Home About Browse Search
Svenska


Evaluation of Wood Quality Traits in Salix viminalis Useful for Biofuels: Characterization and Method Development

Gao, Jie and Jebrane, Mohamed and Terziev, Nasko and Daniel, Geoffrey (2021). Evaluation of Wood Quality Traits in Salix viminalis Useful for Biofuels: Characterization and Method Development. Forests. 12 , 1048
[Research article]

[img] PDF
5MB

Abstract

Salix (willow) is a well-known coppice plant that has been used as a source for bioenergy for decades. With recent developments in changing from a fossil-based to a circular bioeconomy, greater interest has been orientated towards willow as a potential source of biomass for transport biofuels. This has created increasing interest for breeding strategies to produce interesting genotypic and phenotypic traits in different willow varieties. In the present study, 326 genetically distinct clones and several commercial varieties of S. viminalis were analyzed using complementary approaches including density, chemical, image, histochemical, and morphometric analyses. A systematic approach was adopted whereby the basal regions of harvested stems were separated and used in all studies to aid comparisons. Density analyses were performed on all clone individuals, and from the results, 20 individual plants representing 19 clones were selected for the more in-depth analyses (chemical, image analysis, histochemical, and morphometric). The absolute dry density of the clones selected varied between ca. 300 and 660 kg/m3 with less variation seen in the commercial S. viminalis varieties (ca. 450–520 kg/m3). Selected clones for chemical analysis showed the largest variation in glucose (47.3–60.1%; i.e., cellulose) and total sugar content, which ranged between ca. 61 and 77% and only ca. 16 and 22% for lignin. Image analyses of entire basal stem sections showed presence of tension wood in variable amounts (ca. 7–39%) with characteristic G-fibers containing cellulose-rich and non-lignified gelatinous layers. Several of the clones showing prominent tension wood also showed high glucose and total sugar content as well as low lignin levels. A morphometric approach using an optical fiber analyzer (OFA) for analyzing 1000 s (minimum 100,000 particles) of macerated fibers was evaluated as a convenient tool for determining the presence of tension wood in stem samples. Statistical analyses showed that for S. viminalis stems of the same density and thickness, the OFA approach could separate tension wood fibers from normal wood fibers by length but not fiber width. Results emphasized considerable variability between the clones in the physical and chemical approaches adopted, but that a common aspect for all clones was the occurrence of tension wood. Since tension wood with G-fibers and cellulose-rich G-layers represents an increased source of readily available non-recalcitrant cellulose for biofuels, S. viminalis breeding programs should be orientated towards determining factors for its enhancement.

Authors/Creators:Gao, Jie and Jebrane, Mohamed and Terziev, Nasko and Daniel, Geoffrey
Title:Evaluation of Wood Quality Traits in Salix viminalis Useful for Biofuels: Characterization and Method Development
Series Name/Journal:Forests
Year of publishing :2021
Volume:12
Article number:1048
ISSN:1999-4907
Language:English
Publication Type:Research article
Article category:Scientific peer reviewed
Version:Published version
Copyright:Creative Commons: Attribution 4.0
Full Text Status:Public
Subjects:(A) Swedish standard research categories 2011 > 4 Agricultural Sciences > 401 Agricultural, Forestry and Fisheries > Wood Science
Keywords:Salix viminalis L., bioenergy crops, lignocellulose biofuels, biomass recalcitrance, plant breeding
URN:NBN:urn:nbn:se:slu:epsilon-p-112858
Permanent URL:
http://urn.kb.se/resolve?urn=urn:nbn:se:slu:epsilon-p-112858
Additional ID:
Type of IDID
DOI10.3390/f12081048
ID Code:24871
Faculty:S - Faculty of Forest Sciences
Department:(S) > Department of Forest Biomaterials and Technology
Deposited By: SLUpub Connector
Deposited On:09 Aug 2021 09:25
Metadata Last Modified:09 Aug 2021 09:31

Repository Staff Only: item control page

Downloads

Downloads per year (since September 2012)

View more statistics

Downloads
Hits