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Abstract

The alignment of the environmental, economic and social 
sustainability of farms is necessary for enhancing the pro-
vision of public goods in farming. This study combines the 
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H I G H L I G H T S 

• The performance of 131 farms in 15 farming systems were assessed by 
 applying three sustainability assessment tools, namely SMART Farm Tool,
Cool Farm Tool, and COMPAS.

• Agro-ecological farms generally perform better than conventional farms with
regard to biodiversity and water quality.

• Biodiversity performance can be improved overall by integrating nature
 conservation efforts and targeted promotion of species on farms.

• While some agro-ecological practices lead to reduced greenhouse gas emissions, 
in certain contexts, some practices can increase the energy use of the farms.

• No clear patterns of the economic performance between conventional and
agro-ecological farms are visible.
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use of three tools for the assessment of farm sustainability. It 
provides first insights into the sustainability performance of 
farms at different stages of agro-ecological transitions in 15 
case studies covering a range of different farming systems 
across Europe. Each case study reflects a different  transition 
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towards agro-ecological farming. The tools applied were 
COMPAS (an economic farm assessment tool); Cool Farm 
Tool (a greenhouse gas inventory, water footprint and 
 biodiversity assessment tool); and the SMART Farm Tool 
(a multidimensional sustainability assessment tool).

First results of the use of combined sustainability assess-
ments deepen the understanding of different farming systems. 
Sustainability performance varies greatly between farms, 
but overall, agro-ecological farms tend to enhance biodiver-
sity and water quality. For soil quality, no clear patterns could 
be identified. The same applies to economic performance at 
different stages of the agro-ecological transition. Quality of 
life was generally rated medium to high on all investigated 
farms. The combined sustainability assessment enabled the 
identification of areas for further policy development.

Aligning the tools required harmonising definitions, sim-
plification and assumptions with regard to the input data of 
the tools.

1 Introduction

The sustainability of farming needs to be enhanced to ena-
ble a sustainable food supply for a growing global popu-
lation while remaining within the planetary boundaries 
(Campbell et al., 2017; Willett et al., 2019; EEA/FOEN, 2020; 
Pe’er et al., 2020). Given that the co-provision of public 
and  private goods frequently remains imbalanced and not 
 sustainable at a farm or farm systems level, agro-ecological 
 practices are gaining increasing attention from practitioners 
and  policy-makers (Duru et al., 2015; IPES-Food, 2016; Wezel 
and Bellon, 2018; HLPE, 2019). Such agro-ecological prac-
tices aim at supporting sustainable food production “while 
being based on various ecological processes and ecosystem 
 services” (Wezel et al., 2014), for example, by substituting 
synthetically  produced inputs with biological alternatives or 
restoring healthy agro-ecosystems. 

The agro-ecological transition of farming systems 
implies adopting agro-ecological practices. It is linked to the 
ecosystem services these practices can provide (Altieri et al., 
2017; Prazan and Aalders, 2019). There is a wide set of agro- 
ecological practices with varying degrees of application. A 
common way to classify them is according to the efficiency, 
substitution and redesign (ESR) framework, which was first 
introduced by Hill and MacRae (1996) and which describes 
different transition stages towards sustainable agriculture 
(see also Wezel et al., 2014). More specifically, agro-ecological 
practices may enhance the efficiency of conventional practices 
(e.g. the precision application of mineral fertilisers), substitute 
inputs (e.g. applying organic instead of mineral fertiliser), or 
redesign conventional approaches (e.g. introducing green 
manure; see Prazan and Aalders, 2019).

However, transitions towards diversified agro-ecological 
systems remain slow. To some extent, this can be attributed 
to the challenge of tackling the key dilemma of securing the 
economic and social sustainability of farms while providing 
public goods, such as environmental benefits (see, e.g. Otero 
et al., 2020). This is despite significant political efforts: 40 % 
of the European Union’s 2014-2020 budget was allocated to 

the Common Agricultural Policy (CAP) (European Parliament, 
2020). Yet, questions have been raised over the effectiveness 
of the underlying policy instruments aiming at enhancing 
the environmental state of agriculture (Pe’er et al., 2014, 2017, 
2020; European Court of Auditors, 2017; Leventon et al., 2017). 
Despite recognition of the importance of agro-ecological 
practices for enhancing farm sustainability, identifying and 
integrating appropriate solutions is challenging and differs 
across contexts. 

European farm-level data are insufficient for capturing 
agricultural sustainability (Kelly et al., 2018), however, assess-
ment tools exist which can be used to determine the sus-
tainability performance of farms (e.g. Arulnathan et al., 2020; 
Coteur et al., 2020; Janker and Mann, 2020). For such tools, 
the term sustainability assessment tools (SAT) is used in this 
paper if they cover at least one dimension of sustainability. 
The way they are constructed and the aspects of sustain-
ability they investigate differ significantly (Coteur et al., 2020). 
The selection of a suitable tool is determined by factors that 
include the purpose of application as well as thematic and 
geographic scope (see e.g. Arulnathan et al., 2020; Coteur 
et al., 2020; Schader et al., 2014). A single SAT is unlikely to 
 capture all of the relevant aspects of sustainability (Gaspara-
tos et al., 2008). A more effective approach for assessing 
 complex systems is to combine the use of different tools (de 
Olde et al., 2017). 

This paper has two aims: i) to explore the potential and 
challenges of applying different SATs in parallel to assess 
farm sustainability in different farming systems and ii) to 
provide first insights into the sustainability impacts of agro- 
ecological practices implemented across Europe.

