
 
 

Gas Emissions from Dairy Cow and 
Fattening Pig Buildings 

Effects of Animal Parameters, Climatic Factors and 
Manure Management on Methane and Ammonia 

Emissions 

Ngwa Martin Ngwabie 
Faculty of Landscape Planning, Horticulture and Agricultural Sciences 

Department of Rural Buildings and Animal Husbandry 
Alnarp 

Doctoral Thesis 
Swedish University of Agricultural Sciences 

Alnarp 2011 



 2 

Acta Universitatis agriculturae Sueciae 

2011:18 

ISSN 1652-6880 
ISBN 978-91-576-7553-8 
© 2011 Ngwa Martin Ngwabie, Alnarp 
Print: SLU Service/Repro, Alnarp 2011 

Cover: Research building for fattening pigs at the Swedish University of 
Agricultural Sciences, Alnarp 

 (All photos were taken by N. M. Ngwabie) 



 

 

Gas Emissions from Dairy Cow and Fattening Pig Buildings. 
Effects of Animal Parameters, Climatic Factors and Manure 
Management on Methane and Ammonia emissions 

Abstract 
The objective of this research is to contribute to the knowledge concerning the 
abatement of gas emissions from livestock production. Investigations regarding the 
choice of sampling locations for gas concentration measurements, quantification of 
gas emissions and the factors that affect gas emissions were conducted. NH3, CH4, 
CO2 and N2O emissions were measured from two naturally ventilated buildings for 
dairy cows and from a mechanically ventilated building for fattening pigs. Animal 
activity, temperature and humidity were also measured. Gas and odour emissions 
from manure samples with and without the addition of wood shavings were 
measured in a flux chamber at different air and manure temperatures. 

Significant differences existed in the mean concentrations of all the gases at 
various indoor sampling locations in a naturally ventilated building for dairy cows. 
The differences in gas concentrations between various sampling locations were 
much smaller for long-term, relative to short-term, measurements, suggesting that a 
single sampling location during long-term measurements may generate 
representative data. Decreasing daily animal activity was associated with increasing 
pig weight, and with increasing air temperatures for the cows. Diurnal variations in 
gas emissions were related to feeding/cleaning routines and to animal activity. Daily 
emissions from the pig building increased with pig weight and temperature. Air 
temperature was more important than cow activity for daily NH3 emissions while 
cow activity was more important than air temperatures for daily CH4 emissions.  

Reducing manure temperatures and increasing manure carbon-to-nitrogen ratio 
are potential NH3 abatement techniques. However, low air temperatures may 
increase cow activity which may in turn increase CH4 emissions. Increasing the 
frequency of manure removal from the floor and from animal buildings reduces 
indoor emissions of most gases. Low N2O emissions were measured from the 
buildings in this study; hence the use of liquid manure systems might reduce N2O 
emissions. 
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Animal activity, Temperature  
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Abbreviations and Terminology 

C/N  Carbon-to-nitrogen ratio 
DM Dry matter content 
LU Livestock unit (500 kg animal weight) 
r Correlation coefficient 
R2 
TAN 
Location: X, Y 
Diurnal variations 
Daily variations 

Coefficient of determination 
Total ammoniacal nitrogen 
Location: latitude, longitude 
Variations within a day 
Variations between different days 

Day of Year A time variable where January 1st is represented by 1 and 
December 31st is represented by 365 (or 366 for a leap year) 

Occupational 
exposure level limit 

Stipulated maximum acceptable average concentration of an 
air contaminant in respiratory air for a period of eight hours 

Odorant Substances stimulating the human olfactory system so that an 
odour is perceived 
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1  INTRODUCTION 

Livestock production is a significant source of ammonia, greenhouse gases 
(methane and nitrous oxide) and odour which may adversely affect animals, 
stockmen, the surrounding community and the environment. Regional and 
global climate change has been partly associated with anthropogenic gas 
emissions, of which agricultural activities are a significant contributor. 
Specifically, the contribution from livestock production is estimated to be 
about: 64% for ammonia, 35–40% for methane, 65% for nitrous oxide and 
9% for carbon dioxide to the respective global anthropogenic emissions of 
these gases to the atmosphere (FAO, 2006). It is therefore necessary to 
refine existing methods and develop new techniques to abate the production 
and emission of these gases from livestock management. The focus of this 
study is to improve the knowledge of the factors that affect the production 
and emission of these gases from animal buildings. This information is 
important for understanding the variations in emissions, to improve emission 
models and to aid the research on emission abatement measures.  

The importance of livestock to livelihoods is evident as it accounts for 
about 40% of the agricultural gross domestic products, providing a third of 
the human protein intake (FAO, 2006). It is important to develop 
techniques to limit the negative impact of this sector to the environment 
since meat and milk consumption is expected to double by 2050 relative to 
1999/2001 levels (FAO, 2006). The total global livestock population is 
expected to increase to meet up with the projected meat and milk 
consumptions even though the number of some livestock categories may 
decrease regionally (FAO, 2007). Livestock production is undergoing a 
rapid transformation from small scale family operations to large scale 
industrial production facilities. These facilities are potential point sources for 
the emissions of greenhouse gases and ammonia. Parameters such as manure 
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management, animal activity and temperature may influence the production 
and emission of gases. 

1.1 Motivation 

1.1.1 Greenhouse gases 

Anthropogenic emissions of greenhouse gases have been associated with 
climate change which has been linked to the rising temperatures, rising sea 
levels, receding icecaps and melting permafrost (EEA, 2008a; IPCC, 2001). 
The contribution of livestock production is substantial, accounting for about 
18% of the total anthropogenic greenhouse gas emissions when measured in 
carbon dioxide equivalents (FAO, 2006). The most important climate gases 
that are produced from animal husbandry are methane and nitrous oxide 
with global warming potentials of 23 and 296 times that of carbon dioxide, 
respectively, on a 100-year time horizon (IPCC, 2001). 

1.1.2 Ammonia 

High levels of ammonia and ammonium can cause damage to vegetation, 
lead to nitrogen eutrophication and acidification of ecosystems around the 
source of emission (Fangmeier et al., 1994; Schuurkes & Mosello, 1988). 
Long range transportation and subsequent deposition at new locations can 
occur when ammonia combines with sulphate and nitrate (Sommer et al., 
2006; Aneja et al., 2001; Fangmeier et al., 1994). In one study, as much as 
48% of the total nitrogen excreted in animal buildings in the European 
Union was lost to the environment during manure storage and directly after 
manure application to land (Oenema et al., 2007), indicating a significant 
loss to the environment. The loss in manure nitrogen may reduce the 
fertilizer efficiency of manure. 

1.1.3 Animal and human health 

Livestock production with indoor animal housing can create a potentially 
unhealthy environment for stockmen and animals. Respiratory diseases have 
been associated with the air quality inside animal buildings (Essen & 
Romberger, 2003; Zhang et al., 1998; Donham et al., 1989). High ammonia 
concentrations above the eight hour occupational exposure level limit value 
of 25 ppm for humans (Swedish Work Environmental Authority, 2005) 
have been measured in some pig buildings and the concentrations can be 
especially high in poultry houses (Nimmermark et al., 2009; Groot 
Koerkamp et al., 1998). Such high ammonia concentrations may affect 
human and animal welfare and may also reduce production. For example, 
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the percentage yield of deboned meat per broiler decreased slightly with 
exposure to increasing ammonia concentrations (0, 25, 50, and 75 ppm) in 
one study (Miles et al., 2004), while the body weight of male broiler 
chickens declined significantly and proportionally with increasing ammonia 
concentrations in the air (16, 28, 39, and 54 ppm) in another study (Yahav, 
2004). Ammonia and especially odour emissions from livestock production 
facilities may influence the well-being and health of nearby residents 
(Donham, 2010; Radon et al., 2007; Nimmermark, 2004). 

In order to address the environmental problems associated with gas 
emissions, emission ceiling targets have been put in place at both the 
international and the national levels (EEA, 2008b; Swedish-EPA, 2008). 
Threshold occupational exposure values have been set, for example, in 
Sweden, for some gases present in animal buildings (Swedish Work 
Environmental Authority, 2005) for the safety of those working in polluted 
environments and the exposure level of the stockmen may sometimes 
exceed these levels. Limiting the emissions would improve the work 
environment and also constitute a step towards emission ceiling targets. 
These targets can be achieved by implementing practical emission abatement 
techniques across the entire livestock production chain which includes 
animal buildings, grazing fields, manure storage facilities and manure 
application to farmlands. Animal buildings are an important emission source 
in the livestock production chain due to the complex nature and diverse 
number of factors that affect emissions at the level of the building (Banhazi 
et al., 2008; Sommer et al., 2006). 

1.2 Sources of methane, ammonia and nitrous oxide and factors 
that affect their emissions from animal buildings 

1.2.1 Methane 

Methane is one of the by-products formed from the degradation of 
carbohydrates during enteric fermentation in feed and anaerobic digestion in 
manure. The rumen is the most important part of methane production in 
ruminants like cattle, while methane is mainly produced in the large 
intestines for monogastric animals like pigs. Estimates from one study 
showed that enteric fermentation accounts for about 80% of methane in 
dairy cow production and about 30% of methane production from pigs 
(Monteny et al., 2001). Methane production from enteric fermentation is a 
function of the rate of organic matter fermentation, the type of volatile fatty 
acid produced and the efficiency of microbial biosynthesis (Monteny et al., 
2006; Jensen, 1996). Methane production from animal manure proceeds 
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through hydrolysis of hemicellulose and cellulose, acidogenesis, acetogenesis 
and finally methanogenesis (Monteny et al., 2006). The rate of methane 
production from manure is mainly determined by temperature and storage 
time (Chae et al., 2008; Alvarez et al., 2006; Huther et al., 1997). 

