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Species interactions are known to structure ecological communities. Still, the influ-
ence of climate change on biodiversity has primarily been evaluated by correlating 
individual species distributions with local climatic descriptors, then extrapolating into 
future climate scenarios. We ask whether predictions on arctic arthropod response to 
climate change can be improved by accounting for species interactions. For this, we 
use a 14-year-long, weekly time series from Greenland, resolved to the species level by 
mitogenome mapping. During the study period, temperature increased by 2°C and 
arthropod species richness halved. We show that with abiotic variables alone, we are 
essentially unable to predict species responses, but with species interactions included, 
the predictive power of the models improves considerably. Cascading trophic effects 
thereby emerge as important in structuring biodiversity response to climate change. 
Given the need to scale up from species-level to community-level projections of bio-
diversity change, these results represent a major step forward for predictive ecology.

Keywords: Arctic, Arthropoda, climate change, community assembly, food web, joint 
species distribution model, trophic cascade

Introduction

A central goal of current biodiversity research is to better understand and predict bio-
diversity response to climate change. Most research on how climate change will affect 
future ecological communities has focused on the link between the abiotic changes 
caused by climate warming and subsequent changes in species distributions and abun-
dances (Pereira et al. 2010, Pacifici et al. 2015). Species extinctions and changes in 
species’ distribution and abundance are currently modifying the composition and func-
tioning of ecological communities (Parmesan 2006, Chen et al. 2011, Blowes et al. 
2019). However, the ongoing changes are modulated not only by the direct impacts 
of changing climatic conditions on individual species but also indirectly, through 
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cascading effects of species interactions (Petchey et al. 1999, 
Memmott et al. 2007, Tylianakis et al. 2008, Harley 2011). 
Cascade effects follow when the abundance of a species in a 
local community changes in response to e.g. climate warming, 
influencing the occurrences or abundances of other species 
it interacts with. Therefore, the joint assessment of climate 
and interspecific interactions is of fundamental importance 
for improving our current understanding and our predic-
tions of how climate change affects ecological communities 
(Gilman et al. 2010, Van der Putten et al. 2010, Blois et al. 
2013, Scheffers et al. 2016).

In the Arctic, the rate of temperature increase is nearly 
double the global average (Kattsov et al. 2005, IPCC 2014, 
Post  et  al. 2019). This is dramatically changing abiotic 
conditions, with important impacts on phenology, espe-
cially at the onset of the growing season (Høye et al. 2007, 
Wheeler  et  al. 2015, Kankaanpää  et  al. 2018). As a con-
sequence, plants and animals adapted to longer growing 
seasons as well as species originating from lower latitudes, 
or from warmer locations nearby, are becoming more abun-
dant (Sturm et al. 2001, Post et al. 2009, Elmendorf et al. 
2012, Elmhagen et al. 2015). Conversely, two types of spe-
cies are predicted to decline in particular: species adapted 
to the short but intense growing season of the Arctic, and 
species sliding out of synchrony with their key resources 
(Post and Forchhammer 2008, Hegland  et  al. 2009). 
Related to the latter, the effects of climate warming on arc-
tic communities are intensified by their impacts on species 
interactions. Changes in phenology can decouple inter-
acting species, causing ‘phenological mismatch’ (Renner 
and Zohner 2018), and such mismatches can have serious 
consequences, including population declines of herbivores 
(Post and Forchhammer 2008, Ross et al. 2017), specialist 
predators (Gilg et al. 2009, Schmidt et al. 2012a) and pol-
linators (Høye et al. 2013, Schmidt et al. 2017), or – muta-
tis mutandis – the escape of herbivores from enemies and 
increased plant damage (Kankaanpää et al. 2020, 2021).

Arctic terrestrial interaction webs are dominated by 
arthropods (Wirta et al. 2015, 2016). As recently uncovered 
by molecular tools, the diversity of arctic arthropods exceeds 
what was previously assumed (Wirta et al. 2015, 2016). The 
short lifespans, strong functional responses to temperature 
and narrow phenological niches of arthropods make them 
particularly responsive to warming (Deutsch  et  al. 2008). 
Indeed, the few studies of temporal trends in population 
abundance already suggest that arctic arthropod communi-
ties are experiencing severe changes (Gillespie  et  al. 2019, 
Kankaanpää  et  al. 2020). Among soil and foliage-dwelling 
arctic arthropods, herbivores (Hemiptera and Lepidoptera) 
and parasitoids (Hymenoptera) have increased locally in 
abundance, whereas detritivores (Collembola and Acari) 
have decreased (Koltz  et  al. 2018a). While spider com-
munities (Araneae) seem not to have experienced drastic 
changes overall, individual species have declined in abun-
dance (Bowden  et  al. 2018). Among flower-visiting arctic 
arthropods, muscid flies (Diptera) have drastically decreased 

in abundance (Loboda et al. 2018). Also the abundances of 
aquatic arthropods such as chironomids (Diptera) are chang-
ing, with abundances predicted to increase with rising tem-
peratures (Engels et al. 2020, but see Høye et al. 2013).