A set of different SATs were applied alongside each  other 
(hereinafter called ‘combined sustainability assessment’). 
The intended output was an overview of farm sustainability 
while also providing an in-depth assessment of at least one 
environmental topic, and of economic aspects. 

To gain insights into all sustainability dimensions with an 
emphasis on the environmental and economic aspects, three 
state-of-the art tools were selected: SMART Farm Tool (here-
inafter referred to as SMART), COMPAS, and Cool Farm Tool 
(CFT). SMART is a multidimensional sustainability assessment 
covering a broad range of sustainability topics. COMPAS 
covers the economic performance of farms. CFT is a green-
house gas (GHG) inventory, water footprint and biodiversity 
assessment tool. Used in combination, the semi-quantitative 
SMART results are complemented with quantitative evidence 
obtained from applying COMPAS and CFT. 

In the research work reported here, the three SATs were 
applied to 131 farms in 15 farming systems (case studies). 
Each of the farming systems comprises farm groups at differ-
ent stages of agro-ecological transition which are represent-
ed by the assessed farms.

The selection of case studies and farms as well as the 
application of the SATs are described in detail. First insights 
are provided on how different types of farms perform in 
relation to core sustainability topics: GHG emissions, biodi-
versity, soil quality, water quality, productivity/farm income 
and quality of life. The identified patterns and trends are 
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tools in the combined assessments. For CFT, the different 
emissions from farm enterprises were summed up in a dedi-
cated MS Excel file. For COMPAS, only the farm level indica-
tors were calculated by summing up data from the different 
farm enterprises.

The ability to represent the local context depends on the 
level of detail of the SAT. For example instead of selecting a 
locally occurring crop species (e.g. triticale), a more common 
crop species (e.g. wheat) had to be selected in one case. With 

this varying degree of detail between the tools, the input 
data needed to be aligned.

To streamline the simplifications described above and 
to align the input data, a Microsoft Excel tool for the data 
collection for all three tools was developed. This tool sup-
ported data entry using automated mechanisms, such as the 
conversion of data on fresh weight of livestock feed into dry 
weight (needed for CFT) based on conversion factors from 
feedi pedia.org (Sauvant et al., 2013).
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F I G U R E  2
Dimensions, themes and subthemes of the Sustainability Assessment of Food and Agriculture systems (SAFA) guidelines. 
Source: adopted from FAO (2013)



Landert et al. (2020)  ·  L A N D B A U F O R S C H   ·  J Sustainable Organic Agric Syst  ·  70(2):129–144 133

2.2 Case studies
The combined sustainability assessment was first applied in 
case studies in 15 European countries. This  section describes 
how they were selected and how farms were sampled within 
each case study.

2.2.1 Case study selection
The study aimed to include a broad coverage of farm-

ing systems in Europe that are at different stages of agro- 
ecological transitions. In a first step, the local case study 
teams developed three proposals for case studies in their 
country. Prazan and Aalders (2019) document the initial 
selections which were based upon 19 characteristics such 
as the production type of farms, sustainability issue, agro- 
ecological practices, coverage of the value chain by farmers, 
network presence, level of cooperation, and the presence 
of innovative policy tools and/or market incentives. These 
proposed case studies were evaluated based on a reduced 
set of  criteria: i) the presence of innovative policy or market 
incentives, ii) a high degree of cooperation amongst farmers 
(and other actors), and iii) the involvement of farms in pro-
cessing and sales. The final set of selected case studies had 
to fulfil at least one of these criteria and was recommended 
to the local case study teams to decide upon together with 
the local stakeholders involved.

In the final step, representatives from EU-wide institu-
tions validated the final selection of case studies presented 
in Table 2. The set of case studies represents a wide range 
of production activities and of climatic and ecological con-
texts of Europe. For each case study, the core dilemma to be 

addressed by agro-ecological transition was identified by the 
local research teams.

2.2.2 Selection of farms along the agro- 
ecological transition pathway
The farm sampling strategy aimed to select representative 
farms with different strategies and performance profiles 
along the agro-ecological transition pathway following the 
previously introduced ESR framework (Figure 3). Based on 
this framework and the farm typology developed by Prazan 
and Aalders (2019), a guideline provided instructions to local 
case study teams on how to select farms. The first dimension 
of the farm typology (farm production system according to 
FADN) served to focus the case study on a certain farm pro-
duction system (dairy, mixed, perennial farms etc.) to ensure 
the comparability between the farms in one case study. The 
second dimension (agro-ecological practices) helped define 
case study-specific farm groups along the transition path-
way for the farm quota sampling. The third dimension (socio- 
ecological system context) was used to further characterise 
these groups.

A total of 51 farm groups were examined in the 15 case 
studies. These groups are presented in Table 3 according to 
their stage of transition. For example, in the Swiss case study, 
four farm groups are described: one group of conventional 
farms specialised in pig and dairy representing the current 
system in the case study area (Stage 0). The second group 
consists of organic farms specialised in pig and dairy repre-
senting the input substitution stage (Stage 1 in the Swiss 
case study). Two additional farm groups (organic farms with 

TAB L E  1
Comparison of tools in the project’s focus topics. The “+” sign indicates that the number of indicators scale with the 
 number of crops and livestock on the farm. For a complete list of indicators, see supplementary materials S1.