1.2.2 Ammonia and nitrous oxide 

Cattle and pigs obtain nitrogen compounds from feed and grazing, and 
convert the nitrogen to meat and milk, with the excess excreted as urea in 
urine and organic nitrogen in faeces. Animal diet affects the distribution of 
ingested nitrogen. Estimates have shown that for dairy cows, ingested 
nitrogen can be approximately distributed in the following proportions; 20–
30% in milk, 20–50% in faeces, 50–80% in urine, with 2% retained in the 
body (Sommer et al., 2006; Tamminga, 1992). In addition to the diet, the 
excretion of nitrogen in urine and faeces of pigs also depends on their age. 
One study showed that for piglets (<7.5 kg), about 20% of the ingested 
nitrogen is excreted in faeces, 62% in urine, with 18% retained in the body 
(Fernandez et al., 1999). For growing pigs (30–100 kg), about 20% of the 
ingested nitrogen is excreted in faeces, 43% in urine, with 37% retained in 
the body (Fernandez et al., 1999). Ammonia is mainly produced from urea 
hydrolysis, which is catalysed by the enzyme urease that is produced by 
micro-organisms in faeces (Figure 1). Organic nitrogen in faeces can be 
transformed to ammonium by micro-organisms (mineralisation) or vice 
versa (immobilisation). The rate of immobilisation is faster when bedding 
material is added to animal manure. The bedding material increases the pool 
of organic nitrogen and the carbon-to-nitrogen (C/N) ratio of the manure, 
which enhances nitrogen immobilisation and can potentially reduce 
ammonia emissions (Tasistro et al., 2008; Ekinci et al., 1998). The quantity 
of ammonia produced from organic nitrogen compounds, such as 
undigested protein in faeces, is small due to slow mineralisation rates in 
manure, but can be significant during manure storage (Chadwick et al., 
2000; Patni & Jui, 1991). Chemical processes involved in the production 
and release of ammonia is available in other studies (Sommer et al., 2006; 
Monteny & Erisman, 1998). 

Spatial and temporal variations within litter aggregates in manure 
amended with bedding material or in deep-litter systems can create an 
environment where oxygen levels may decrease within the aggregates and 
also along the depth of the litter bed (Monteny et al., 2006; Monteny et al., 
2001; Groenestein et al., 1993; Firestone & Davidson, 1989). In deep litter 
systems, nitrification will therefore occur near the surface of the aggregates 
and manure bed where oxygen is available, while denitrification will occur 
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deeper within the aggregates and litter bed where oxygen is scarce. When 
optimum conditions are not available, both nitrification and denitrification 
do not go to completion, leading to the production of nitric oxide and 
nitrous oxide. Nitrification is inhibited by low oxygen concentrations, high 
ammonia concentrations and low C/N ratios that prevent complete 
transformation of ammonium through nitrite to nitrate (Monteny et al., 
2001; Firestone & Davidson, 1989), while denitrification is inhibited by 
high oxygen concentrations, high nitrate or nitrite concentrations and low 
C/N ratios that prevent complete transformation of nitrate through nitrite 
to nitrogen (Monteny et al., 2001; Firestone & Davidson, 1989). The 
conditions for nitrification and denitrification are less prevailing in liquid 
manure as compared to manure amended with bedding material or in deep-
litter systems; as such, low levels of nitrous oxide have been measured from 
liquid manure systems (Philippe et al., 2007; Monteny et al., 2001).  

Urine

CO(NH2)2 NH4
+

Faeces

Urease

(NH3)L

N2

NO3

NO, N2O

(NH3)g

NO, N2O

Organic-N

Nitrification

Denitrification

Bedding material

MineralisationImmobilisation

Hydrolysis

 
Figure 1.  Simplified diagram of nitrogen transformation in animal manure. 

1.2.3 Factors that affect the emission rates of methane, ammonia and nitrous 
oxide from animal buildings 

A variety of factors affect the production and emission of greenhouse gases, 
ammonia as well as odour from animal buildings, of which, some are 
considered in this section. Based on these factors, abatement techniques 
have been developed to alter the production and emission of these gases. 
Abatement techniques can basically alter emissions from animal buildings at 
three stages: 
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 Front of the pipe stage: The techniques implemented at this stage influence 
emissions from the animals and the manure prior to gas production, for 
example, breed selection and diet manipulation, towards greater 
efficiencies. 

 End of the pipe stage: The techniques implemented at this stage influence 
emissions from animal buildings to the outside environment, for 
example, air cleaning. 

 Middle of the pipe stage: The techniques implemented at this stage 
influence gas production and emissions inside animal buildings, for 
example, manure cooling. 
 
Regarding the techniques that influence emissions at the front of the pipe 

stage, animal feed composition can be manipulated to reduce gas emissions 
to the environment. For example, adjusting the feed composition as pigs 
grow can be the most efficient and practical method for reducing the 
excretion of nitrogen since the nitrogen need in relation to the energy need 
for a pig decreases as it grows older (Sommer et al., 2006). Reducing the 
nitrogen excreted in manure results in a reduction in the total ammoniacal 
nitrogen and consequently a reduction in ammonia emissions. Ammonia 
emissions from pig manure can also be reduced by decreasing the crude 
protein and increasing the fermentable carbohydrate levels in feed (Le et al., 
2008; Hayes et al., 2004). Pigs offered diets that contained sugar-beet pulp 
had reduced ammonia emissions from the manure as compared to diets 
without sugar-beet pulp, while barley based diets produced less ammonia 
emissions from manure relative to wheat based diets (Lynch et al., 2008; 
Lynch et al., 2007). Medium chain fatty acids have been shown to 
substantially reduce methanogenesis in domestic ruminants (Machmuller, 
2006). Methane emission can be reduced by increasing the level of rapidly 
fermentable carbohydrates to enhance propionate production (Monteny et 
al., 2006). In one study regarding dairy cow management, a change from 
the baseline model with a 40% dairy cow replacement rate, exporting all 
bulls after birth and keeping surplus heifers until maturity, to a scenario with 
a 30% dairy cow replacement rate, exporting all bulls after birth and selling 
surplus heifers as newborn, has the potential of reducing greenhouse gases 
by about 11% (Weiske et al., 2006). Options for including greenhouse gas 
mitigating in livestock breeding schemes with emphasis on reducing wastage 
(improving lifespan, health, fertility etc) and improving productivity and 
efficiency have been discussed (Wall et al., 2008). 

Air cleaning at the exhaust ducts or inside livestock buildings is the main 
technique that can reduce emissions in the end of the pipe stage. This involves 
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the use of biofilters, air scrubbers or acid scrubbers to reduce the 
concentrations of ammonia, odour and methane. Research and reviews on 
the use of biofilters for ammonia emission abatement showed that a 
reduction efficiency of up to 80% can be achieved (Hoff et al., 2009; Ro et 
al., 2008; Hartung et al., 1997). In one experiment with biofilters, 49% and 
19% methane conversions were achieved when the biofilter materials 
consisted of an inorganic material and mature compost, respectively 
(Nikiema et al., 2005). A methane removal efficiency of 85% was measured 
in another study using a biofilter composed of a mixture of compost and 
perlite (Melse & Van der Werf, 2005). However, biofiltration seems to 
synthesize additional nitrous oxide during the oxidation of ammonia 
(Amlinger et al., 2008) and in one study, where a biofilter composed of 
polyvinyl alcohol‐coated powdered activated carbon particles was used, 
significant amounts of nitrous oxide were produced while methane 
production was negligible (Ro et al., 2008). Regarding scrubbers, only 
water is utilised in air scrubbers while water and acid are used in acid 
scrubbers to enable mass transfer of ammonia and other odorants from the 
gas to the liquid phase. Ammonia reductions of up to 98.7% have been 
achieved with acid scrubbers (Melse & Ogink, 2005; Verdoes & 
Zonderland, 1999). 

This research is focused on the factors that affect emissions at the middle of 
the pipe stage. A summary of the main levels in this stage with major 
corresponding factors that affect gas production and emissions is presented in 
Table 1. 

Table 1. Main levels and some corresponding factors that affect the production and emission of gases from 
animal buildings at the “middle of the pipe stage” 

Level Factors 

Manure Frequency of removal, efficiency of floor cleaning 

Surface area exposed, urine/faeces separation 

pH,  temperature 

Bedding  Quantity, C/N ratio, dry matter (DM) content 

Building Housing system, floor type, ventilation system 

Climate Air temperature, relative humidity 

Ventilation rate, air movement pattern 

Animal Urinating/defecating frequencies 

Species, category, weight and age 

Activity, behaviour 
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The factors in Table 1 are related both within and across the levels, for 
example, a higher level of animal activity and a larger surface area of manure 
exposure are expected in free stall housing systems as compared to tied stall 
housing systems for dairy cows. 

Manure 

Manure and its management are important for gas emissions from livestock 
buildings since manure is a potentially significant source of ammonia, 
nitrous oxide and methane. The quantity of a gas that is emitted from the 
manure when compared to direct emissions from the animals depends 
mainly on the animal type (e.g. pigs versus cattle for methane) and on the 
manure management system (e.g. deep litter versus liquid manure for 
nitrous oxide and ammonia). Manure management has therefore been at the 
forefront of the research on emissions abatement in livestock production. 

Manure removal from animal buildings to external storage facilities 
where it can be covered is one of the most effective methods of reducing 
indoor emissions of gases that originate from the manure (Sommer et al., 
2006; Weiske et al., 2006; Hilhorst et al., 2001; Braam et al., 1997). The 
efficiency of emission reduction depends on the frequency and effectiveness 
of manure removal. Ammonia emissions can further be reduced by 
combining manure removal and flushing with water to increase the 
effectiveness of urine removal from the surface of the floor and to lower the 
urea and total ammoniacal nitrogen (TAN) concentrations through dilution. 
There is a potential to reduce ammonia emissions by up to 65% from dairy 
cow buildings when V-shaped floors (reduced surface area) are used in 
combination with flushing using water (Monteny & Erisman, 1998). In one 
review, it was reported that solid floor systems with mechanical scrapers, 
which remove manure every second hour for temporal indoor storage in 
partly covered pits, can reduce ammonia emissions in dairy cattle buildings 
by 16–22% when compared to loose housing systems with slatted floors 
(Starmans & Van der Hoek, 2007). Temporal indoor storage of manure in 
partly covered pits decreases air flow above the surface and also reduces air 
exchange between the pit and the building, thereby reducing gas emissions 
from the pit (Rong et al., 2009). Ammonia emission peaks were observed 
within two hours after application of urine/faeces mixtures to a floor surface 
at temperatures of about 10°C, indicating that urea hydrolysis is a fast 
process (Elzing & Monteny, 1997). As such, grooved floor systems with 
partial separation of urine and faeces have been shown to reduce NH3 by 
35–46% as compared to a traditional slatted floor system (Swierstra et al., 
2001).  
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The production and emission rates of ammonia, methane and nitrous 
oxide from manure have been shown to be slow at lower temperatures 
(Haeussermann et al., 2006; Weiske et al., 2006; Nimmermark & Gustafsson, 
2005; Andersson, 1998; Monteny & Erisman, 1998; Groot Koerkamp, 
1994). Regarding ammonia emissions, urease activity has been shown to be 
slow at temperatures below 5–10°C, increasing exponentially at 
temperatures above 10°C (Sommer et al., 2006). In addition, the 
concentration of gaseous ammonia in equilibrium with ammonia in a 
solution of animal manure is temperature dependent since the equilibrium 
constant is an exponential function of the temperature of the solution 
(Sommer et al., 2006). At a practical level, lowering manure temperature 
was found to reduce ammonia emissions in a cow barn by 11–23% 
(Gustafsson et al., 2005), while methane emissions have been reported to 
decrease by 66% if the slurry temperature is reduced from 20°C to 10°C 
(Hilhorst et al., 2001). 

