees below
the top-most canopy layer, but also a slight increase in erro-
neously delineated trees compared to watershed segmentation
of a CHM [36].

The delineation may also be done with region growing.
Region growing from the treetops and downwards has been
done for the whole point cloud [43] and for voxels [44, 45•].
Lee et al. [43] delineated the point cloud by first finding the
top-most ALS returns within a search radius and defining
them as treetops. The delineation was done for one ALS return
at a time by finding the top-most return not assigned to any
tree crown, identifying the nearest neighboring return
assigned to a tree crown, and adding the return to that tree

crown. Vega et al. [46] presented a similar delineation method
but with merging of segments based on different scales.
Vaughn et al. [44] delineated voxels derived fromALS returns
extracted from full waveform data with a similar algorithm.
The delineation started by finding voxels containing ALS data
in the top-most layer of voxels and identifying them as tree-
tops. For the next layer, voxels containing ALS data were
either assigned to the nearest neighboring tree crown or iden-
tified as a new treetop if no tree crown was in the vicinity. A
similar algorithm based on region growing of voxels [45•]
identified treetops by finding voxels with a certain open space
above, a cluster of ALS returns in the neighborhood and not
spatially attached to another treetop. Region growing from the
bottom has been done by Lu et al. [33] starting with the lowest
returns classified as tree stems and adding nearby returns with
restrictions for the distance in 2D and 3D. Finally, all returns
were assigned to the different trees by adding one return at a
time to the nearest tree crown.

An alternative to full 3D delineation of the point cloud is to
first divide the point cloud into horizontal slices, do the delin-
eation in each slice separately, and then join the resulting
delineated tree crown slices along a vertical axis. This has
been done with 2D k-means clustering in each slice and sub-
sequent merging of clusters that overlap along the vertical
direction [30] and by deriving the horizontal contours of the
trees from a region-based level set method and constructing a
3D canopy surface by stacking the contours on top of each
other [31]. Dividing the point cloud into slices is an intuitive
approach and can be implemented in a computationally effi-
cient way, but it does not make optimal use of the geometric
information in the point cloud since it simplifies the data be-
fore delineating the tree crowns in the vertical direction.

Comparison of Methods

Methods for ITC delineation have been compared in different
forest conditions [45•, 47•, 48•, 49•]. Comparison in two bo-
real forest stands gave varying success depending on the
method [47•]. However, the result is determined by whether
the method is designed for the forest type and the setting of
appropriate parameter values. In another comparison in differ-
ent forest types, different methods gave similar results overall
[48•]. Additionally, the choice of method depends on the aim
of the ITC delineation. To detect a large fraction of the tallest
trees, a surface model method generally gives the best results,
but detection of smaller trees below the top-most canopy re-
quires methods utilizing the whole point cloud [45•, 49•].
Kaartinen et al. [47•] suggested that methods that provide
good results for the top-most canopy are suitable for general
mapping of forests while methods that accurately record the
diameter distribution are more suitable for forest inventory.
The choice of methods also depends on properties of the data,
for example, the sensor and measurement density. Methods
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using the whole point cloud generally require higher measure-
ment density than surface-based methods since the risk of
occlusion is higher for objects below the top-most canopy.
As a rule, a higher measurement density has a greater chance
of providing information about small objects, which means
that smaller trees and properties of the tree crowns can be
more accurately described from data with a higher measure-
ment density.

Applications of the Delineated Tree Crowns

Estimation of Forest Variables

The next step after tree crown delineation is estimation of
attributes for individual trees. It is usually the physical prop-
erties of tree stems that are important for forestry applications.
There is however a relationship between crown and tree stem.
According to the pipe model theory, a unit amount of leaves is
provided with a pipe whose cross section area is constant. The
pipe has both a vascular and mechanical function and con-
nects the leaves to the stem base. It is therefore possible to
observe a correlation between stem cross section area and the
weight of the canopy above [50]. Thus, empirical models can
be used to predict stem attributes from 3D measurements of
tree crowns obtained from airborne sensors if reference data
are available to establish these empirical models. Tree height
can be estimated by finding the maximum 3D measurement
within the tree crown. However, in this case reference data are
also needed because the maximum height of laser returns is
typically an underestimation of the tree height [16, 51, 52].
The reason could be penetration of laser pulses into the cano-
py before a return is detected and the lack of laser returns
located exactly on the treetop. Co-registration of the delineat-
ed tree crowns and trees measured in the field must consider
and adjust positioning errors in the field data [53–55].