Level Indicator type (Bockstaller et al., 2015) Assessment type

Topic SAT
Crop/live-

stock
Farm

Causal 
 indicators

Predictive 
effect  

 indicators

Measured 
effect 

 indicators

Semi-
quantitative

Quantitative

Greenhouse 
gas emissions

SMART X 74 X

CFT X 5+ X

Biodiversity
SMART X 72 X

CFT X 27 X

Soil quality

SMART X 70 X

CFT X X
Topic not covered as a separate assessment, but the soil type (e.g. including 
parameters such as humidity) serves as an input data domain for GHG emission 
calculation. Soil  fauna is one indicator of the CFT biodiversity assessment.

Water quality

SMART X 61 X

CFT X
Topic not covered as a separate assessment, but land use and management 
 (riverine vegetation, ponds etc.) were entered for biodiversity assessment.

Productivity 
and farm 
incomes

SMART X 48 2 X

COMPAS X X 7+ X

Quality of life
SMART X 46 X

COMPAS X X Farm income, which contributes to quality of life, is covered (see above).
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mixed special crops and extensive mixed livestock farms) 
represent the stage of system redesign, which equals Stage 
2 in the Swiss case study.

Approximately 2.5 farms per farm group were then 
 selected on average for the assessments (131 farms in total). 
The specific farms were chosen based on input from local 
stakeholders, such as farmer associations, local authorities, or 
rural advisory services. They provided the insights required 
for selecting farms representing the defined farm groups 
and established the contacts with the farmers. Half of the 
farm groups defined along the transition pathway (1st stage 
and 2nd stage in Table 3) are certified as organic. Although 
agro-ecology is not defined by a standard or a certification, 
organic farming can be still seen as a laboratory for ecologi-
cal innovation (Tittonell, 2014) and, consequently, overlaps 
significantly with agro-ecological practices ( Migliorini and 
Wezel, 2017).

TAB L E  2
Overview of case studies and their dilemmas, which frame the development of practice-validated strategies for agro- 
ecological transitions. For each case study, the geographical scope is provided by referring to the level of the Nomen-
clature of Territorial Units for Statistics (NUTS).

Country Case study dilemma
Geographical scope 

(NUTS level)

Austria (AT)
Increasing carbon sequestration in soils and soil quality without losing economic viability of arable 
farms

NUTS 3

Czech Republic (CZ) Reducing soil degradation without losing economic viability of arable farming NUTS 3

Germany (DE) Reducing pressure on ecosystem (water, soil, biodiversity) without losing economic viability NUTS 3

Finland (FI) Reducing environmental impact of dairy farming without losing economic viability NUTS 3

France (FR) Reducing dependency of external fertilisers and pesticides without losing economic viability NUTS 1

Greece (GR) Reducing use of agro-chemicals in fruit production without losing economic viability NUTS 3

Hungary (HU) Improving soil quality without losing economic viability NUTS 0

Italy (IT) Increasing diversification without reducing profitability NUTS 2

Lithuania (LT) Enhancing economic viability and competitiveness of dairy without intensifying production NUTS 1

Latvia (LV)
Enhancing economic viability and competitiveness of dairy without increasing pressure on water and 
biodiversity

NUTS 2

Romania (RO)
Enhancing economic viability and competitiveness of small-scale farming without damaging cultural 
landscape and biodiversity

NUTS 1

Spain (ES) Improving economic resilience without increasing pressure on the ecosystem NUTS 1

Sweden (SE)
Diversifying specialised ruminant livestock farms to include more crops for direct human consump-
tion without losing economic viability

NUTS 0

Switzerland (CH)
Reducing water eutrophication and ammonia emission from intensive livestock keeping without los-
ing economic viability

NUTS 1

United Kingdom (UK)
Producing public goods while maintaining viable production of private goods, and securing econom-
ic and social sustainability at a farm level

NUTS 2
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F I G U R E  3
Representation of a transition pathway with different 
 stages of transition. Source: Tittonell (2014), adapted by 
Prazan und Aalders (2019)
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TAB L E  3
Overview of the farm groups in the case studies and their classification along the transition pathway. 
Stage 0 comprises farms which are not agro-ecological. The term ‘in transition’ used in the table refers to farms in 
 transition to input  substitution by applying some practices used in organic farming. ‘Org.’ stands for organic farming, 
‘Conv.’  for conventional farming.

Stage on the agro-ecological transition pathway

Main agro-ecological practices Stage 0 (S0) 1st stage 2nd stage

AT
Soil management (humus 
 formation) 

Conv. fruit farms
S0 + participating in humus 
project

Org. fruit farms participating 
in humus project

Conv. mixed livestock (pig) 
 arable farms

S0 + participating in humus 
project

Diversified mixed livestock 
(pig, poultry, cattle) arable 
farms,  participating in humus 
project

CZ
Livestock density/
soil management

Conv. specialised dairy Org. specialised dairy

FI
Livestock density/livestock 
diversity

Conv. specialised dairy 

Org. dairy farms (incl. some 
more diversified)

S0 + biogas project

FR Weed, pest and disease control Conv. perennial (wine)
Partially org. perennial (wine)/
in conversion

Demeter perennial (wine)

DE
Fertiliser and soil manage-
ment, flower/buffer strips, crop 
diversification

Specialised arable farms
(with minor pig systems)

S0 + some agro-ecological 
 practices

GR
Integrated crop management 
(ICM, fertiliser and soil), pest 
 control (mating disruption)

Fruit farms without ICM or 
mating disruption technique

Fruit farms with ICM or mating 
disruption technique

Fruit farms with ICM and 
 mating disruption technique

HU Soil management (erosion) Arable farms S0 + reduced tillage No-till arable farms

IT
Fertiliser management/soil 
 management

Intense perennial (wine) Org. perennial (wine)
Org. perennial (wine) with 
advanced soil management