Some of the most frequent trophic interactions among 
arctic arthropods involve spiders feeding on herbivorous 
arthropods (Wirta  et  al. 2015, Eitzinger  et  al. 2019), and 
parasitoid wasps and flies feeding on lepidopteran and dip-
teran larvae (Várkonyi and Roslin 2013, Kankaanpää et al. 
2020). Given these strong trophic interactions, climate-
induced change in arthropod diversity and abundance 
can be expected to cascade through these high-latitude 
communities (Koltz  et  al. 2018b, but see Visakorpi  et  al. 
2015). Furthermore, changes in arthropod communities 
can have drastic consequences on ecosystem functioning 
(Schmidt  et  al. 2017). For instance, a large proportion of 
tundra plants is insect-pollinated (Kevan 1972), with mus-
cid flies identified as the main pollinators of some dominant 
plant species (Gillespie  et  al. 2016, Tiusanen  et  al. 2016). 
Also, while plant consumption by arctic arthropods is rather 
low (Roslin et al. 2013), it is still of the same magnitude as 
herbivory by large mammals (Mosbacher et al. 2016). Thus, 
predicted outbreaks of herbivore arthropods in the Arctic 
can have important consequences for plant consumption 
(Jepsen  et  al. 2008) and ecosystem primary productivity 
(Lund  et  al. 2017). Finally, arthropods are the main food 
resource for many migratory birds during their breeding sea-
son, and changes in arthropod availability may thus affect 
arctic bird reproduction and growth (Meltofte et al. 2007, 
van Gils et al. 2016).

Despite this evidence for pervasive trophic interactions 
among arctic arthropods, coupled with the high sensitivity 
of arthropod population dynamics to climate change, the 
role of trophic interactions to their responses to global cli-
mate change is still largely unknown. Here we aim to fill 
this knowledge gap by asking whether we can use informa-
tion on species interactions to improve our predictions of 
arctic-arthropod population dynamics. For this purpose, 
we use a 14-year-long time series of arthropod communi-
ties from Zackenberg, Northeast Greenland collected by 
BioBasis (Schmidt  et  al. 2012b) as part of the Greenland 
Ecosystem Monitoring (GEM) program (<https://data.g-e-
m.dk/>, accessed 9 Aug 2020). The time series consists of 
physical samples of all trophic levels within the local arthro-
pod community. While most specimens have previously 
been classified to higher taxonomic ranks only (typically 
families, with species-level identifications available for only 
a minority of the specimens; Schmidt et al. 2016 for exact 
categories), in this paper we achieve species-level resolution 
for all samples by applying a mitogenomic-mapping pipeline 
that we recently developed (Ji et al. 2020). To elucidate the 
impact of species interactions on the population dynamics 
of arthropods, we compared the predictive performances 
of four alternative joint species distribution models, which 
differed in whether and how interactions were taken into 
account (Fig. 1).
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Material and methods

Study system and sampling methods

The data were collected as part of the GEM program in 
Zackenberg, a High Arctic site located in Northeast Greenland 
(74°28′ N, 20°34′ W). Zackenberg is characterized by a con-
tinental climate with mean monthly temperatures ranging 
from −20 to +7°C and an annual precipitation of 260 mm. 
The vegetation consists of tundra species, of which the arctic 
willow Salix arctica, the arctic bell-heather Cassiope tetragona 
and the mountain avens Dryas spp. are some of the most 
abundant. The growing season has lengthened by ca 50% 
during the study period, from a snow-free period lasting from 
end-June to end-August in the late 1990s to a period lasting 
from mid-June to the beginning of September in the 2010s 
(Kankaanpää et al. 2018).

Arthropods were sampled weekly during the growing sea-
son from 1997 to 2013, using yellow-pitfall traps located in 
a mesic heath habitat. While the original number of traps 
monitored by the BioBasis program is larger, we focused on 
traps from one of the six still-operational arthropod moni-
toring sites within the larger landscape (Ji  et  al. 2020). 
Specifically, the material derives from three of four traps 
(A–C) collected at trapping station ART3 (for maps and 
details, Schmidt et al. 2012b), the traps being located 5 m 
from each other. Unfortunately, the 2010 samples were lost 
in transit from Greenland, so data from this year are missing.