For forestry applications, the estimates of individual trees
are usually aggregated to plot/raster cells or forest stands.
Sometimes the aggregation is presented as the final result
which could be misleading. There is no guarantee that all trees
have been detected and there might be false trees, so-called
omission and commission errors, respectively. The proportion
of detected trees depends on the forest structure [16, 48•].
Therefore, the estimation methods should include correction
of errors due to both omission and commission errors. The
idea to predict tree attributes for tree clusters instead of indi-
vidual trees has therefore been proposed [1••]. A non-
parametric method with utilization of 3D laser data within a
segment has been applied to estimate the number of trees
within a segment. A nearest neighbor method was then used
at a raster cell level to correct the tree number according to the
estimated tree number [56, 57]. Probability models have been
used to estimate tree species and stem number within

segments using data from the tree crown delineation.
Conditional regression equations were then used to estimate
stem diameter. The estimates were applied in a sampling con-
text that produced unbiased estimates within strata [58].
Another approach has been to use nearest neighbor estimation
methods to impute segments that contain zero, one, or several
trees. All field-measured trees in the plots were therefore
linked to a tree crown segment when the reference database
was created. This approach was named semi-ITC [59]. The
semi-ITC approach is simple to apply and several variables
can be estimated simultaneously. The imputation of segments
that contain one or several tree stems is necessary if the pre-
dicted tree stems are to be used for further analysis, for exam-
ple if automatically measured tree stems will be used for sim-
ulations in order to predict wood product assortments [60]. A
semi-ITC approach can also be applied to tree crown segments
delineated from photogrammetric point clouds [61].

Classification of Tree Species

A great advantage of individual tree methods is that tree spe-
cies classification of individual trees may be done from the
ALS data (Fig. 3), which is particularly useful for forests with
a mixture of tree species. Tree species classification of indi-
vidual tree crowns delineated from surface models derived
from discrete return ALS data can be done based on the first
moments of the height and intensity data distributions within
each tree crown segment [62] as well as other variables de-
rived from the height and intensity data distributions, from the
fraction of first returns, and from a parabolic surface fitted for
each tree crown segment [63], which has also been confirmed
by later studies [64, 65]. By describing the extent of the tree
crowns with alpha shape metrics, additional variables can be
derived to both classify tree species and estimate DBH [66,
67]. This kind of analysis utilizes more details of the ALS data
together with the knowledge of the shape of treetops and tree
crowns [63, 68]. For ALS data with high density, line features
can be derived inside the tree crowns to represent hypothetical
branches that can be used for tree species classification [69].
Tree species classification of individual trees has also been
done with good results from a combination of discrete return
ALS data and multi-spectral aerial images [66, 70] or
hyperspectral aerial images [71]. Recent technical develop-
ment includes multispectral laser scanning (i.e., laser light
with several wavelengths), which has the potential to improve
tree species classification [72].

Tree species classification may also be done from wave-
form ALS data. Since the waveform data describe the
reflected light in more details, it is possible to derive the in-
tensity and echowidth and also the backscatter cross-section if
calibration data are available. Tree species classification of
individual tree crowns delineated from surface models is im-
proved by including variables derived from the echo width,
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the backscatter cross-section, and the total number of echoes
within the tree crowns [73, 74]. Tree species classification
may also be done for individual tree crowns delineated in three
dimensions. So far, this has been done for waveformALS data
based on intensity and echo width [34, 75]. Additionally, the
Fourier transform may be applied to the waveform to derive
information about the distribution of returned intensity values
along the pulse, which is related to the positions of branches in
the tree crowns. This approach has been shown to improve the
tree species classification [44].

Habitat Analysis and Urban Mapping

One application of ITC methods is for mapping of vegetation
in urban environments. The ability to derive properties of the
individual tree crowns can provide information about tree
species and other properties of the trees such as tree height,
crown diameter, and crown length. However, urban environ-
ments often have a broad mix of tree species and trees of
different heights and crown shapes, which makes the ITC
analysis more challenging [76]. Another application is for

habitat analysis, where detailed information about the trees
can provide information that is not otherwise available for
large areas about the height distribution or layering, tree spe-
cies composition, and site condition [77] or standing dead
trees and burnt forest [78].

Outlook

Multispectral ALS

Until recently, operational ALS systems for terrestrial map-
ping have used only one light wavelength [79]. However, a
new multispectral ALS system is now available, where mea-
surements are done with three different wavelengths simulta-
neously: 1550 nm (i.e., SWIR), 1064 nm (i.e., NIR), and
532 nm (i.e., green) [80]. Common wavelengths in earlier
ALS systems for mapping of land areas have been NIR and
SWIR laser light [81]. Laser scanners with visible green wave-
length are used for hydrographic and bathymetric applications
[81], sometimes with red and infrared wavelengths in addition

Fig. 3 ALS data from a pine
(left) and a spruce (right); units in
metres
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to the green wavelength [81]. In order to decrease the energy
density for eye safety reasons, the beam divergence is usually
greater for green laser scanners (0.7–1.0 mrad) than for NIR
and SWIR laser scanners (approximately 0.2–0.5 mrad),
meaning that the footprint is larger at the same distance from
the scanner [80, 82–84]. The different footprint sizes lead to
different spatial averaging, which may provide complementa-
ry information for the different wavelengths, but also cause
co-registration problems when combining the data positions.
Additionally, the new multispectral ALS system emits the
different wavelengths at different angles resulting in separate
scan lines and differences in positions of measurements [80].