LV Livestock diversity Conv. specialised dairy S0 + grazing Org. specialised farms

LT Livestock diversity

Extensive specialised dairy 
farms Extensive mixed dairy 

Org. specialised dairy 

RO
Livestock density/fertiliser 
management/weed, pest and 
disease control

Conv. specialised dairy Org. specialised dairy

Conv. cattle rearing and 
 fattening

Cattle rearing and fattening in 
transition

Mixed fruit/arable farms in 
 transition

Org. mixed fruit/arable farms

ES Crop spatial diversity Conventional arable farms Arable farms in transition Org. arable farms

SE Livestock diversity/density Conv. specialised beef farms

Org. and/or more diversified 
dairy farms Org. diversified production of 

beef or lamb and cropsOrg. and/or diversified beef or 
lamb farms

CH Livestock diversity/density
Conv. specialised livestock 
farms (pigs, dairy)

Org. specialised livestock farms 
(pigs and dairy)

Org. mixed special crop–live-
stock farms

Org. extensive mixed livestock 
farms

UK
Fertiliser and soil management 
and pest control 

Conv. arable farms

Mixed farms in transition

Org. arable farms

Conv. mixed farms Org. mixed farms
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2.2.3 Data collection and evaluation
The data collection and evaluation was mainly done by the 
local case study teams with support of a SAT coordinator for 
each of the three tools (see Figure 4).
To create a common understanding of the assessment pro-
cess among the case study teams and to streamline farm 
assessments, a guideline was provided to set out the steps 
needed for the farm assessment, such as reducing the assess-
ment time by omitting farm enterprises of limited relevance in 
the operation of CFT and COMPAS. The guideline was accom-
panied by seven webinars and a six-day, face-to-face field 
training course.

The farm visits listed in Figure 4 each lasted between three 
and four hours. Throughout the whole process, the local case 
study teams verified data with the SAT  coordinators by i) 
drawing attention to any  uncertainties about data quality in 
a dedicated online forum and ii) incorporating the feedback 
from the spot check of their data conducted by the three SAT 
coordinators. A separate guideline was provided for the data 
quality review process and result evaluation.

In a next step, the results were analysed by the local case 
study teams by comparing the results of the farm groups 
along the transition pathway with similarities and  differences 
relating to the core sustainability topics. This approach to 
result evaluation aimed at i) accounting for the local context 
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Assessment results generated

The farmer is contacted by the local case study team and 
sends documents with farm data in advance.

Farm visit 1: Data collec�on with common MS Excel data 
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from MS Excel data collec�on tool to CFT and SMART

Farm visit 2: The local case study team completes 
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centrally. For SMART and CFT: local case study team 
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F I G U R E  4
Data collection and evaluation workflow

of each case study and ii) focusing the analysis of the more 
than 10,000 data records. To enable consideration of context, 
causalities, and potential data issues, a section of the guide-
lines framed the comparison between farm groups with the 
 following questions (summarised):
• How do farm groups compare to structural farm data 

available for the region (e.g. FADN data)?
• What are the causalities or contributions of different pro-

cesses in the SATs behind the observed patterns?
• How does the sample size affect the comparison?
• How does the farm type affect the comparison?
• What are other potential limitations for drawing con clu-

sions?
The guideline also provided a structure for reporting the 

results (see supplementary materials S2).
In the final step, all case study reports were iteratively 

summarised for each core sustainability topic (see Section 
2.1.4) accounting for patterns of similarities and differences 
between the farm groups.

The aggregated findings in pesticide use, fertiliser use, soil 
management, quality of life, and income volatility were com-
plemented with a central data analysis in SQL Server Manage-
ment Studio to query SMART indicator data across several case 
studies and MS Excel to further evaluate the query results (e.g. 
comparing conventional and agro-ecological farms).
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TAB L E  4
Summary of identified patterns and trends

Sustainability topic Identified patterns and trends

Greenhouse gas (GHG) 
 emissions

Different agro-ecological field management practices have a reducing effect on the total GHG emissions 
of farms. Some agro-ecological practices increase total farm emissions.

Biodiversity
Biodiversity scores are mainly determined by farming practices. Agro-ecological farm groups tend to 
show higher levels of biodiversity than their conventional counterpart. However, agro-ecological farming 
practices are not necessarily associated with measures designed to promote biodiversity. 

Soil quality
Farm type (conventional or agro-ecological) did not have a consistent effect on SAT scores for soil 
quality. As one reason, some practices are applied by all farm types such as determining soil fertiliser 
 requirements which contributes positively to the soil quality scores.

Water quality
Agro-ecological farm groups show higher scores for water quality, particularly due to reduced use of 
 pesticides, fertilisers, and practices such as erosion management.

Productivity and farm 
incomes

The majority of farms generate positive income, but subsidies (including direct and other payments) 
 represent a major proportion of the farm income in all countries. As such, SAT results show no clear pat-
terns between labour productivity, farm income and the stage of agro-ecological transition.

Quality of life
The quality of life is generally high on all farms, whether they are oriented towards agro-ecological 
 practices or not. A lower degree of mechanisation (and therefore higher physical workload) impacts qual-
ity of life negatively in some case studies. 

3 Results and discussion

The patterns and trends identified from the application of the 
SATs in the case studies are summarised in Table 4. The results 
are based on the analysis of similarities and  differences 
between the defined agro-ecological farms (i.e. farms in the 
1st and 2nd stage of agro-ecological transition, n=84) and 
their conventional counterparts in the case studies (n=47, 
Table 3). These comparisons were conducted within the con-
text of each case study and, in selected areas, explored in all 
or several case studies (see section 2.2.3). The observations 
are summarised in the following sections.