The quantity of ammonia compared to the TAN in manure is 
determined by, among other factors, the pH; at pH below 6–7, the fraction 
of ammonium in TAN is high, resulting in less ammonia emission. At pH 
above 7, most of the TAN is in the form of volatile ammonia, resulting in 
high ammonia emissions. As such, acidification of pig slurry has been shown 
to reduce ammonia emissions by 70% when compared to non-acidified 
slurry (Kai et al., 2008). Acidification of animal manure below a pH of 4.5 
can eliminate the emissions of ammonia, methane and nitrous oxide 
(Hilhorst et al., 2001). 

Bedding 

Wood shavings and other materials that are utilised as bedding for cattle and 
pigs also serve as rooting material and absorb manure. These materials 
increase the DM content and the C/N ratio of the manure. Generally, the 
C/N ratio ranges from 4 for pig manure to 10 for cattle manure (Chadwick 
et al., 2000). Increasing the C/N ratio of degradable compounds in the 
manure provides energy for microbes to immobilise ammonium leading to 
reduced ammonia emissions (Groenestein & Van Faassen, 1996; Poincelot, 
1974). The optimal C/N ratio for microorganisms to immobilise 
ammonium is between 25 and 38 (Ekinci et al., 1998; Poincelot, 1974). At 
low C/N ratios, the excess nitrogen is emitted as ammonia, while at high 
C/N ratios most of the nitrogen is utilised for protein synthesis which limits 
ammonia emissions. Reductions in ammonia emissions have been measured 
after adding wood shavings to animal manure in laboratory studies (Tasistro 
et al., 2008; Luo et al., 2004). Although ammonia emissions are expected to 
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be low for systems with high C/N ratio (e.g. straw-bedded systems), as 
explained earlier, nitrous oxide and even methane emissions may be higher 
(Monteny et al., 2006). The type of bedding material that is used may 
reduce airflow over the emitting surface, increase the infiltration and 
absorption rates of liquid manure which influence ammonium 
immobilisation and reduce ammonia emissions (Sommer et al., 2006). A 
temperature increase, induced by microbial activity when bedding materials 
are added to manure can rather increase gas emissions during the initial 
phase of microbial degradation. In an experiment, higher ammonia 
emissions were measured from solid than from liquid manure during the 
initial phase of microbial degradation due to a higher self-heating 
temperature resulting from microbial activities in the solid manure (Dewes, 
1999).  

Buildings 

Livestock buildings are designed to reflect regional climates and production 
objectives. Factors that may be important for different building designs and 
management strategies are related to animal welfare, indoor air quality and 
environmental pollution (Oenema et al., 2007; Fangmeier et al., 1994; 
Donham et al., 1989). Loose housing systems are favoured over tied-stall 
housing systems with liquid manure over solid manure for cattle and pig 
production in most European countries (Sommer et al., 2006). Ammonia 
emissions from loose housing systems are expected to be higher than with 
tied-stall housing systems due to a larger manure-fouled and emitting surface 
area per animal. For example, the manure-fouled surface area per cow is 
about 3–5 m2 for loose housing and 1–1.5 m2 for tied-stall housing systems 
(Sommer et al., 2006). Besides that, the activity of animals in loose housing 
systems is expected to be greater when compared to tied-stall housing 
systems. High animal activity may enhance mixing and spreading of manure 
over a larger surface area leading to increased ammonia emissions. It is 
possible to reduce ammonia emissions by up to 55% in tied-stall dairy cattle 
buildings as compared to loose housing systems with cubicles and slatted 
floors (Starmans & Van der Hoek, 2007). 

Floor systems in animal buildings can be solid or partly slatted. Regarding 
solid floors for cattle, a sloped floor with a central urine gutter or a grooved 
floor with the potential to partially separate urine and faeces has been 
recommended to reduce ammonia emissions (Starmans & Van der Hoek, 
2007; Swierstra et al., 2001). Various combinations of slatted and solid floor 
surface areas have been tested for ammonia emissions in a pig building and it 
was concluded that reducing the slatted floor and slurry pit areas reduces 
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ammonia emissions (Aarnink et al., 1996). However, reducing the slatted 
floor surface area may not always linearly reduce ammonia emissions due to 
a possible increase in the fouling of the solid floor (Sommer et al., 2006; 
Aarnink et al., 1996). In addition, the choice of pigs to lie down on slatted 
or solid floor sections (which affects the manure fouled area and hence 
ammonia emissions) depends on the ambient temperature and animal weight 
(Aarnink et al., 2006; Huynh et al., 2005). Combining different floor types 
with appropriate manure management systems will optimise emission 
reduction, e.g. for solid floors, frequent manure removal with scrapers 
coupled with the use of drainage, and for slatted floors, slurry acidification 
and the use of scrapers (Zhang et al., 2005).  

Climate 

A healthy work environment in animal buildings can be achieved through 
adequate air exchange between the building and the outside environment, 
which ensures that the concentrations of gases and other pollutants, 
temperature and humidity levels are regulated. The ventilation rate can be 
monitored and controlled in mechanically ventilated buildings, whereas in 
naturally ventilated buildings, the wind speed, size of air openings, air 
temperature and the orientation of the building are among the factors that 
affect the ventilation rate (Snell et al., 2003; Bruce, 1978). The effect of the 
ventilation rate on gas emissions from animal buildings has been reported by 
several researchers with a general increase in emissions with increasing 
ventilation rates (Kim et al., 2007; Massabie et al., 1999; Ni et al., 1999a). 

High indoor air temperatures may increase the temperature at the 
manure surface and increase gas emissions due to a relationship between air 
and manure temperatures (Park et al., 2006). Besides that, high indoor air 
temperatures may affect natural convection and air exchange in naturally 
ventilated animal buildings (Bruce, 1978), thereby affecting gas emissions. 
Ammonia emissions have been shown to be influenced by air velocities, 
turbulence intensities and water vapour pressure (Rong et al., 2009; 
Nimmermark & Gustafsson, 2005; Elzing & Monteny, 1997). Temperature 
and humidity affect the lying and excretion behaviour of fattening pigs 
which may alter the location and affect the size of manure-fouled surfaces, 
thereby affecting ammonia emissions (Aarnink et al., 2006; Huynh et al., 
2005; Huynh et al., 2004; Aarnink et al., 1996). Studies have shown that 
heat stress (expressed in temperature-humidity index) affects the behaviour 
and performance of dairy cows (Provolo & Riva, 2008b; Nienaber & Hahn, 
2007; De Palo et al., 2005; West, 2003). These authors showed that at high 
temperature-humidity indexes, free-stall cows increase their standing time, 
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preferring lying materials which easily dissipate body heat and sweat. Similar 
to pig production, changes in cow behaviour induced by the indoor 
microclimate may alter gas emissions.   

Animals 

The emissions of gaseous compounds by animals depend on the species and 
category due to differences in diets and digestive systems, for example, 
ruminants (cattle: bulls, dairy cows) as against monogastrics (pigs: sows, 
fatteners). According to one study, enteric fermentation can account for 
about 80% of methane production from cattle houses, while about 35% of 
methane in pig buildings is emitted through flatulence (Monteny et al., 
2001). Regarding emissions from animal manure, methane production 
increases with the organic matter content (cattle slurry << pig slurry) 
(Groenestein & Van Faassen, 1996). However, more methane is generally 
produced from cattle manure due to the large quantity of cow manure as 
compared to pig manure. Emissions of ammonia, carbon dioxide, methane 
and nitrous oxide from fattening pig buildings are related to animal weight 
(Philippe et al., 2007; Haeussermann et al., 2006; Ni et al., 2000; Osada et 
al., 1998). Other parameters which affect gas emissions as fattening pigs 
grow include the quantity of nitrogen excreted in manure, size of the 
manure fouled surface and frequency of excretion on solid floor for 
ammonia (Aarnink et al., 2006; Sommer et al., 2006; Huynh et al., 2005; 
Huynh et al., 2004; Ni et al., 1999b) and microbial activity of methanogenic 
bacteria for methane (Jensen, 1996). 

Animal activity has been shown to influence the aerial environment in 
livestock buildings especially with regard to diurnal patterns in emissions 
(Blanes-Vidal et al., 2008; De Sousa & Pedersen, 2004; Jeppsson, 2002). 
Animal activity and carbon dioxide emissions have a physiological 
relationship (Pedersen et al., 2008), while the relationship between ammonia 
emissions and the activity of pigs has been associated with the urinating 
frequency and air movements over the manure surface (Blanes-Vidal et al., 
2008; De Sousa & Pedersen, 2004). In one study, 44% of the variations in 
ammonia emissions within the day could be explained by the urinating 
frequency of growing pigs (Aarnink et al., 1996). The variations in animal 
activity with animal weight or age may be important for gas emissions since 
small pigs are more active than large pigs and young pigs are more active 
than old pigs (Botermans et al., 2000; Botermans & Andersson, 1995).  
 