A combination of green and NIR/SWIR wavelengths is
likely to be useful for vegetation analysis since the reflectance
of healthy plants is highest in the NIR spectrum and around
550 nm in the visible spectrum due to the lower absorption of
their chlorophyll content. From interpretation of aerial images,
it is well known that different tree species have somewhat
different reflectance spectra [85]. A multispectral laser scan-
ner provides spectral as well as geometric information about
the vegetation [86], providing a potential for detailed analysis
of tree species, forest succession, and forest health status.
Early results show the potential of multispectral laser scanning
for classification of tree species both for the new system with
three wavelengths [72] and when combining laser data from
three separate ALS systems [87]. However, the optimal com-
bination of wavelengths for laser reflectance is still being
evaluated for measuring forest vitality and succession [86],
phenology [88], plant physiology and photochemical reflec-
tance [89, 90], and nitrogen stress [89–91].

High Resolution Data from New Sensors

Most commercial airborne laser scanning systems that have been
used until now emit a pulse with a small divergence and one or
several return pulses are detected by a single photo detector. The
coverage of 3D data is obtained by the scanner together with the
movement of the aircraft. New detectors are now becoming
available for commercial use, detectors that are very sensitive,
with the ability to detect single photons, and are placed in a
matrix. Different parts of the returned pulse can be detected by
individual detectors of the matrix. Due to this, a high measure-
ment density can be obtained also from high altitudes. This
means that ITC methods for 3D data will become more feasible
for large forested areas. Two different systems were recently
evaluated inNorthAmerica: the Sigma single photon technology
and the Harris IntelliEarth™ Geospatial Solution Geiger-mode
LiDAR. The first system produced 25 points per square meter
from an altitude of 7540 m above ground and the latter system
produced 23 points per square meter from an altitude of 2293 m
above ground level. As a comparison, typical conventional linear
systems currently produce 2–4 measurements per square meter
from a flight altitude of 2200 m above ground or lower [92].

Also, the flight speed can be higher with the new systems, which
together with high flight altitude means that the coverage rate
(km2/h) can increase up to 30 times compared with conventional
linear systems [93]. Research is however needed in order to find
out the suitability of the data for ITC methods and adapt the
methods to the new data. The matrix detectors also make it
possible to use flash lasers. These lasers illuminate the entire
scene and a distance image is recorded for each emitted pulse.
It is only possible to measure at shorter distances compared with
scanning systems but the design without scanner will probably
enable construction of systems that are small and not very ex-
pensive. These systems are suitable for small and flexible sys-
tems, for example, mounted on UAVs.

Conclusions

Methods for ITC delineation have been continuously devel-
oped ever since dense point clouds from ALS became avail-
able in the late 1990s. Most approaches have been based on
interpolation of a surface model from the point cloud, but
various methods to utilize the whole point cloud are also com-
mon. Methods based on surface models are robust and can
delineate a large fraction of the tree crowns in the top-most
canopy, especially in boreal coniferous forest. However, inter-
polation of the point cloud also means that some information
is lost. Methods that utilize the whole point cloud provide
more information about trees and shrubs below the top-most
canopy, but generally require more parameters and pose a
greater risk of dividing tree crowns into more than one seg-
ment. The choice of method depends on the application and
whether the primary goal is to accurately describe the tallest
trees in the top-most canopy or to derive information also
about smaller trees below the top-most canopy. For some ap-
plications such as logging or biomass assessment, the tallest
trees are most important, but for applications such as under-
story regeneration or habitat analysis, the smaller trees are also
of interest. A surface model describes the top-most canopy
and the delineation methods that have been used, for example
watershed segmentation, make use of geometrical properties
of the tree crowns (i.e., that the treetop is the highest point of a
tree and the surrounding tree crown height gradually de-
creases). Most surface methods also include selection of an
appropriate scale. However, most 3D methods have not used
knowledge about the geometrical properties of the tree crowns
and have not included scale selection. Therefore, there is still a
challenge to develop such methods to make optimal use of the
information from the whole point cloud.

The ongoing rapid sensor development will make collec-
tion of dense 3D point clouds faster and cheaper. This means
that dense point clouds will probably be available for larger
areas, which will enable delineation of individual tree crowns.
This will have importance for mapping of forests and
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vegetation in general. Information that can be derived with
higher accuracy from ITC delineation includes estimates of
the height or diameter distribution and the tree species.
Recent technical development also includes a multispectral
ALS system, which will probably enable more accurate tree
species classification. Additionally, development of new air-
borne and space-borne optical sensors will make high-
resolution images more common and enable derivation of
dense point clouds by stereo-photogrammetric techniques,
which will provide users with more frequently updated 3D
models.
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