Sample processing, sequencing and mitogenomic 
mapping

In a previous methods publication (Ji  et  al. 2020), we 
described the SPIKEPIPE mitogenome-mapping pipeline, 
which converts arthropod bulk samples into data on species 
presence–absence and DNA–abundance. Below, we briefly 
summarize the steps performed by Ji et al. (2020), followed 
by a description of how we supplemented the data matrices 
generated by Ji  et  al. (2020) with information from other 
sources. More detailed descriptions of sample processing, 
sequencing and bioinformatics are in the Supporting infor-
mation and Ji et al. (2020).

The arthropod samples were preserved in ethanol at room 
temperature in the Museum of Natural History, Aarhus, 
Denmark. Over the years, the samples have been sorted to 
subsamples of higher taxonomic levels (typically families). 
In 2016 and 2017, we non-destructively extracted genomic 
DNA from these subsamples following a modified proce-
dure from Gilbert et al. (2007), pooled them into the origi-
nal trap-week samples, added a fixed-aliquot DNA-spike as 
a standard, shotgun-sequenced the DNA from each sample, 
and mapped the output reads to a mitogenome reference 
database. Each trap-week sample was individually library-
prepped and sequenced at the Earlham Institute in Norwich, 
UK. The mitogenome reference library was constructed from 
the voucher collection established by Wirta  et  al. (2016). 
We used the DNA-spike in each sample, technical repli-
cates across sequencing runs, and a mock-sample-estimated 

Figure 1. Conceptual illustration of the four time-series models compared in this study. Left. Species data are included in the statistical 
models as presence–absence of species in a particular trap-week (w) of a particular year (Y) (when used as a response variable, top), and as 
abundance measured by the proportion of trap-weeks during which the species was recorded in a previous year or absolute abundance 
measured by DNA (when used as a predictor, bottom). Data on climatic variables (mean air temperature and snow depth) are included as 
predictors (top). Right. The models of increasing complexity assume that the temporal dynamics of species communities are determined by 
an increasing number of factors: 1) abiotic environmental variables (sampling week temperature and previous summer temperature or previ-
ous winter snow depth) only (abiotic model), 2) abiotic environmental variables + intra-specific interactions (density dependent model), and 
abiotic environmental variables + intra-specific interactions + inter-specific interactions, the latter structured either 3) at the species level 
(species-interactions model) or 4) at the trophic-group level (trophic-interactions model). For simplicity, in this figure the models are illus-
trated from the point of view of predicting the dynamics of one focal species, whereas in the joint species distribution models, all species in 
the community data are simultaneously focal species.
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threshold for minimum-acceptable mapping-coverage to 
achieve accurate data on species presence–absence as well as 
DNA–abundance.

Community data

The species data matrix derived from mitogenome mapping 
was complemented with data from two other sources. First, 
samples from the earliest and latest parts of the summer 
often comprised only a few individuals. For these, we DNA-
barcoded each individual with PCR primers LCO1490 and 
HCO2198 (Folmer et al. 1994), identified them to species 
using the BOLD database (Ratnasingham and Hebert 2007), 
and added their occurrences to our data matrix. These DNA-
barcode data include only the species also detected by mitoge-
nome mapping. Second, we added data on Diptera species 
from subsamples that had been identified in an independent 
morphological study (Loboda  et  al. 2018) but had not yet 
been returned to the collection, and which thus could not 
be sequenced. This added three new Diptera species to the 
data, as well as new occurrences of species already detected 
by the mitogenomic sequencing. Altogether, the community 
data compiled consisted of 81 arthropod species identified 
in 542 trap-week samples. Given that this dataset represents 
arthropods co-occurring in space (trap) and time (week), we 
consider the species found in the trap-week samples to belong 
to the same community (Fauth et al. 1996).

To include functional information in the form of the tro-
phic levels represented in the community data, each species 
was classified by its non-adult feeding type: herbivore (9 spe-
cies), omnivore (1 species), parasitoid (18 species), predator 
(25 species) or species that were either saprophages or detri-
tivores (28 species). These classifications are provided in the 
Supporting information.

Climate data

From GEM’s ClimateBasis program, we downloaded aver-
age hourly soil and air temperatures (the latter measured 2 
m aboveground), as well as three-hourly data on snow depth, 
spanning the study period. As the soil and air temperatures 
were highly correlated (Pearson correlation r = 0.90), only air-
temperature data were used. We calculated from these data 
three climatic predictors: 1) the mean temperature during the 
week at which the arthropod sampling event was conducted 
(henceforth called sampling week temperature); 2) the mean 
temperature during the previous summer (averaged over 
weeks 23–32; henceforth called previous summer tempera-
ture); and 3) the mean snow depth during the previous win-
ter (averaged over weeks 33–52 and 1–22; henceforth called 
previous winter snow depth). The sampling week tempera-
ture predictor was aimed to capture insect activity and thus 
detectability (Høye and Forchhammer 2008), whereas the 
previous-year summer temperature and previous-year winter 
snow depth predictors were aimed to capture the influence of 
climatic factors on population growth rate. Previous summer 
temperature has been found to affect arthropod population 

growth rates (Koltz et al. 2018a), while snow depth is associ-
ated with the timing of snow melt, which affects plant phe-
nology and consequently arthropod population dynamics 
(Høye et al. 2013).