Generally, abatement techniques are expected to reduce the emissions of 
most gases as well as odour simultaneously so as to minimise pollution 
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swapping. Pollution swapping may occur when the DM content and the 
C/N ratio of manure is increased in order to reduce ammonia emissions, 
since it may rather increase nitrous oxide or methane emissions (Monteny et 
al., 2006). Analysis of odour has been carried out alongside ammonia 
abatement measures and in one study, reduced ammonia and increased 
odour emissions were measured from the manure of pigs offered diets that 
contained sugar-beet pulp as compared to diets without sugar-beet pulp 
(Lynch et al., 2008). Some studies regarding the relationship between 
ammonia and odour report an inconsistent pattern in their concentrations in 
buildings with low ammonia concentrations and in laboratory reactors 
(Ogink & Koerkamp, 2001; Fakhoury et al., 2000). One study suggests that 
the ammonia contribution to odour concentration is significant only in the 
absence of hydrogen sulphide (Blanes-Vidal & Hansen, 2008). In other 
investigations, positive correlations between ammonia concentrations and 
odour intensity as well as between ammonia and odour emission rates have 
been measured (McGinn et al., 2003; Wood et al., 2001). 

1.3 Measurements of gas emission rates 

High quality data is essential when monitoring the air quality in animal 
buildings, studying the effects of different factors on gas emissions and 
assessing emission abatement techniques. Emission rates are calculated by 
multiplying gas concentrations and ventilation rates. The quality of emission 
data, therefore, depends on the accuracy and precision of the measured 
concentrations and ventilation rates. 

1.3.1 Sampling and measurements of gas concentrations 

Several principles and instruments are used to measure the concentrations of 
carbon dioxide, ammonia, methane and nitrous oxide in animal facilities. 
Table 2 presents some principles and instruments used to measure the 
concentrations of ammonia, methane, nitrous oxide and carbon dioxide. 
The choice of an instrument for measuring gas concentrations is 
determined, among other factors, by the research objectives, number of 
gases it can measure, number of locations it can measure from, possibility for 
online results, sampling frequency, duration of sampling and budgetary 
constraints (Ni et al., 2009; Ni & Heber, 2008). The data quality depends on 
the sampling technique, instrument accuracy, precision and sensitivity. 
Studies have been carried out regarding the instruments used for measuring 
gas concentrations in animal facilities, measurement principles, sampling 
techniques and discussions regarding errors (Ni et al., 2009; Ni & Heber, 
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2008; Rom & Zhang, 2008; Heber et al., 2006; Shah et al., 2006; Mukhtar 
et al., 2003; Wheeler et al., 2000).  

Table 2. Principles and some instruments used for measuring gas concentrations 

Main principle Instrument (Technique) 

Spectroscopy Photoacoustic analyser (IR spectroscopy) 

FTIR spectrometer (FTIR spectroscopy) 

Opsis analyser (UV-DOAS) 

Chemiluminescence NOx analyser 

Colour change Colorimeter (colorimetry) 

Spectrophotometer (photometry) 

Dräger and Kitagawa tubes (Detection tubes )  

Chemcassette monitor (photometry) 

IR: Infrared, FTIR: Fourier Transfer Infrared, UV-DOAS: Ultra violet differential 
absorption spectroscopy. Adapted from Ni & Heber, 2008 

Air needs to be sampled for gas concentration measurements due to the 
large volume of air that flows through animal production facilities. Sampling 
has been defined as “The technique and procedure that specifies the location 
where air samples are taken, controls the time, interval, frequency and 
duration of sample taking, and regulates the volume or mass of the sample 
air to be measured” (Ni & Heber, 2008). Figure 2 presents the main factors 
that are considered in air sampling and the sampling methods involved. 

Spatial variations in gas concentrations inside animal facilities can be due 
to an uneven distribution of the sources of gas production (manure heaps, 
urine puddles, animals) and imperfect air mixing (Van Buggenhout et al., 
2009; Cnockaert & Sonck, 2007; Jeppsson, 1999). Increasing the number of 
sampling locations may increase the spatial resolution of measured gas 
concentrations. However, the number of sampling locations is limited by 
the measuring instrument. Some instruments, like the photo-acoustic multi-
gas analyser, when coupled with a multiplexer, can sample air at twelve 
locations. The choice of the most representative sampling locations in large 
animal buildings has great implications on the data quality. At least one 
indoor location and one outdoor location are needed to calculate emission 
rates from animal buildings. These sampling locations are chosen relatively 
easily at the ducts of air exhaust fans and air inlets for mechanically 
ventilated buildings (Blanes-Vidal et al., 2008; Aarnink et al., 1995). The 
choice of sampling locations is difficult in naturally ventilated buildings since 
there are no openings defined as air inlets and outlets. Sampling locations 
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have consequently been chosen at evenly distributed places inside naturally 
ventilated buildings (Zhang et al., 2005).  

Sampling location
Spatial variability

Sampling time
Temporal variability

Sampling volume
Fixed volume

Gas 
sampling

Closed
sampling

Point 
sampling

Open path
sampling

Sampling 
method

 
Figure 2. Factors and methods for gas sampling at animal facilities (adapted from Ni & Heber, 
2008) 

Temporal variations in gas concentrations in animal buildings have been 
measured on a diurnal, daily and seasonal basis (Philippe et al., 2007; 
Haeussermann et al., 2006; Jeppsson, 2002). Changes in outdoor climatic 
conditions (temperatures, wind velocity, wind direction), ventilation rates, 
parameters related to management (feed, manure removal) and parameters 
related to the animals (activity, weight) are responsible for the temporal 
variations in gas concentrations. As such, measurements of gas 
concentrations at high frequencies to cover short term changes within the 
day and for a long duration to cover daily changes, improve the quality of 
the data. Extremely long sampling durations or intermittent measurements 
are needed to cover seasonal variations.  

Active measurement methods (e.g. active detection tubes) require well-
defined volumes of air samples for the measurement of gas concentrations. 
The accuracy and repeatability of the sampled volume is important for the 
quality of the measured gas concentrations. 

Three methods are applicable for gas sampling in animal facilities: closed, 
point and open path sampling methods (Figure 2). Closed sampling involves 
the use of flux chambers in outdoor manure storage facilities, feeding areas, 
grazing areas and indoor floor areas (Park et al., 2010; Jeppsson, 1999). 
Regarding point sampling, the air samples are taken at a single or multiple 
locations. Point sampling is mostly used inside animal buildings for indoor 
concentrations and outside for background concentrations (Ni et al., 2008; 
Zhang et al., 2005). Concerning open path sampling, optical devices emit 
and receive ultraviolet or infrared beams at defined wavelengths where the 
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absorbed radiation is related to the concentration of the gas along the path. 
Open path sampling has been used for measuring gas concentrations in 
outdoor areas (Loh et al., 2008; McGinn et al., 2006).  

1.3.2 Measurements of ventilation rates 

One of the most discussed aspects regarding the quality of emission data is 
the measurement of the ventilation rates. Figure 3 shows some of the 
methods used to measure the ventilation rate in animal buildings. Direct 
measurements of the air speed with hot wire or fan wheel anemometers is 
the standard procedure for determining the ventilation rate in mechanically 
ventilated buildings (Hinz & Linke, 1998a; Aarnink et al., 1995). 

Mechanically ventilated buildings Naturally ventilated buildings

Ventilation rate

Air velocity (hot wire or 
fan wheel anemometers)

Tracer gas method

Tracer gas decay.
Constant tracer gas release.

Balance method

Carbon dioxide balance.
Moisture balance.
Heat balance.

Pressure  difference

 
Figure 3. Methods for measuring ventilation rates in animal buildings  

It is difficult to determine the ventilation rate in naturally ventilated 
buildings due to the presence of many air openings which can serve as both 
air inlets and outlets depending on the wind direction and thermal 
buoyancy. The ventilation rate is therefore directly influenced by external 
and internal conditions in naturally ventilated buildings (Snell et al., 2003; 
Bruce, 1978). A method based on the pressure difference across air openings 
can be used to estimate the ventilation rate in both naturally and 
mechanically ventilated buildings (Demmers et al., 2001). The tracer gas 
method can also be used to measure the ventilation rate in naturally 
ventilated animal buildings. Tracer gas methods and gases used for 
ventilation rate measurements are the tracer decay method with sulphur 
hexafluoride or radioactive Krypton-85 (Berg et al., 2010; Kiwan et al., 
2010; Snell et al., 2003) and the constant release method with nitrous oxide 
or carbon monoxide (Demmers et al., 2000; Demmers et al., 1999). Among 
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the three balance methods, that is, heat balance (Teye & Hautala, 2007; 
Pedersen et al., 1998), moisture balance (Teye & Hautala, 2007; Pedersen et 
al., 1998) and carbon dioxide balance, the last method is most commonly 
used for continuous measurements of ventilation rates (CIGR, 2002; 
Pedersen et al., 1998; Van't Klooster & Heitlager, 1994; Van Ouwerkerk & 
Pedersen, 1994). 