The farm groups are a simplification of the wide range of 
agro-ecological transition perspectives in the case  studies. 
The implications of this heterogeneity are discussed in Sec-
tion 4.2. The first results are accompanied by the code of the 
countries representing those case study reports in which 
the corresponding findings were explicitly mentioned. The 
underlying data is provided in the database compiled by 
Landert et al. (2019).

The results described below refer to SAT performance rat-
ings, illustrated in Figure 5 by SMART results. For example, a 
higher rating for the SMART subtheme Soil Quality implies a 
better performance of farms in aspects related to soil  quality 
(see section 2.1).

3.1.1 Greenhouse gas emissions
In the case studies, the production systems largely determined 
the GHG emissions of farms and the potential for mitigation. 
The level of agro-ecological transition appears to generally 
have less impact. Nevertheless, for the perennial systems of 
France and Greece, the results of CFT suggest that agro- 
ecological practices can lead (in some cases) to an increase in 
GHG emissions. Reasons for such increased emissions are, e.g. 

the increased fuel use for mechanical weeding (FR) and drip- 
irrigation in the case of some Greek conventional and agro-eco-
logical peach farms, which leads to increased energy use com-
pared to the flood irrigation of the other farms in the sample.

In arable farming, the SAT assessments identified the use 
of nitrogen (N) fertiliser as the main contributor to emissions 
because of nitrous oxide (N2O) and emission from the produc-
tion of synthetic fertilisers. This is reflected in the CFT results 
for the Swiss case study, in which the contribution of N-fer-
tiliser application to crop and grassland-related GHG emis-
sions was 36 % (on average) across all farm groups. Some of 
the agro-ecological farm groups investigated used less N-fer-
tiliser, which was reflected in lower GHG footprints per hectare 
in CFT and a higher SMART score, compared to the more con-
ventional counterparts: In Spain, on average the agro-ecologi-
cal farms used 107 kg N ha-1 of agricultural area (180 kg N ha-1in 
case of conventional farms), while in Switzerland these farm 
groups used an average of 89 kg N ha-1 (169 kg N ha-1 in case 
of conventional farms). The CFT assessment shows that soil 
conservation techniques in arable systems contribute (tem-
porarily) to GHG mitigation (AT, CH, IT, HU). Yet, the difference 
in the average share of agricultural land under reduced tillage 
between agro-ecological and conventional farm groups was 
small across the four case studies: 62 % in case of agro-ecolog-
ical farms versus 58 % in case of conventional farms. Despite 
the similar share of reduced tillage, the weed control differed: 
the conventional group did not use undersown cover crops 
at all, compared to an average share of 6 % area with under-
sown cover crops on the agro-ecological arable land. Also, the 
average share of arable area where catch crops are grown was 
only 5 % on conventional farms compared to 12 % in the case 
of agro-ecological farms. The SAT results also reveal lower pes-
ticide use on the agro-ecological farms (LV, ES), which reduces 
GHG emissions to a small extent on agro-ecological farms.
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3.1.2 Biodiversity
SATs cover different aspects of biodiversity, including genetic, 
species, and ecosystem diversity (SMART, see Section 2.1.1) or, 
in the case of CFT, scores that express the impact of farming 
on certain biotic communities, such as soil fauna (see  Section 
2.1.3). Figure 6 shows the scores for soil fauna across the farm 
groups in the case studies.

With regard to biodiversity, CFT and SMART rank agro- 
ecological farm groups higher than their conventional 
counterparts in most cases. Across all case studies, agro- 
ecological farms have an average rating of 54 % in SMART, 
whereas conventional farms score 42 %. The SATs yield higher 
biodiversity scores because of differences in farming prac-
tices, such as soil conservation practices (HU), biodiversity 
conservation (DE), a higher diversity of livestock, and crop 
rotation elements (CH, ES, IT, LV, RO). In the latter case, agro- 
ecological farms across all case studies exhibit, on average, 
a minimum number of 3.71 crops in the rotation compared 
to 3.48 on conventional farms. In addition to crop diversity, 
also the cultivation on small plots (RO), the application of less 
N-fertiliser (CZ, CH, ES, RO, UK) and less pesticides (CH, CZ, ES, 
GR, RO, SE, UK; number of active ingredients) lead to high-
er biodiversity scores on agro-ecological farms. The use of 
less pesticides in the cited cases is also reflected across all 
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F I G U R E  5
Ratings for the 21 SMART themes across all case studies

F I G U R E  6
Median soil fauna biodiversity score provided by CFT 
(0 – 100 %) including quartiles, minimum and maximum 
for farms in the case studies (excluding Finland and Spain 
where no CFT biodiversity data is available) at the three 
agro-ecological transition stages (see Table 3)
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case studies by a lower average number of active ingredients 
being used on agro-ecological farms compared to conven-
tional farms. Correspondingly, agro-ecological farms (includ-
ing 40 farms with no pesticides registered) scored better in 
the SMART indicators with regard to the toxicity attributes of 
pesticides, such as acute (inhalation) toxicity, chronic toxicity, 
and toxicity to bees and aquatic organisms. The active ingre-
dients registered on agro-ecological farms are, on average, 
less persistent in water (248 days versus 282 days of half-life 
time in the case of conventional farms). However, the greater 
use of copper on agro-ecological farms led to a high average 
persistence of pesticides in soils (243 days [104 days without 
considering copper] of half-life time versus 237 days for pes-
ticides used on conventional farms).