Statistical analyses

Analyses of species richness
As a measure of species richness, we used the yearly averages 
of the number of species identified per trap-week sample. We 
used linear regression to quantify trend in species richness 
a function of year. To examine whether the trend differed 
among trophic groups, we repeated the analysis separately for 
each trophic group. We further examined if there has been 
a systematic trend in temperature by regressing temperature 
against the linear effect of year. To account for possible tempo-
ral autocorrelation in the model residuals, we supplemented 
the baseline linear model analyses with an ARIMA (autore-
gressive integrated moving average) model. We implemented 
the linear model with the ‘lm’ function in R (<www.r-project.
org>) and assessed the significance of the linear trend by the 
p-value. We implemented the ARIMA model with the ‘arima’ 
function in R and assessed the significance of the linear trend 
by the comparison of AIC values between model variants that 
included and excluded the linear trend of the year.

Analyses of population dynamics
To identify the drivers of population dynamics, we applied 
a joint species distribution model (Warton et  al. 2015) via 
the hierarchical modelling of species communities (HMSC) 
(Ovaskainen  et  al. 2017b, Ovaskainen and Abrego 2020), 
using a time-series approach similar to that of Ovaskainen et al. 
(2017a). While the data were generated at a weekly resolu-
tion, our main interest was in the yearly transitions, as most 
arctic arthropods have an annual or multiannual life cycle, 
and thus the population dynamics of most of the arthropod 
species in the dataset take place on an annual basis. Thus, 
the predictor variables of previous-year species abundances 
and previous year climatic conditions were defined as year-
specific averages (Fig. 1). The response variable was how-
ever measured at the resolution of species-trap-week, as this 
allowed us to account for both phenological variation and the 
influence of weather conditions on insect activity and thus 
detectability (Høye and Forchhammer 2008).

Concerning species abundances in the previous year, we 
considered two different predictors: ‘prevalence-based abun-
dance’ and ‘DNA-based abundance’ (Fig. 1). Prevalence-
based abundance was defined as the fraction of trap-week 
sampling units occupied by a given species over the previ-
ous year. We considered this measure to be an ecologically 
relevant proxy of species abundance, because if a species is 
consistently present in many samples from a given year, then 
this species is likely to be more available for species interac-
tions. While the DNA abundance is in theory more informa-
tive than merely prevalence, it includes species-specific biases 
(e.g. mitochondrial copy number, individual biomass), for 
which reason we scaled the estimates of Ji  et  al. (2020) to 
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zero mean and unit variance within each species. The DNA 
abundance can also be expected to be more prone to random 
variation due to e.g. outliers generated by an exceptionally 
large DNA yield. Further, for part of the data, DNA abun-
dance could not be recovered (i.e. for Sanger sequenced and 
non-sequenced individuals), so these samples represent miss-
ing data for DNA abundance.

We fitted four alternative models of increasing complex-
ity: 1) the ‘abiotic model’, 2) the ‘density-dependent model’, 
3) the ‘trophic-interactions model’ and 4) the ‘species-inter-
actions model’ (Fig. 1).

We fitted a probit-model where the response variable 
was the vector of presences and absences of all species in a 
particular trap in a particular week in a particular year. In 
all models, we included as predictors the linear and second 
order effects of the week (to model species phenology), and 
the sampling week average temperature to capture variation 
in thermal conditions that influence insect activity and thus 
detectability (Høye and Forchhammer 2008). Furthermore, 
we included either previous-year summer temperature or pre-
vious-year winter snow depth as the climatic predictor influ-
encing insect growth rate, either by directly affecting insect 
thermal tolerances and/or vegetation phenology (Høye et al. 
2013, Nabe-Nielsen  et  al. 2017, Kankaanpää  et  al. 2018, 
Koltz et al. 2018a). The reason for fitting alternative models 
rather than including both predictors into the same model 
was that the time series contained in total 14 yearly transitions 
only, and thus it was not possible to include a large-number 
of year-specific predictors. The abiotic model included no 
additional predictors. In the density-dependent model, we 
added as a predictor the abundance of only the focal spe-
cies in the previous year (Fig. 1). In the trophic-interactions 
model, we likewise included the abundance of the focal spe-
cies in the previous year, as well as four additional predictors 
measuring the abundances of herbivores, parasitoids, preda-
tors and saprophages and detritivores in the previous year, 
each averaged over the species within each trophic group. In 
the species-interactions model, we included as predictors the 
species-specific abundances of occupied trap-weeks in the 
previous year for all species, thus modelling both within- and 
among-species density dependence at the species level.