Different methods for measuring ventilation rates are influenced by 
factors which affect the quality of the measurements, for example, imperfect 
mixing for the tracer gas methods (Van Buggenhout et al., 2009), and 
carbon dioxide production from animal manure for the carbon dioxide 
balance method (Pedersen et al., 2008; Ni et al., 1999a). The tracer gas 
method does not provide continuous measurements of ventilation rates 
except when it is used to calibrate another parameter that can be measured 
continuously. The carbon dioxide balance method can be used to estimate 
the ventilation rate with a resolution of one hour or better when the animal 
activity is measured (CIGR, 2002). The lack of an established standard 
method for measuring the ventilation rate in naturally ventilated buildings 
makes it difficult to estimate the uncertainty associated with the available 
methods. The tracer gas method (which has been widely used for 
comparison with other techniques) can have errors as high as 86% due to 
imperfect mixing of the tracer gas and the choice of a sampling location 
(Van Buggenhout et al., 2009). Measurements in mechanically ventilated 
buildings for pigs have shown discrepancies in ventilation rates between 
direct measurements at exhaust fans and the carbon dioxide mass balance of 
2–17% (De Sousa & Pedersen, 2004) and 6.5% (Hinz & Linke, 1998a; Hinz 
& Linke, 1998b). In one study, a comparison of ventilation rates using four 
methods over a period of 41 days in a mechanically ventilated building for 
pigs showed that on average, the calculated ventilation rate was 8% lower 
than the measured ventilation rate (using FANCOM fan) for the carbon 
dioxide balance, and 9% lower for the moisture and heat balance methods 
(Blanes & Pedersen, 2005). Some authors report inaccuracies of up to 40–
50% in the ventilation rates when estimated using the carbon dioxide 
balance method (Zhang et al., 2010; Ozcan et al., 2007).   
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2  HYPOTHESES AND OBJECTIVES 

The general hypothesis of this study is that gas emissions from animal 
buildings are influenced by building parameters, management routines, 
climatic factors and parameters related to the animals and their feed. The 
overall objective was to contribute to the knowledge regarding the 
abatement of gas emissions from livestock production. The reduction of gas 
emissions improves the atmospheric environment, indoor air quality, animal 
performance, and the relationship between farmers and the surrounding 
community. The detailed hypotheses and objectives for each paper were as 
follows: 

The hypothesis of the study in Paper I was that gas concentrations and 
emissions vary by location and time in naturally ventilated animal buildings. 
The investigation was aimed at determining the effect of the choice of 
sampling location on the concentrations of carbon dioxide, methane, 
ammonia and nitrous oxide in naturally ventilated buildings. The 
concentrations were measured at nine locations inside a building for dairy 
cows and emissions were estimated. 

In Paper II, it was hypothesised that animal activity is affected by the indoor 
microclimate and management routines. The animal activity, microclimatic 
conditions, and management routines also affect gas emissions. The 
objective was to study the effect of indoor air temperature on the activity of 
dairy cows in a naturally ventilated building. In addition, the effects of cow 
activity, indoor air temperature, feeding routines and manure removal 
routines on the emissions of methane and ammonia were evaluated. 

The hypothesis of the investigations in Paper III was that the activity of 
fattening pigs varies diurnally and daily as pigs gain weight and that these 
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variations affect gas emissions. The degrees to which environmental 
conditions (temperature, humidity) and animal parameters (weight, activity) 
affect emissions may depend on the type of gas and on the season. The 
objective was to study the variations in animal activity, animal weight, 
indoor air temperature and indoor relative humidity and how they affect the 
emissions of carbon dioxide, methane, ammonia and nitrous oxide, on a 
diurnal and daily basis, from a building for fattening pigs. 

In Paper IV, it was hypothesised that environmental factors can be 
manipulated in order to reduce gas emissions from animal manure. 
Increasing the C/N ratio by adding wood shavings to manure can affect gas 
and odour emissions. The objective was to study the effects of temperature 
(manure and air) and the addition of wood shavings on ammonia, methane, 
nitrous oxide, carbon dioxide and odour emissions from fresh dairy cow and 
fattening pig manure. 

2.1 Structure of the research 

The structure of this research is presented in Table 3. Issues regarding 
measurements in naturally ventilated buildings were studied in Papers I and 
II. Factors that affect gas emissions from animal buildings were analysed in 
Papers I–III, with further investigations carried out at the manure level in 
Paper IV. 

Table 3. Structure of the investigations in this research  

Paper Animal category Factors studied and aspects of 
interest 

Main area of focus 

I, II Dairy cows Gas concentration in naturally 
ventilated buildings  

Number and choice of 
sampling locations 

II, III Dairy cows, 

Fattening pigs 

Animal weight, animal activity, 
air temperature and relative 
humidity 

Daily and diurnal 
variations in gas 
emissions 

IV Dairy cows and 

fattening pigs: 
manure 

Air temperature, manure 
temperature, wood shavings 
(C/N ratio) 

Ammonia and odour 
emissions  
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3 MATERIALS AND METHODS 

3.1 Housing systems and research design 

A summary of the housing systems and production information in the dairy 
cow and fattening pig buildings where the investigations in Papers I–III 
were carried out is presented in Table 4. The buildings which were all 
located in the south of Sweden are shown in Figures 4–6.  

Table 4. Housing systems and production information for Papers I–III  

Description Paper I Paper II Paper III 

Measurement period December 2006 to 
May 2007 

February–May, 2008 Spring, autumn and 
summer, 2007–2009 

Animal category Holstein dairy 
cows 

Holstein dairy cows Fattening pigs 

Animal number 164–195 108 50–54 

Animal weight ~ 600 kg ~ 600 kg ~ 25–110 kg 

Feeding Twice per day Twice per day Once per day 

Ventilation system Natural  Natural Mechanical 

Housing system Loose housing Loose housing Loose housing 

Bedding material Wood shavings Peat on rubber mat Straw 

Floor system Partly Slatted Solid inclined Partly slatted 

Manure system Slurry Slurry Slurry 

Manure cleaning from 
the floor 

Twice per day 

 

Once every hour in 
daytime and every 
second hour at night 

Once per day 

Manure removal from 
the building 

Twice per day 

 

Twice per day 

 

Once per day 
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The investigations in Paper I were conducted in a commercial dairy cow 
building (Figure 4). The concentrations and emissions of carbon dioxide, 
methane, ammonia and nitrous oxide were measured continuously at nine 
evenly distributed indoor locations. Outdoor concentrations were measured 
at one location on both sides of the building. Air temperature and relative 
humidity were measured continuously. The concentrations of each gas at 
the indoor sampling locations were analysed for differences in time and 
place. 

 
Figure 4. Dairy cow building at Västarby (location: 55.80, 13.53) where the measurements in 
Paper I were carried out. 

The investigations in Paper II were conducted in a commercial dairy cow 
building (Figure 5). The concentrations and emissions of carbon dioxide, 
methane, ammonia and nitrous oxide were measured continuously at five 
evenly distributed indoor locations. Outdoor concentrations were measured 
at two locations. Animal activity, air temperature and relative humidity were 
measured continuously. The diurnal relative activity together with hourly 
averages of gas emission rates, air temperature and relative humidity were 
used to study the diurnal variations. The daily relative activity together with 
daily gas emissions and air temperatures were used to study the daily 
variations.   
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Figure 5. Dairy cow building in Bollerup (location: 55.42, 14.07) where the measurements in 
Paper II were carried out. 

The investigations in Paper III were conducted in an experimental building 
(Figure 6) where three batches of pigs were fattened in the autumn, spring 
and summer. The concentrations and emissions of carbon dioxide, methane, 
ammonia and nitrous oxide were measured continuously for each batch. 
Animal activity (for one of the batches) and air temperature were measured 
continuously and relative humidity was calculated on a continuous basis. 
The pigs were weighed at the beginning, in the middle and towards the end 
of each fattening period. A linear increase in the weight of the pigs was 
assumed to calculate the daily weight gain. The diurnal relative activity 
together with hourly averages of the emissions, air temperature and relative 
humidity were used to study the diurnal variations. The daily relative 
activity together with daily averages of the emissions, air temperature, 
relative humidity and animal weight were used to study the daily variations.   
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Figure 6. Fattening pig building at Alnarp Södergård (location: 55.65, 13.06) where the 
measurements in Paper III were carried out. 

The investigations in Paper IV were carried out using fresh liquid manure 
collected from a building with tied-stall dairy cows and from a building for 
fattening pigs. The manure samples were collected on three separate days 
(samples 1, 2 and 3) from each animal building. Each manure sample was 
divided into two portions and wood shavings were mixed with one of the 
portions. The wood shavings were a combination of flakes from pine (25%) 
and spruce (75%) trees. The flakes had a main particle size of about 1–20 
mm and were mostly 0.1–0.5 mm thick with some measuring up to 1 mm. 
Odour and gas emissions from equal volumes of each portion of the manure 
sample were measured in a climate controlled dynamic flux chamber (Figure 
7) at different combinations of manure temperatures:  approximately 15, 20 
and 25°C and air temperatures approximately: 15, 20 and 25°C. Each 
sample had 18 treatments, (9 without and 9 with wood shavings) giving a 
total of 54 treatments per animal manure type. 
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Figure 7. Climate controlled dynamic flux chamber where different air and manure 
temperatures were simulated for the experiments in Paper IV. 

3.2 Measurement methods and accuracy in determinations 

3.2.1 Concentrations 

The concentrations of carbon dioxide, nitrous oxide, ammonia, methane 
and water vapour in all the papers were measured with a photo-acoustic 
multi-gas analyser 1412 and a multiplexer 1309 (Lumasense Technologies 
SA, Ballerup, Denmark). The instrumental set-up during field measurements 
is shown in Figure 8. The photo-acoustic analyser was recalibrated by the 
manufacturer on three different occasions during the measurements in this 
study. The detection limits of the gases were: 1.5 ppm for carbon dioxide, 
0.03 ppm for nitrous oxide, 0.2 ppm for ammonia and 0.4 ppm for 
methane. The analyzer had a repeatability of 1% and a range drift of ±2.5% 
of the measured values according to data sheets from the manufacturer. 
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Concentrations were measured in mg m-3 at a reference temperature of 
20ºC and converted to the actual measurement temperatures. 

Multiple-location air sampling for gas concentration measurements was 
carried out in the naturally ventilated dairy cow buildings in Papers I and II. 
The indoor or outdoor concentrations of a gas at any time were the mean 
from all the indoor or outdoor sampling locations. A single indoor sampling 
location at the air exhaust duct and one outdoor sampling location were 
sufficient in the mechanically ventilated building for fattening pigs in Paper 
III. 

Gas concentrations in Paper IV were measured at the air exhaust duct of 
the dynamic flux chamber while the background concentrations were 
measured at the air inlet duct. Air samples for odour measurements were 
collected in nalophan bags at the exhaust duct of the flux chamber using a 
vacuum sampling device manufactured by ECOMA (Honigsee, Germany). 
The samples were analysed following the procedures described in the 
European guidelines (CEN, 2003). A standardised panel and an ECOMA 
(Honigsee, Germany) TO7 olfactometer were used to measure the odour 
concentrations.  