It appears that agro-ecological farming practices do not 
 necessarily correlate with targeted measures to promote 
biodiversity or the creation of large habitats (AT, CZ, LT, LV): 
The median CFT score for large habitats equals 2 % for agro- 
ecological farms (on a scale from 0 % to 100 %). Results from 
SMART show that the share of agro-ecological farms which 
undertake targeted promotion (of one group) of species 
(23 %) is even lower than for conventional farms (33 %).

3.1.3 Soil quality
While the CFT scores for soil fauna (an indicator of the biodi-
versity assessment) suggest that agro-ecological farms per-
form better (Figure 6), the SMART results did not show clear 
patterns between the groups of conventional and agro- 
ecological farms. The assessments of soil quality and soil fauna 
by the two SATs are mainly based on farming practices and 
land use, with additional topics, such as soil pollution and ero-
sion, assessed by SMART (see supplementary materials S1). 

While indicators in these different topics all similarly con-
tribute to the final SMART soil quality score, it was in some 
case studies positively influenced by the following agro- 
ecological practices: mulching (AT, FR), higher use (twice 
the level) of legumes in crop rotation in the agro- ecological 
group than in the conventional farm group (CZ), mainte-
nance of grass cover between vine rows (FR, IT), undersown 
crops (CH, CZ), reduced till (AT), no-till (HU), reduced soil con-
tamination due to pesticide use (LV, GR), or determining soil 
fertiliser requirements (LV). The higher share of legumes can 
be identified across all case studies (on average, 10 % on con-
ventional arable land versus 17 % on agro-ecological farms). 
The farm groups also differed with regard to the undersow-
ing of crops (3 % on average on conventional arable land ver-
sus 12 % on agro-ecological farms). Although the application 
of reduced tillage varied less between the farm groups, it is 
still substantial (36 % on average on conventional agricul-
tural area versus 45 % on agro-ecological farm land). The 
same applies to the green  cover outside the growing period 
(50 % on average on conventional arable land versus 65 % on 
agro-ecological farms).

Composting was not explicitly mentioned as playing an 
important role. Correspondingly, only 14 % of agro-ecolog-
ical farms which apply organic fertiliser apply plant or live-
stock-based compost (15 % of conventional farms).

3.1.4 Water quality
Most agro-ecological farm groups perform better across the 
case studies, particularly due to a reduced use of pesticides 
(AT, CZ, GR, LV), fertilisers (AT, CH, CZ, GR, LV, LT, SE), and 
improved erosion management (AT, CH). Overall, the median 
SMART scores for the farm groups in all case studies ranged 
between 60 % and 80 % (Figure 7).

Buffer strips along surface waters, an important meas-
ure of the current CAP, cross-compliance, and post-2020 CAP 
conditionality, contributed to a high SMART rating (CZ, HU).

3.1.5 Productivity and farm incomes
The majority of farms (95 %) generate positive net incomes 
with their crop and livestock farming activities in the refer-
ence year. This was true for 77 % of the conventional farms 
and 92 % of the agro-ecological farms over the last five years. 
However, subsidies represent a major share of the farm 
income in all countries. The SAT results show no clear pat-
terns between labour productivity, farm income, and the 
stage of agro-ecological transition. In one case (AT), results 
from different SATs yield contradictory results, which reflects 
COMPAS’s focus on economic performance in a particular 
year, compared to SMART tending to assess medium term 
economic resilience. In the Swiss case study, agro-ecological 
farm groups were reported to show lower labour productivity 
than their conventional counterparts. In other cases, higher 
subsidies (LV), sales through shorter supply chains (AT, FR, LT), 
or higher price premiums from organic farms (FR) contribute 
to the net farm income of agro-ecological farms.

3.1.6 Quality of life
With SMART scores ranging from 48 % to 92 % (average: 
74 %), quality of life can be considered medium to high on all 
of the assessed farms. This suggests that agriculture provides 
viable livelihoods, i.e. modes of living that fulfil people’s 

F I G U R E  7
Median SMART scores of goal achievement for the sub-
theme water quality including quartiles, minimum and 
maximum, separately displayed by the three agro-ecologi-
cal transition stages (see Table 3) in all case studies
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needs and expectations, although there are exceptions (RO). 
Reasons for the high scores are the profitability of farms and 
the generally high labour standards in Europe (CZ, ES, FR, SE), 
in spite of common characteristics, such as extra hours 
worked (see also section 4.1).

The results indicate scores of a slightly lower quality of life in 
some case studies for agro-ecological farms due to less mech a-
nisation, resulting in higher physical workload (CH, ES, LV).

3.1.7 Integrated perspective on sustainability 
issues
The combined sustainability assessment made it possible to 
identify some initial sustainability synergies and trade-offs in 
the case studies, for example, in Spain, where farms with a 
higher biodiversity performance have lower GHG emissions. 
In the Latvian case study, mineral fertiliser and pesticide 
applications are the reason for synergies between efforts to 
increase biodiversity and improve water quality. In place of 
mineral fertilisers, organic farms in Latvia often use perennial 
grasslands with nitrogen-fixing legumes to maintain soil 
 fertility. In Greece, the agro-ecological practices used led to 
synergies between efforts  relating to soil and water quality.

Two case studies explicitly reported trade-offs between 
the economic performance of the farm and biodiversity (CH, 
CZ). In contrast, the Italian case study showed that more spe-
cialised and economically viable winemakers implement 
more agro-ecological practices. However, a transition to 
agro-ecological practices may also result in trade-offs in the 
environmental dimension. In some cases, GHG emissions rise 
due to higher energy use, caused, for example, by increased 
mechanical weeding or energy-demanding irrigation (FR, 
GR). In the Swedish case study, greater plant protein pro-
duction meant more intensive arable farming, which led to a 
decrease in performance with regard to soil quality.