To account for the spatial and temporal non-indepen-
dence of the sampling units, we included trap (three levels 
of trap A, B and C) and year (14 levels) as random effects in 
all models. To yield community-level inference, we further 
added a hierarchical model structure indicating the trophic 
group of the species. In the HMSC framework, traits are 
used as predictors for how the species respond to fixed effects 
(Ovaskainen et al. 2017b).

In the HMSC analyses, we included only the 52 species 
that were present in at least 10 trap-week samples (Supporting 
information). Furthermore, while the entire data consisted of 
542 trap-week samples, in the HMSC analyses we included 
only 467 samples, as we needed to exclude data from the year 
2011, for which we could not compute the biotic predictors 
since the data from 2010 were missing. We fitted the models 
using the R-package Hmsc 3.0 (Tikhonov et al. 2020).

In the species interaction model we specifically avoided 
over-parameterization by applying the so called ‘sparse inter-
action model’ of Ovaskainen et al. (2017a). In this approach, 
the level of variable selection is tuned by choosing the prior 
probability by which each variable (in this case the abun-
dance of a specific species in the previous year) is included in 
the model, i.e. by which the regression coefficient is different 
from zero. To test the sensitivity of the results with respect 
to this choice, we varied the prior probability from 0.01 to 
0.1, 0.5 and 1.0. We then chose the model with the high-
est predictive performance, i.e. the one that was best able to 
capture the signal while avoiding overfitting to the noise. We 
evaluated the level of over-parameterization by comparing 
the explanatory power (predictions based on models fitted 
to all data) with the predictive power (predictions based on a 
cross-validation approach. For technical details about model 
fitting and model comparison, see Supporting information.

Results

Over the study period, average summer temperature at 
Zackenberg increased by 2.0°C (from 1.28°C to 3.28°C, 
p = 0.012 in the linear model and deltaAIC = 5.4 in the 
ARIMA model, Fig. 2a), and arthropod species richness dras-
tically decreased by 50% (from a yearly mean of 8.9 species 
to 4.4 species per trap-week, p = 0.003 for the linear trend, 
Fig. 2b). The overall species richness increased to unusu-
ally high level in 1999, then crashed during 2000–2001, 
after which it first partially recovered and then contin-
ued decreasing until the end of the study period (Fig. 2b). 
Changes in species richness were group-specific, indicating 
that the food-web structure changed over time (Fig. 2c–f ). 
Predators and saprophages/detritivores decreased the most 
steeply over the study period, whereas for herbivores and 
parasitoids, the dynamics show a fluctuating pattern, with 
no overall trend. Since most parasitoids are in the family 
Ichneumonidae, most predators in Muscidae and most detri-
tivores in Chironomidae (Supporting information), trends in 
these families match trends at the level of their corresponding 
trophic-group (Supporting information).

Weekly variation in presence–absence was satisfactorily 
predicted by all models, as shown by the mean AUC value 
over the species ranging from 0.82 to 0.88 for all model vari-
ants. However, our focus was at a yearly resolution, i.e. at 
assessing how well the models were able to predict in which 
years species abundances were high or low. At this level, the 
explanatory powers of the models, measured as the correla-
tion between predicted and observed yearly abundances, 
ranged from 0.61 to 0.99 (Table 1). As may be expected, 
the explanatory powers generally increased with increasing 
model complexity, since more complex models have more 
parameters that can be estimated. To account for this poten-
tial effect of overfitting, we evaluated the predictive powers 
of the models through a cross-validation procedure where we 
masked the data from each year for which a prediction was 
made. Compared to the explanatory powers, the predictive 
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powers were much lower (Table 1), highlighting the difficulty 
of ecological prediction. The predictive powers of the abiotic 
models were even negative, reflecting the fact that when 
excluding a focal year from the model fitting, the predictions 
on populations abundances may be opposite to reality (i.e. 
predicted to be high in a year that were low in reality, and 
vice versa).