 
Figure 8. Photo-acoustic analyser coupled with a multiplexer during field measurements. 
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3.2.2 Animal activity 

The activity or movement of the dairy cows in Paper II and the pigs in one 
of the batches in Paper III were measured using a passive infrared detector 
and an analogue signal interface, with detail description in another 
publication (Pedersen & Pedersen, 1995). An analogue signal that is 
generated is proportional to the temperature difference between the animals 
and the background, as well as to the velocity of the animals. The activity 
sensor monitors the total activity in a group of animals. The activity was 
measured using two sensors in the pig and dairy cow buildings. It was 
measured every 10 minutes and hourly averages were used in the analysis. 
The diurnal relative activity was calculated as the ratio between the activity 
for a specific hour and the mean activity for each day. The daily relative 
activity was calculated as the ratio between the mean activity for a specific 
day and the mean activity for the entire measurement period. 

3.2.3 Ventilation rates 

The ventilation rates in Papers I and II were calculated using the carbon 
dioxide mass balance method (CIGR, 2002). The ventilation rate was 
calculated on a 24-hour basis in Paper I and on an hourly basis in Paper II 
where the animal activity was measured. 

The air velocity in the mechanically ventilated building in Paper III was 
measured with a hot-wire anemometer (VelociCal 9545/9545-A, 
Minnesota, USA) at nine locations in the cross section of a duct at the 
exhaust fan. The mean air velocity was used together with the ducts’ 
diameter to calculate the ventilation rate. The standard deviation of the 
ventilation rate in the pig building was about 10% of the mean.   

The air flow rate in Paper IV was calculated from the pressure difference 
that was measured at an orifice plate in the air exhaust pipe of the flux 
chamber. It was measured using a pressure gauge (EMA 84, Halstrup-
Walcher GmBh, Kirchzarten, Germany) with an error margin of ±0.5% at 
full scale. 

3.2.4  Emission rates 

The emission rates of the gases in Papers I–III were calculated as the product 
of the ventilation rate and the concentrations in the buildings when 
corrected for background concentrations. Ammonia and carbon dioxide 
emission rates from the manure samples in Paper IV were calculated using 
the air flow rates and the concentrations from the flux chamber when 
corrected for background concentrations. The odour emission rates from 
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the manure samples in Paper IV were calculated using the odour 
concentrations and air flow rate. 

3.2.5 Temperatures 

The air temperatures in Papers I–III were measured using Tiny-tag loggers 
(Gemini Data Loggers, Chichester, UK) with an operating range from        
-40°C to 85°C and a reading resolution accuracy of 0.01°C or better. The 
manure and air temperatures in Paper IV were measured with 
thermocouples (Cu/CuNi) and a data logger (INTAB Interface-Teknik AB, 
Stenkullen, Sweden. 

3.2.6 Humidity calculations 

The relative humidity was calculated using the water vapour concentrations 
measured with the photo-acoustic analyser and the saturated vapour 
concentration at the corresponding air temperature (Carl, 2010). 

3.2.7 Manure chemical contents 

The manure samples in Paper IV were analysed at an external laboratory 
(Eurofins Food & Agro Sweden AB, Kristianstad, Sweden) using standards 
from the Swedish Standard Institute (SIS, 2008): SS 028113, for the DM 
content; SS 028101:1-92, for the total nitrogen; KLK 65:1, for the NH4

+-
N; and SS-EN 12176:98, for the pH. The C/N ratios of the samples were 
also analysed. 

3.2.8 Animal weight 

The weights of the dairy cows in Papers I and II were obtained from 
production reports at the farms. The pigs in Paper III were weighed at the 
beginning, in the middle and towards the end of each fattening period. A 

linear increase in the weight of the pigs was assumed when calculating the 
daily weight gain. The animal weights were measured to a resolution of  
0.5 kg. 

3.3 Statistical analyses 

The data was analysed using the R software Project for Statistical 
Computing, versions 2.7.1–2.10.1 (R, 2010). For purposes of statistical 
convenience due to the large data in Papers I–III, the time variable was 
converted to a Day of Year variable with 1 representing January 1st and 365 
(or 366) representing December 31st. Hourly averages were considered for 
the data in Papers II and III so as to synchronise the parameters from the 
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different instruments. When applicable, the data was transformed (Box-Cox 
transformation) to meet the criteria for statistical analyses. Correlations 
between parameters were tested by calculating the Pearson's product-
moment correlation coefficients. Treatment effects were studied using one-
way analysis of variance in Paper I and two-way analysis of variance in Paper 
IV. When treatment effects were significant in Paper IV (p < 0.05), multiple 
comparison testing was carried out using Fisher’s LSD test to rank the 
treatments. Simple linear regression analyses were used to determine the 
relationships between different factors in all the papers. Best subset 
regression analyses were used to determine the relative importance of 
different factors to gas emissions in Paper III. 
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4 SUMMARY OF RESULTS 

A summary of the main results in all the papers is presented in this section. 
Detail results are available in the respective papers.  

4.1  Gas concentrations in naturally ventilated buildings: 
Number and choice of sampling locations (Paper I) 

Variance analysis of the concentration profiles of carbon dioxide, methane 
and ammonia showed significant differences in the mean concentrations at 
all indoor sampling locations. The differences in indoor concentrations 
between various sampling locations were much smaller for long-term 
measurements than for the short-term measurements of single days. The 
mean nitrous oxide concentrations were quite low and showed little 
variations by sampling location inside the building. 

4.2 Diurnal and daily variations in animal activity and gas 
emissions (Papers I–III) 

4.2.1  Animal activity (Papers II and III) 

The activity of the dairy cows in Paper II and the fattening pigs in Paper III 
varied on a diurnal and on a daily basis. The diurnal profile of the cow 
activity had two peaks of about the same height in the morning and in the 
afternoon, respectively. Regarding the pigs in batch 3, a higher activity peak 
with a relatively short duration was measured in the morning while a lower 
activity peak with a long duration was measured in the afternoon. 

The daily activity of the dairy cows decreased with increasing indoor air 
temperatures during the measurement period. The daily activity of the pigs 
decreased with increasing animal weight during the measurement period 
with a correlation coefficient of -0.84. 
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4.2.2 Gas emissions (Papers I–III) 

Emission rates of ammonia, methane and carbon dioxide 

The emission rates of ammonia, methane and carbon dioxide from the 
buildings when the animals were permanently indoors are shown in Table 
5. The emission rates from the building in Paper I between 5 p.m. and 9 
a.m. with the cows indoors were: 0.89 g NH3 LU-1 h-1 and 9 g CH4 LU-1 h-

1. 

Table 5. Emission rates from the buildings with the animals indoors during the whole day 

Emissions,  

g LU-1 h-1  

Dairy cow building  Fattening pig building 

Paper I* Paper II♠  Paper III♦ 

NH3 0.99–1.13 0.81 ± 0.40  1.36–1.51 

CH4 11.3–13.0 10.8 ± 2.3  2.31–11.49 

CO2 - -  655–707 

LU: Livestock unit (500 kg animal weight) ,*: Range in monthly mean, ♠: Mean ± standard 
deviation, ♦: Range in mean for three batches of fattening pigs 

Factors that affect variations in gas emissions and animal activity 

Diurnal and daily variations in gas emissions were affected by qualitative and 
quantitative factors. The qualitative factors included light availability 
(day/night) and management routines such as feeding, milking, cleaning and 
manure removal. The measured quantitative factors were the animal 
activity, animal weight, ventilation rate, air temperature and relative 
humidity. 

Diurnal variations in gas emissions  

Gas emissions from both dairy cow buildings and the pig building showed 
diurnal variations with high emissions in the daytime relative to night-time 
periods. The average diurnal variations in methane and ammonia emissions 
from the cow building in Paper II had two peaks of about the same height 
in the morning and in the afternoon, respectively. The average diurnal 
variations in ammonia and carbon dioxide emissions for all the three batches 
from the pig building (Paper III) had two peaks: a high peak with a 
relatively short duration in the morning and a low peak with a long 
duration in the afternoon. Methane emissions from the pig building after the 
morning peak were significantly lower for batches 1 and 2 but for batch 3 
there was a slow increase in the evening with a small peak at about 10 p.m. 

Subset regression analyses showed that the activity of the pigs explained 
most of the diurnal variations in ammonia and carbon dioxide emissions 
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(Paper III). Further calculations gave significant correlations (p < 0.001) 
between ammonia emissions and the diurnal relative activity of the pigs  
(r = 0.68, where r is the correlation coefficient) and also between carbon 
dioxide emissions and the diurnal relative activity of the pigs (r = 0.89). A 
weaker correlation was obtained between methane emissions and the diurnal 
relative activity of the pigs (r = 0.41, p = 0.05). 

Daily variations in gas emissions and animal activity 

The daily data in the cow building (Paper II) revealed that the methane 

emissions were positively correlated with the cow activity (r = 0.61), and 
negatively correlated with the indoor air temperature (r = -0.84). The 
ammonia emissions were positively correlated with the indoor air 
temperature (r = 0.66), and negatively correlated with the animal activity  
(r = -0.51). There was a strong negative correlation between the activity of 
the cows and the indoor air temperature (r = -0.78).   

The best subset regressions revealed that daily variations in carbon 
dioxide, methane and ammonia emissions were mostly influenced by the 
weight of the pigs (Paper III). However, during warm weather conditions in 
summer, the air temperature was more important than the weight of the 
pigs for the daily variations in methane emissions. The animal activity, 
which was measured for one of the pig batches, affected to some extent the 
daily variations in ammonia and methane emissions. 

4.3 Effects of temperature and wood shavings on gas emissions 
from animal manure (Paper IV) 

Manure samples with wood shavings had higher DM content, C/N ratio 
and pH levels than samples without wood shavings at the end of the 
measurements. Manure samples with added wood shavings generally had 
lower total-N and NH4

+-N levels than samples without wood shavings at 
the end of the experiments.   

4.3.1 Temperature 

Positive correlations were found between the ammonia emissions and the 
temperatures of the cow and pig manure. Odour emissions were positively 
correlated with the cow manure temperatures. Odour emissions and manure 
temperatures had no significant correlation for the pig manure samples 
without wood shavings, and negatively correlated for the pig manure 
samples with wood shavings. Air temperatures did not significantly affect 
ammonia and odour emissions from the manure samples. The emissions 
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from the cow manure were positively correlated to the water vapour 
pressure. 