4 Discussion

4.1 Patterns and trends
The combined sustainability assessment showed what 
agro-ecological practices mainly contributed to the core 
sustainability topics investigated. These practices led to 
generally higher scores of agro-ecological farm groups in 
the case of biodiversity and water quality, compared to their 
non agro-ecological counterparts. In the other four sustain-
ability topics investigated, the results imply that a variety of 
factors, which are independent of agro-ecological transition, 
determine the sustainability performance of farms, e.g. the 
farm production system. In addition, the results suggest that 
agro-ecological practices can, in certain contexts, also have 
negative impacts on certain sustainability topics.

Most examples of such negative impacts are related to 
greenhouse gas emissions and comprise practices such as 
mechani cal weeding in French organic vineyards. The asso-
ciated increase in fuel consumption is reported for other 
organic production systems by Smith et al. (2015). On ara-
ble farms, soil conservation techniques were a key factor 
for reducing greenhouse gas emissions. Sanz-Cobena et al. 
(2017)  confirm this positive impact in their review for the 

Mediterranean area. Yet, they also point out that the rate of 
carbon sequestration is likely to decrease over time (Sanz- 
Cobena et al., 2017). In addition, there are general uncertain-
ties related to the potential of no-till to increase soil carbon 
stocks (Ogle et al., 2019).

In the case of the Hungarian case study, no-till led to high-
er CFT soil biodiversity scores. This positive effect in the mod-
el is confirmed in field studies (e.g. Adl et al., 2006). The high-
er number of crops on farmland and the smaller plot size had 
a positive effect on the biodiversity scores. Sirami et al. (2019) 
identified plot size to be a key determinant for  multitrophic 
diversity in their study of 435 landscapes across 8 regions 
of Europe and North America. They found that the effect of 
crop diversity on the multitrophic diversity varies depending 
on the extent of areas with semi-natural cover. In the pan- 
European study of Billeter et al. (2008), the crop diversity on 
farms had a positive impact on the diversity of three arthro-
pod species groups. The authors also found a negative effect 
of high nitrogen fertiliser use (>150 kg N ha–1 year–1) on plant 
species diversity and on the number of bird species. This pro-
vides another reason for the negative biodiversity ratings 
among the conventional farm groups: farms with a mean 
input in excess of 170 kg N ha–1 year–1score lowest for the cor-
responding SMART indicator. A reduction in N input in the 
range below 25 kg N ha–1 year–1is not considered by SMART. 

The lower use of pesticides in agro-ecological farm 
groups (lower number of active ingredients employed) and 
the associated use of less hazardous pesticides also contribut-
ed to the higher SAT rating with regard to biodiversity. Again, 
these findings are identified in field studies as main factors 
influencing biodiversity, such as the pan-European study by 
Emmerson et al. (2016). Although the agro- ecological farms 
investigated perform well with regard to their farming prac-
tices, in several case studies they fall short in the provision 
of larger semi-natural habitats, which is another key aspect 
of how agriculture impacts biodiversity (Billeter et al., 2008).

Although agro-ecological practices have been identified 
to contribute to the soil quality in the case studies, no clear 
pattern was observed with regard to SMART ratings between 
conventional and agro-ecological farm groups. This some-
what counterintuitive observation can be explained by the 
fact that such practices are important for the calculation of 
the soil quality score of SMART, but other factors, such as 
land use, soil condition, or additional farming practices, have 
a similar importance in the calculation of the score. Conse-
quently, these factors need to be looked at more closely in 
further steps of the data analysis in order to identify those 
practices, which can be improved on both, agro-ecological 
and conventional farms with regard to soil quality.

A further observation is that composting was not a com-
mon practice on agro-ecological farms in the case studies 
despite its potential to improve soil quality (Martínez-Blanco 
et al., 2013). This contrasts with the findings of Viaene et al. 
(2016) in which 87 % of the surveyed organic farmers used 
compost (in contrast to 14 % of the agro-ecological farms in 
this study). This large difference in use of composting can-
not fully be explained by the variation between countries 
or regions. The use of compost seems also to vary between 
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farms in the same case study. Generally, this shows that there 
is an untapped potential for policies and farm advice to pro-
mote composting and minimise barriers to its uptake.

Similar to findings for biodiversity, the SAT ratings for 
water quality were more negatively impacted by the  N-  
application rate on conventional farms than agro- ecological 
farms. The use of fewer pesticides had positive implications 
for aquatic organisms. The rating effect of  N-application rate 
is to be taken indicatively since the corresponding indicator 
does not consider agri-environmental factors such as climatic 
conditions, soil water content, crop type, soil type, or the use 
of catch crops, all of which are identified as important deter-
minants for nitrate leaching by Beaudoin et al. (2005).