When we added interspecific interactions, either at the 
level of pairs of trophic groups or pairs of species, predictive 

power turned from negative to positive (Table 1). The high-
est predictive powers were achieved by the pairwise spe-
cies-interaction model, which estimates the full pairwise 
species-to-species interaction matrix of the yearly transi-
tions. In terms of how species abundance in the previous 
year was measured, species prevalence turned out to be a bet-
ter predictor for cross-validation than DNA abundance for 
all model variants, for which reason we present below results 
only for the model using prevalence-based abundance.  
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Figure 2. Trends in temperature and species richness over the study period. In panel a, the black line shows the weekly average of tempera-
ture, the red line the average temperature over each year’s study season, and the blue line the linear regression fitted to the yearly data. In 
panels (b–f ), the black lines show the weekly average of number of species per sample, the red lines the yearly average number of species per 
sample, and the blue lines the linear regression fitted to the yearly data. The p-values of the linear regression models and the deltaAIC values 
of the ARIMA models are given at the top of each panel.

Table 1. Explanatory and predictive powers of the four joint species distribution models varying in their abiotic predictors (previous summer 
temperature and previous winter snow depth). We measured the yearly explanatory power (r) by calculating the Spearman rank correlation 
between the predicted and observed arthropod occurrences, both averaged into yearly prevalences. The yearly predictive power (CV-r) was 
measured by year-based cross-validation, i.e. by assessing how well the models fitted to data excluding each focal year were able to predict 
the arthropod communities. Note that all the models include also the explanatory variables of sampling week temperature and effect of the 
week. We measured the weekly explanatory power (AUC) by calculating the area under the curve between the predicted and observed 
arthropod occurrences. The weekly predictive power (CV-AUC) was measured by 10-fold cross-validation. The results shown here are based 
on prevalence-based abundance as the predictor, and the results for the models using DNA-based abundance are given in the Supporting 
information.

Model

Previous-year summer temperature Previous-year winter snow depth
Explanatory Predictive Explanatory Predictive
r AUC CV-r CV-AUC r AUC CV-r CV-AUC

Abiotic 0.61 0.83 −0.08 0.76 0.63 0.83 −0.20 0.76
Intra-specific density dependence 0.63 0.83 −0.07 0.75 0.65 0.83 −0.07 0.76
Trophic-group interactions 0.83 0.85 0.03 0.77 0.82 0.85 0.04 0.77
Pairwise-species interactions 0.99 0.82 0.10 0.82 0.99 0.83 0.16 0.54
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The results for DNA-abundance are shown in the Supporting 
information.

For the abiotic model, the model variant including previ-
ous summer temperature as the climatic predictor performed 
better (less negative predictive power) than the variant includ-
ing previous winter snow depth (Table 1). Interestingly, the 
model which achieved highest predictive power was the spe-
cies interaction model which included the previous winter 
snow depth as climatic predictor. For the model variant 
including previous summer temperature as the predictor, 
accounting for species interactions increased the predictive 
power by 0.18 (from −0.08 to 0.1). For the model variant 
including previous winter snow depth, accounting for species 
interactions increased the predictive power much more, by 
0.36 (from −0.20 to 0.16). This result suggests that species 
abundances in the previous years and snow depth in the pre-
vious winter bring complementary information.

As expected, the difference between predictive and explan-
atory power was greatest for the most complex models, as 
these have more parameters and thus a higher risk for over-
fitting. However, in the species interaction models the pre-
dictive power did not improve when applying the so called 
sparse interactions model (Supporting information). Hence, 
the results shown here correspond to the model without vari-
able selection.

When assessing how the predictive powers varied among 
species, we observed that in the model variant including pre-
vious summer temperature, the predators achieved generally 
the highest and the herbivores the lowest predictive power 
(Supporting information), whereas no systematic differences 
were observed among the trophic groups in the model vari-
ant including previous winter snow depth as the climatic 
predictor (Supporting information). In both model variants, 
the predictive power increased with species prevalence in 
the abiotic model but not in the species interactions model 
(Supporting information), suggesting that accounting for 
species interactions increased the predictive power especially 
for the rare species.

Variance partitioning among the explanatory variables 
showed that arctic arthropod communities are characterized 
by marked seasonal variation (week and its square explained 
more than half of all explained variation in all but species 
interaction models, Fig. 3). Climatic conditions also affected 
arthropod community dynamics, but only to a lesser extent 
(sampling week temperature and previous summer tem-
perature/previous winter snow depth explained altogether 
12–17% of the variation in all but species interaction mod-
els). Concerning the biotic predictors, density-dependence 
within species explained only a minor part (3%), trophic 
interactions a substantial part (20–22%) and species interac-
tions a major part (51%) of the variation.