4.3.2  Wood shavings 

Ammonia emissions were significantly higher (p < 0.05) from all pig 
manure samples with wood shavings as compared to samples without wood 
shavings. Ammonia emissions were lower (p < 0.05) from two of the cow 
manure samples with wood shavings as compared to samples without wood 
shavings. There was no significant difference in the ammonia emissions from 
one of the cow manure samples with or without wood shavings. 
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5 GENERAL DISCUSSION 

5.1 Uncertainty in the emissions (Papers I–IV) 

The main quantitative parameter with a high level of uncertainty in these 
measurements was likely the emission rate from the naturally ventilated 
buildings. The uncertainty in the emission rates is due to uncertainties in the 
gas concentrations, and to a greater extent, in the ventilation rates. 

The uncertainty in the measurement of the concentrations of some gases 
like ammonia can be due to adsorption or desorption on the surface of the 
sampling tubes, which is a function of tube material, tube length and 
temperature (Shah et al., 2006; Mukhtar et al., 2003). Experiments have 
shown that the response time of the multi-gas analyser is gas dependent with 
rapid tracking for carbon dioxide (Hinz & Linke, 1998a) and slow tracking 
for ammonia concentrations (Rom & Zhang, 2008). The experimental 
setup in this research with a high air flow rate (3.2 l min-1) through 
polytetrafluoroethylene sampling tubes, a single vacuum pump at the air 
exhaust of the multiplexer and a short tube length (0.4 m) connecting the 
multiplexer and the multi-gas analyser that conveyed air from all sampling 
locations, possibly minimised gas losses through adsorption/desorption. As 
an additional precaution, dust and water filters were used in the sampling 
tubes. The concentrations of the calibration gases were chosen to reflect 
possible levels in animal buildings: 3500 ± 70 ppm for carbon dioxide, 203 
ppm ± 2% for methane, 74.2 ppm ± 3% for ammonia, and 5.04 ppm ± 2% 
for nitrous oxide. Low nitrous oxide concentrations in buildings with liquid 
manure systems suggest that the photo-acoustic analyser may not be the 
instrument of choice for measuring nitrous oxide in buildings of the type in 
this study. However, a lower calibration gas concentration for nitrous oxide 
might have improved its measured concentrations.    
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The relative error in the ventilation rates when the carbon dioxide 
balance method is used can vary within 2–50% of the actual values (Zhang et 
al., 2010; Ozcan et al., 2007; Blanes & Pedersen, 2005; De Sousa & 
Pedersen, 2004; Hinz & Linke, 1998a; Hinz & Linke, 1998b). Assuming a 
relative error in gas concentrations measured with the photo-acoustic 
analyser to be about 2.5% of the actual concentrations (Hinz & Linke, 
1998a), the resulting error propagated in the emissions rates should vary to 
within 2–50% of the reported emissions. 

5.2 Number and choice of sampling locations (Papers I–III) 

Spatial variations in gas concentrations (Paper I) highlighted the need for 
multi-location measurements for short-term studies in naturally ventilated 
animal buildings. Localised sources of gas production, wind speed and wind 
direction can cause imperfect air mixing, resulting in spatial variations in gas 
concentrations inside naturally ventilated buildings (Van Buggenhout et al., 
2009; Cnockaert & Sonck, 2007; Jeppsson, 1999). In one study involving 
concentration measurements at eight locations in a naturally ventilated 
building during a one month period, a maximum difference in the mean 
ammonia concentrations between two locations was 35%, and based on the 
wind direction, it could increase to more than 100%  (Cnockaert & Sonck, 
2007). 

The average values in measured gas concentrations at the various indoor 
sampling locations (Paper I) became closer to each other with increasing 
sampling duration. As such, the differences in mean concentrations between 
any two sampling locations were smaller for longer measurement periods 
when compared to short-term measurements of single days. This indicates 
that a good choice of a single sampling location may give satisfactory 
concentration data for long-term measurements. However, the optimum 
number of sampling locations in naturally ventilated buildings probably 
depends on the measurement device, sampling duration, animal distribution 
in the building, building size and prevailing winds. 

In the cow building in Paper II, five sampling locations were chosen 
above the cubicles and at the centre of the building since the measurement 
duration was long (~ four months). In the mechanically ventilated building 
for pigs (Paper III), a single exhaust fan was in operation. A single location 
close to the duct of the exhaust fan should therefore be ideal for sampling 
the average indoor gas concentrations and for calculating the emissions from 
the building.  



 47  

5.3 Animal activity and gas emissions (Papers I–III) 

5.3.1 Animal activity (Papers II and III) 

Diurnal variations in the activity of the cows (Paper II) were probably 
related to the feeding, milking and urinating/defecating routines. The 
morning feeding session started at about 8 a.m. and the morning activity 
peak was measured one hour later at about 9 a.m. Similarly, the afternoon 
feeding session started at about 4 p.m. and the afternoon activity peak was 
measured at about 5 p.m. The morning activity peak in the pig building 
(Paper III) was most likely related to feeding and cleaning of the manure on 
the floor. Competition for feed from the single feeder in each pen increased 
the activity of the pigs (Botermans et al., 2000). The activity of pigs has been 
shown to vary considerably with changes in the feeding schedule 
(Groenestein et al., 2003). The afternoon activity peak was probably due to 
the behaviour of the pigs during eating, urinating and defecating. A positive 
relationship has been reported between the urinating frequency and the 
activity of pigs (Aarnink et al., 1996). 

The decrease in the daily activity of the cows during the measurement 
period (Paper II) was probably related to the increase in average indoor air 
temperatures as the season changed from winter to spring. A possible 
influence of the animal weight on the activity was most likely small since 
small changes were expected in the animal weight. A reduction in the time 
cows dedicate to feeding and ruminating with increasing heat stress (De Palo 
et al., 2006; West, 2003) should probably decrease the activity of cows with 
increasing temperatures. On average, the indoor air temperature increased 
from about 5°C at the start of the measurement period to about 15°C 
towards the end of the measurement period. Occasionally, during the last 
part of the measurement period, indoor temperatures were above 20°C with 
a maximum of about 26°C. High temperatures cause heat stress and studies 
have shown that heat stress may alter the behaviour of dairy cows (De Palo 
et al., 2006; West, 2003). The behaviour of dairy cows has also been shown 
to have significant seasonal variations during daylight periods (Provolo & 
Riva, 2008a). 

The decrease in the daily activity of the fattening pigs (Paper III) was 
probably due to the increasing weight and age of the pigs. Experiments have 
shown that at the same age, small pigs are more active than large pigs, and 
young pigs are more active than old pigs (Botermans et al., 2000; Botermans 
& Andersson, 1995). In addition to the differences in the natural behaviour 
between smaller and larger pigs, a reduction in the surface area available to 
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each pig with increasing body weight/size can limit its area of free 
movement and, consequently, reduce its activity. 

5.3.2 Gas emissions (Papers I–III) 

The ammonia emissions from the pig building (Paper III) were generally 
higher than the emissions from the dairy cow buildings (Papers I and II), 
when expressed in livestock units (LU). Methane emissions per LU from the 
two dairy cow buildings were generally higher than the emissions from the 
pig building. However, high methane emissions were measured from the 
pig building during the summer months (batch 3). Higher air and manure 
temperatures might have contributed to the higher methane emissions from 
the pig building in the summer.  

Ammonia and methane emission rates from the cow building in Paper II 
were slightly lower than the emissions from the cow building in Paper I. In 
addition to the differences in the ventilation rates (520 ± 250g LU-1 h-1 in 
Paper II and 250–401 m3 LU-1 h-1 in Paper I), the feed, floor systems and 
manure management methods (Table 4) might have contributed to the 
differences in emissions. Ammonia emissions corresponded to a smaller loss 
in manure nitrogen from the cow building in Paper II (4% of the manure 
nitrogen) than from the cow building in Paper I (5.6% of the manure 
nitrogen). 

Diurnal variations in ammonia emissions 

Diurnal variations in ammonia emissions from both cow buildings  
(Papers I and II) seemed to be related to feeding routines and animal 
activity. Manure removal from the buildings and changes in temperatures 
and ventilation rates should also affect the production and release of 
ammonia.  

Diurnal variations in ammonia emissions from the pig building  
(Paper III) were related to the activity of the pigs. This relationship has been 
associated to the urinating frequency and to air movements over the manure 
surface which is high during the daytime leading to higher emissions 
(Blanes-Vidal et al., 2008; De Sousa & Pedersen, 2004). In one study, 44% 
of the variations in ammonia emissions within the day could be explained by 
the urinating frequency of growing pigs (Aarnink et al., 1996). 
Measurements have shown that changes in temperature and humidity affect 
the lying, wallowing and excreting behaviour of pigs (Huynh et al., 2005), 
which can alter the size of the urine-fouled surface. An increase in the 
urine-fouled surface with increasing temperatures within the day will lead to 
high ammonia emissions. High temperatures in the daytime also enhance 
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urea hydrolysis which increases ammonia emissions (Sommer et al., 2006). 
Manure mixing during cleaning and removal routines might also have 
contributed to the ammonia emission peaks. 

Diurnal variations in methane and carbon dioxide emissions 

Diurnal variations in methane emissions from the cow buildings  
(Papers I and II) were related to the feeding routine and the activity of the 
cows. The feeding routine has been shown to affect methane emissions from 
dairy cows with an increase in methane production of up to 50% 
approximately one hour after feeding (Jungbluth et al., 2001). Diurnal 
variations in temperatures probably did not have any significant effect on the 
overall methane emissions from the cow buildings since methane emissions 
from the manure in these types of buildings are small.  

Diurnal variations in methane emissions were to some extent correlated 
with the activity of the pigs (r = 0.41, p = 0.05). However, further analysis 
of the data indicated that the relationship might be stronger (r = 0.76) for 
lighter pigs (< 50 kg) when methane emissions are lower. This might mean 
that most of the methane in the building at this stage came directly from the 
pigs. In another study, a rather better correlation between methane 
emissions and pig activity has been reported for heavier pigs (86–122.5 kg) 
with fortnightly manure removal (Blanes-Vidal et al., 2008). This might 
indicate that another factor which varies diurnally and is correlated to animal 
activity (e.g. temperature) could also be important for methane emission 
from buildings with indoor manure storage. The relationship between the 
diurnal activity of the pigs and carbon dioxide emissions can be explained by 
their physiological relationship (Pedersen et al., 2008) with high emissions 
during active periods within the day. A similar observation has been 
reported by other authors (Jeppsson, 2002; Osada et al., 1998). 