Although most of the farms were profitable during the 
reference year, the net farm income of conventional farms 
was shown to be slightly more volatile over time than that 
for agro-ecological farms. However, this pattern of income 
volatility does not seem to be general in nature, since Krause 
and Machek (2018) were not able to detect such a pattern 
in their comparison between Czech organic and conven-
tional farms. Meuwissen et al. (2018) identified other factors 
that are important for income volatility, such as the country 
and farm production system. While in our study no overall 
patterns for farm income could be identified, Krause and 
Machek (2018) note that Czech organic farms tend to have 
a higher profit ability (determined by the return on assets). 
This last finding is further underpinned by the meta-analysis 
of Crowder and Reganold (2015) on profitability of organic 
farms for 55 crops across 14 countries. Moreover, in the case 
of conventional arable farms in France, Lechenet et al. (2017) 
did not observe a general loss of profitability when reducing 
the use of pesticides. Yet, empirical evidence varies across 
studies, depending on the country and production system 
(Krause and Machek, 2018). The relevance of short supply 
chains and higher prices from premia for profitability has 
been confirmed in other studies (Crowder and Reganold, 
2015; Hatt et al., 2016; Krause and Machek, 2018). On Swiss 
agro-ecological farms, the lower degree of mechanisation, 
the lack of innovative collaboration models (i.e. group farm-
ing), and the absence of short supply chains might all have 
been contributing reasons for the lower labour productivity.

The general profitability of the investigated farms 
 directly or indirectly contributed to high ratings for some 
SMART indicators of the quality of life subtheme. In line with 
that, Besser and Mann (2015) found that farm income (meas-
ured by proxies of farm size and perceived financial situation) 
positively influences (to different extents) the relatively high 
work satisfaction of farmers in Switzerland and northern Ger-
many (approximately 7 on a scale from 1 to 10). However, the 
relatively high scores for the SMART quality of life subtheme 
also stems from the fact that the used indicators rated Euro-
pean labour standards as high (also see section 4.2). In this 
study we could not identify clear differences between agro- 
ecological farms and conventional farms; however, there is 
some evidence for a higher satisfaction among organic farm-
ers compared to conventional farmers in France (Mzoughi, 
2014; Bouttes et al., 2020).

Throughout the analysis of the results, some synergies 
emerged. An example is the higher rationalisation and eco-
nomic success in the Italian case study that led to the adop-
tion of more agro-ecological practices for managing vine-
yards. This is similar to findings reported for vineyards in 
Portugal by van der Ploeg et al. (2019). In general, reducing 
fertiliser and pesticide inputs (given the limitations of gen-
eralizing such reductions, as discussed above) also leads to 
synergies between different aspects of sustainability (apart 
from the risk of increasing GHG emission due to higher fuel 
use related to mechanical weeding). Therefore, unsurprising-
ly, reducing the use of pesticides and fertilisers is at the core 
of the EU’s Farm to Fork Strategy (European Union, 2020). The 
results of this study provide additional indications for poli-
cy priorities. For example, with respect to biodiversity, the 
lack of large habitats found in this study suggests a need for 
improving the embedding of conservation efforts in meas-
ures in the CAP post-2020, as recommended by groups such 
as the Alliance Environment (2019). By revealing a low level 
of diffusion of certain environmentally beneficial practices 
(such as composting), the results of this study provide indica-
tions on practices that could be incentivised under the new 
Eco-schemes in EU Member States.

4.2 Combined sustainability assessment 
framework and process
The approach taken in this study enabled the benefit of com-
bining different perspectives on sustainability, as suggested 
by previous studies, such as Gasparatos et al. (2008). This 
combination of different perspectives allowed to relate the 
performance in the core sustainability topics with each  other 
and therefore the identification of patterns of synergies and 
trade-offs.

With the exception of the underlying SAFA framework in 
the case of SMART, all SATs represent a top-down approach 
( Binder et al., 2010) with only partial involvement of stake-
holders in their development. This contrasts with the rec-
ommendations of Arulnathan et al. (2020) and de Olde et 
al. (2017) to engage stakeholders in the development of 
such tools to increase their acceptance by end-users and to 
take local contexts into account. As a consequence, there is 
a trade-off between the desired global applicability of the 
SATs and how local context is accounted for. Coteur et al. 
(2016), Janker and Mann (2020), Röös et al. (2019), and others 
stressed the need for taking the local context into account, 
and Binder et al. (2010) confirmed that there are trade-offs 
between context applicability and standardisation in tools 
for benchmarking. This standardisation manifests itself, for 
example, in the SMART quality of life subtheme, in which 
some indicators reflect relatively low standards in compar-
ison to those in the more developed European context. For 
example, fulfilling the International Labour Organisation 
Fundamental Principles and Rights at Work (ILO, 1998) tends 
to be embedded in the operation of all farms in European 
countries, which is reflected in the relatively high scores of 
the assessment.

As outlined in section 2.1.4, where necessary, the out-
put of the tools was aggregated to the farm level to over-
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S2: Case Study Report Structure 
 
Project partners needed to compile a case study report with the following structure: 
 
1) Description case study dilemma 
 
2) Description investigated farm groups  
 
3) In-depth topic analysis 1: Direct and indirect greenhouse gas emission  
 
4) In-depth topic analysis 2: Biodiversity  
 
5) In-depth topic analysis 3: Soil quality (soil as a mean of production)  
 
6) In-depth topic analysis 4: Water quality  
 
7) In-depth topic analysis 6: Productivity  
 
8) In-depth topic analysis 7: Farm income  
 
9) In-depth topic analysis 8: Quality of life  
 
10) In-depth topic analysis 8: Other, case-study specific sustainability aspects (such as resilience)  
 
11) General differences between farm groups  
 
12) General similarities between farm groups  
 
13) Trade-offs / synergies between above topics  
 
14) Synthesis of task 3.2 results in the case study 


Supplement S2 for:  
Landert et al. (2020) Assessing agro-ecological practices using a combination of three sustainability assessment tools. 
Landbauforsch – J Sustainable Organic Agric Syst 70(2):129–144, doi:10.3220/LBF1612794225000 
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