For most species, the responses of arthropod species to the 
previous week’s temperature were positive with at least 90% 
posterior probability, reflecting the positive effect of within-
season temperature on arthropod activity and thus detect-
ability (Fig. 3). In all four models, the response of arthropod 
species was negative to the second-order effect of week, 

reflecting the peak in arthropod’s occurrence at intermedi-
ate weeks. Within-species density dependence was predomi-
nantly positive in the few cases that showed an effect (Fig. 3). 
In the trophic-interactions model, parasitoid and predator 
abundances positively influenced many species, especially 
saprophages and detritivores (Fig. 3). In contrast, saprophage 
and detritivore abundance influenced many species nega-
tively, especially herbivores (Fig. 3). Herbivore abundance 
influenced parasitoids positively and saprophages and detri-
tivores negatively (Fig. 3). In the species-interactions model, 
no interactions were supported with over 90% posterior 
probability, demonstrating the difficulty of inferring exactly 
which species pairs are driving the community-level trends.

Discussion

Developing accurate predictive models of biodiversity change 
is a priority for global-change science. A topical issue in for-
mulating such models is whether and how species interac-
tions should be accounted for, especially when modelling 
species-rich communities (Gilman  et  al. 2010, Blois  et  al. 
2013). Our study of arctic arthropods demonstrates that 
accounting for interspecific interactions either at the species 
or trophic group level indeed improves the predictive perfor-
mance of time-series models.

In demonstrating the importance of biotic interactions 
for understanding community dynamics, we derive support 
from and build on several studies that have improved predic-
tive performance by including the abundances of one or a 
few interacting species as predictors in single-species distribu-
tion models (Araújo and Luoto 2007, Heikkinen et al. 2007, 
Wisz et al. 2013, le Roux et al. 2014, Mod et al. 2015). In 
our study, we have extended this approach to a community-
wide perspective, showing how to account for a complex 
interactive network via joint species distribution models that 
describe community-level dynamics. Interestingly, account-
ing for within-species density dependence did not improve 
predictive power, whereas accounting for inter-specific inter-
actions improved the predictive powers of the models. Given 
the imperative need to scale up from species-level to com-
munity-level projections of biodiversity change, these results 
represent a major step forward for predictive ecology.

Arthropods are fundamentally important ecosystem 
components, both in species numbers and in contributions 
to ecosystem functioning (Schmidt et al. 2017). We report 
an alarming rate of arthropod decline in a High Arctic site, 
particularly in predators and saprophages/detritivores. Our 
study site is essentially untouched by human activity, except 
for climate warming, which is progressing twice as quickly 
in the High Arctic as the global average (Kattsov et al. 2005, 
IPCC 2014, Post et al. 2019). Declines in arctic arthropod 
species richness and abundances of several taxonomical and 
functional groups have previously been reported in relation 
to climate warming (Høye  et  al. 2013, Koltz  et  al. 2018a, 
Loboda  et  al. 2018, Gillespie  et  al. 2019). This is the first 
study presenting comprehensive community-level results 
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with species-resolution data, allowing us to compare the 
rates of decline among groups. Our observation of declining 
trends among arthropods echoes those of Koltz et al. (2018a), 
who partially used samples from the same study area. A key 

difference is in the information inferred from species- versus 
group-level data. Where Koltz et al. (2018a) used aggregate 
counts of higher taxonomic ranks, we used data on each spe-
cies in the community to build support for emergent change. 
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Figure 3. Results of the joint species distribution models using prevalence-based abundance as the abundance predictor. (a) shows the pro-
portion of variance explained by the predictors included in the two variants of each of the four joint species distribution models (Fig. 1, 
Table 1): the mean temperature during the week of sampling (week temp); the mean temperature during the previous summer (summer) 
or the mean snow depth during the previous winter (winter), the linear and quadratic effect of the week when the sampling event took place 
(week), the abundance of the focal species in the previous year (density dependence), the mean abundance of each trophic groups in the 
previous year (trophic interactions), the abundance of the other species in the previous year (species interactions), and the random effects 
at the trap (trap) and the year (year) levels. (b–c) show the proportion of species within each trophic group that are influenced positively 
(red) or negatively (blue) with at least 90% posterior probability by the mean abundance of each trophic group, in the trophic interactions 
model. (b) shows the results for the model variant including previous summer temperature as predictor, and (c) shows the results for the 
model variant including previous winter snow depth predictor. Each bar corresponds to the responses within a trophic group (He = Herbivores, 
Pa = Parasitoids, Pr = Predators and SD = Saprophage/detritivores) to each of the predictors included in the model, including the mean 
abundance of the species in each trophic group in the previous year. The length of the bars indicate the amount of species with positive and 
negative responses with at least 90% posterior probability. Omnivores are omitted as this group contains only one species. Same results but 
for the models using DNA-based abundance are given in the Supporting information.
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That is, rather than assuming that a group-level response 
reflect consistent change among the species in the group, we 
directly evaluated this assumption by observing species-level 
changes within and among groups.