Daily variations in ammonia emissions  

Ammonia emissions from the cow building (Paper II) increased with 
increasing indoor air temperatures. High indoor air temperatures are 
expected to lead to increased manure temperatures (Park et al., 2006) and 
may also increase ventilation rates (Bruce, 1978). It has been found that 
ammonia is almost exclusively emitted from manure (Jungbluth et al., 2001) 
and its production and release is temperature dependent (Sommer et al., 
2006; Elzing & Monteny, 1997). The daily ammonia emissions increased as 
the cow activity decreased during the measurement period in Paper II, 
although increased animal activity with increased feeding and urinating is 
expected to increase ammonia emissions. The increase in temperatures due 
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to a seasonal change seemed to have had a stronger effect on the ammonia 
emissions than the effect of the animal activity. 

The weight of the pigs was generally the predominant factor that 
indirectly accounted for the daily variations in ammonia emissions. The 
effect of animal weight on ammonia emissions might partly be due to an 
increase in the amount of nitrogen excreted with increasing pig weight, 
especially as the feed composition was constant. This is because the nitrogen 
need in relation to the energy need of pigs reduces as they grow older 
(Sommer et al., 2006). An increase in the daily manure production (Ni et al., 
1999b), coupled with an increase in the size of manure-fouled surfaces may 
also increase ammonia emissions with increasing animal weight. The size of 
manure-fouled surfaces and the frequency of excretion on solid floor 
sections are found to be affected by temperature, and to a limited extent, by 
humidity (Aarnink et al., 2006; Huynh et al., 2005; Huynh et al., 2004). 
These authors have shown that above a critical temperature, pen fouling 
increases linearly with temperature and that the critical temperature is lower 
for heavier (and consequently older) pigs. 

Daily variations in methane and carbon dioxide emissions  

The positive relationship between methane emissions and cow activity 
(Paper II) could be physiological, since methane is predominantly emitted 
directly by cows through enteric fermentation (Jungbluth et al., 2001; 
Monteny et al., 2001). The negative correlation between daily methane 
emissions and indoor air temperatures indicated that the quantity of methane 
emitted from the manure (which should be temperature dependent) was 
small and did not contribute significantly to the overall methane profile in 
the cow building in Paper II. Increased daily temperatures resulted in 
decreased cow activity which, in turn, decreased methane production by the 
cows (Paper II). 

The importance of pig weight to the daily methane emissions in batches 
1 and 2 (Paper III) where the mean indoor air temperatures were lower than 
for batch 3 could partly be due to an increase in the microbial activity of 
methanogenic bacteria in the intestines of the pigs with increasing animal 
weight (Jensen, 1996). It could also be due to an increase in the daily 
quantity of manure in the building with increasing animal weight. In batch 
3, where methane emissions and mean indoor air temperatures were higher, 
analysis of the measurements suggested that air temperature was more 
important than animal weight for daily methane emissions. The differences 
in daily methane emissions across the pig batches might have been 
influenced more by the quantity of methane from the manure, than by the 
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quantity that came directly from the pigs, since the pig species and the feed 
content were the same for all the batches. It could be possible that changes 
in the environmental conditions for the different batches affected the pigs 
differently resulting in different levels of methane production through 
flatulence, a view that needs further investigations.  

The weight of the pigs was the most important predictor for the daily 
carbon dioxide emissions. This is in line with an increase in the respiration 
quotient with increasing animal weight (Pedersen et al., 2008). The 
production of carbon dioxide from the manure can be expected to increase 
with the weight of the pigs since the daily quantity of manure in the barn 
increases with the weight of the pigs. However, carbon dioxide production 
from the manure is small and has been estimated to be less than 10% of the 
total production in buildings with frequent removal of liquid manure 
(Pedersen et al., 2008). Daily manure removal from the pig building in 
Paper III suggests that carbon dioxide production from the manure in the 
building was small. 

5.4 Effects of temperature and wood shavings on gas emissions 
(Paper IV) 

5.4.1 Temperature  

Increased ammonia emissions with increasing manure temperatures  
(Paper IV) could be explained by the effect of temperature on urease activity 
and the subsequent ammonia release processes (Sommer et al., 2006). 
Notably, the ammonia emissions were about 2 times lower at manure 
temperatures of about 15°C when compared to emissions at about 25°C. 
Lowering manure temperatures should be an effective ammonia abatement 
technique which is in conformity with other investigations (Van der Stelt et 
al., 2007; Gustafsson et al., 2005; Andersson, 1998). It can be reasonable to 
conclude that manure temperature also contributed to the diurnal and daily 
variations in ammonia emissions from the animal buildings in Papers I–III. 

The observed increase in odour emissions with increasing cow manure 
temperatures could be due to an enhancement of the processes that produce 
the odorants. However, the positive but insignificant relationship between 
odour emissions and the pig manure temperature for manure samples 
without wood shavings and the negative relationship for manure samples 
with wood shavings indicate that there are also other important parameters 
that affect the formation and release of odour. Variations in microbial 
activity due to temperature, manure water content and changes of the 
manure surface may affect odour emissions. 
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Regarding the air temperature which varied independently from the 
manure temperature in Paper IV, no significant effect on the ammonia and 
odour emissions from the manure samples could be observed. However, at 
the building level, positive correlations have been reported for studies in 
some buildings (Nimmermark & Gustafsson, 2005; Jeppsson, 2002) although 
a negative influence of ambient air temperature on ammonia emission was 
observed in another building (Aarnink et al., 1993). High indoor air 
temperatures lead to increased temperatures at the manure surface and in the 
manure and consequently an increase in gas emissions can be expected. This 
can explain the positive correlation between air temperatures and ammonia 
emissions in the dairy cow building in Paper II. In addition, high indoor air 
temperatures may increase the air exchange rate (Bruce, 1978), thereby 
increasing gas emissions. The manure temperature in Paper IV should have 
been affected by the air temperature just to a very small extent since the 
manure temperature was controlled separately by the water bath.  

5.4.2 Wood shavings 

The addition of wood shavings to the cow manure in Paper IV increased its 
C/N ratio to optimum levels of 25–38 (Ekinci et al., 1998; Poincelot, 
1974), favoured by microorganisms to immobilise ammonium, resulting in 
lower ammonia emissions relative to the manure without wood shavings. 
Reductions in ammonia emissions have been reported after adding wood 
shavings to animal manure (Tasistro et al., 2008; Luo et al., 2004). Contrary 
to the cow manure, the increase in ammonia emissions from the pig manure 
samples with wood shavings could have been because optimum levels of 
C/N ratio for ammonium immobilisation were not reached after adding 
wood shavings except for one sample. In addition, the pH of the manure 
increased after adding wood shavings. Furthermore, the temperature of the 
manure with wood shavings increased faster than the temperature of the 
manure without wood shavings, due likely to self-heating resulting from 
microbial activity. All these circumstances may explain the higher ammonia 
emissions from the pig manure with wood shavings relative to the manure 
without wood shavings. Despite the possibility of a temporal increase in 
ammonia emissions after adding wood shavings to animal manure in 
laboratory studies, lower emissions are expected over longer periods 
(Dewes, 1999).  
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6 GENERAL CONCLUSIONS 

This study was aimed at contributing to the knowledge on the subject of gas 
emissions and emission abatement from livestock production. Measurements 
of gas concentrations in naturally ventilated buildings were assessed. Factors 
that affect gas emissions, such as building parameters, management routines, 
climatic factors and parameters related to the animals were analysed. The 
following conclusions can be drawn from this research: 
 
 Multi-location sampling of gas concentrations is necessary especially in 

naturally ventilated buildings where short-term measurements of single 
days or less are carried out, due to considerable spatial variations in 
concentrations. Single location sampling of gas concentrations during 
long-term measurements may generate representative data in animal 
buildings if the sampling location is strategically chosen. 

  
 Measurements of gas emissions during different times within the day and 

during different days within the livestock production period are 
necessary to generate reliable data for inventory and for mitigation 
purposes. This is due to significantly large diurnal and daily variations in 
gas emissions. 
 

 Diurnal variations in animal activity are related to management routines 
(e.g. feeding and cleaning), parameters related to animals (e.g. 
urinating/defecating frequencies) and climate-related factors (e.g. 
temperature). On a daily basis, decreasing animal activity can be caused 
by increasing animal weight or increasing temperatures. 

 
 Diurnal variations in gas emissions are related to the feeding schedule, 

manure removal routines, animal activity and changes in temperature. 
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Daily fluctuations in gas emissions are related to animal activity, animal 
weight and changes in temperature.  

 
 Reducing manure temperatures and increasing manure C/N ratios are 

practical ammonia abatement techniques. However, low air temperatures 
may increase the activity of cows which may in turn cause high methane 
emissions.  
 

 Increasing the frequency of manure removal from the floor and from 
animal buildings may reduce indoor emissions of most gases. A change 
from solid manure to liquid manure systems has the potential to reduce 
nitrous oxide emissions, since very low emissions were measured from 
the type of buildings in this research. 
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7 AREAS OF FUTURE RESEARCH 

 
In order to fully comprehend the conclusions derived from this study and to 
apply the recommendations in practice, more work is needed in some areas 
where there is currently limited knowledge. 
 
 Detailed quantification of carbon dioxide production from different 

sources in animal buildings with liquid manure systems will add 
credibility to ventilation rates calculated based on carbon dioxide mass 
balance. 
 

 Additional experiments in a climate controlled environment as well as 
under practical conditions in animal buildings will provide more 
information regarding the effects of the indoor climate and animal 
weight on animal activity. 
 

 Information concerning the different sources of methane in various types 
of fattening pig buildings, how methane production from the various 
sources vary over the growing period of the pigs and the factors that 
affect their variations may explain the observed seasonal differences in 
methane emissions. 
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