Taken together, the results support the interpretation that 
the food-web structure of arctic arthropod communities has 
changed markedly over the last decades (Kankaanpää et  al. 
2020). From our results, it is clear that the trophic-web struc-
ture is radically changing in the High Arctic, and that this 
affects arthropod community composition much more pro-
foundly than if impacts derived solely from the direct effects 
of climatic changes. Especially predators and saprophage/
detritivores have declined disproportionally compared to 
the other groups (this study, Koltz et al. 2018a). Our result 
show that the trajectory of community change will be driven 
not by each species responding individually to the changing 
environment, but by complexed lagged effects between tro-
phic groups. As such, our findings add evidence to reports 
on insect decline (Cardoso and Leather 2019, Sánchez-Bayo 
and Wyckhuys 2019) and add to concerns regarding subse-
quent changes in ecosystem functioning. Working in Alaska, 
Koltz  et  al. (2018b) found changes in climate to reverse 
top–down effects of predators on belowground ecosystem 
function, mediated by changes in mesofauna (springtails 
[Collembola] and mites [Acari]). Our study shows dispro-
portionate changes among macrofauna with a detritivorous 
larval stage (Diptera, Insecta), suggesting an Arctic-wide per-
vasive impact of climate change on detritivores.

The result that different arthropod trophic levels are differ-
ently affected by climate warming in the Arctic is consistent 
with previous reports of shifts between specific trophic levels. 
With respect to plant–herbivore interactions, experimental 
(Roy et al. 2004, Liu et al. 2011, de Sassi and Tylianakis 2012, 
Birkemoe et al. 2016) and observational studies (Barrio et al. 
2017, Rheubottom  et  al. 2019, Kankaanpää  et  al. 2020) 
report changes in arthropod-driven herbivory. With respect 
to predator–detritivore interactions, experimental studies 
suggest that effects of climate change can cascade through 
other trophic levels, thereby altering critical ecosystem func-
tions (Koltz et al. 2018c). In our study system, we note that 
a previous attempt to detect trophic cascades from data on 
densities of a single predator spider species Pardosa glacialis 
was unsuccessful, a finding attributed to the complexity of 
the local food web and the many outflows from an increased 
predation pressure (Visakorpi et al. 2015). Likewise, the cur-
rent result that accounting for density dependence did not 
improve model predictions may reflect the fact that captur-
ing density dependence in arthropods is challenging, due to 
highly variable population dynamics (Hanski  et  al. 1990) 
and/or to the fact that trapping success is influenced both by 
abundance and activity. In this study, we included a higher 
level of complexity in the analyses by jointly analysing 52 
arthropod species, classified by trophic group, enabling 
us to detect trophic-cascade effects across the arthropod 
community.

Some of the trophic-group effects are easy to interpret, 
such as the positive influence of the previous year’s herbivore 

abundance on parasitoids. Other results are more difficult 
to interpret, such as the positive influence of parasitoids 
and predators on saprophages/detritivores, and the negative 
influence of saprophages/detritivores on herbivores. Whether 
these effects are due to direct or unknown species interactions 
or some (delayed) responses of the species to environmental 
conditions not included in our modelling is an important 
question for future studies. Important but unaccounted abi-
otic predictors may for example include snow and microcli-
matic conditions (Kankaanpää et al. 2018, 2020a). Thus, we 
note that variation assigned to trophic groups may in some 
cases represent covariation with unmeasured environmental 
covariates rather than the direct effects of biotic interactions.

However, we stress that identifying the exact causality 
is not necessary for our core inference: that accounting for 
interspecific associations is necessary for successfully predict-
ing how arthropods respond to climate change. Regardless of 
whether the parameters of the species and trophic interaction 
models relate causally to biotic interactions or to synchro-
nous responses to unmeasured environmental conditions, 
they were successful in improving predictive power. However, 
this does not imply that identifying the causal components is 
not important. In fact, a model that makes better predictions 
‘for the wrong reasons’ will be able to successfully predict 
future patterns only for as long as the relationship between 
the causal factors and the apparent patterns of species interac-
tions also remain constant into the future.

We found that models using only climatic predictors gen-
erated predictions that were opposite to observations. This 
adds an important caveat to the many studies using cor-
relative, climate-envelope approaches to model the response 
of biodiversity to climate change (Pacifici  et  al. 2015, 
Warren et al. 2018, Trisos et al. 2020). Our results also illus-
trate the absolute difficulty of predicting species communi-
ties, given poorer predictive performance versus explanatory 
performance, and attest to the increased risk of overfitting 
when model complexity increases with the inclusion of more 
species and environmental predictors. While our conclu-
sions are based on arctic arthropods, since climate warming 
and species interactions are ubiquitous, we suggest that our 
approach serves as a conceptual and methodological template 
for deriving predictive models for other organism groups and 
ecosystems.
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