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Updating of forest stand data by using recent digital photogrammetry in
combination with older airborne laser scanning data
Nils Lindgren , André Wästlund, Inka Bohlin , Kenneth Nyström , Mats Nilsson and Håkan Olsson

Department of Forest Resource Management, Swedish University of Agricultural Sciences Umeå, Sweden

ABSTRACT
Accurate and up-to-date data about growing stock volume are essential for forest management
planning. Airborne Laser Scanning (ALS) is known for producing accurate wall-to-wall predictions
but the data are at present collected at long time intervals. Digital Photogrammetry (DP) is
cheaper and often more frequently available but known to be less accurate. This study
investigates the potential of using contemporary DP data together with older ALS data and
compares this with the case when only old ALS data are trained with recent field data. Combining
ALS data from 2010 to 2011 with DP data from 2015, both trained with National Forest Inventory
(NFI) field plot data from 2015, improved predictions of growing stock volume. Validation using
data from 100 stands inventoried in 2015 gave an RMSE of 24.3% utilizing both old ALS data and
recent DP data, 26.0% for old ALS only and 24.9% for recent DP only. If information about
management actions were assumed available, combining old ALS and recent DP gave RMSE of
23.0%, only ALS 23.3% and only DP 23.8%.

ARTICLE HISTORY
Received 20 February 2020
Accepted 24 May 2021

KEYWORDS
Forest inventory; forest
growing stock volume;
airborne laser scanning;
digital photogrammetry;
thinning; updating forest
data

Introduction

Up-to-date and accurate data about the forests is important
for forest management planning. Airborne laser scanning
(ALS) has revolutionized forest inventory, providing accurate
and high-resolution data. ALS-based methods, such as the
area-based method where predictions are made for raster
cells (Naesset 2002), can for large areas provide cost-
efficient predictions of key forest variables with an accuracy
that in many cases is sufficient for forest management plan-
ning (Næsset et al. 2004; Nilsson et al. 2017). Forestry has
long relied on forecasting functions to keep forest data
updated (Wikström et al. 2011). Variations in growth,
damages and natural mortality, will however gradually
reduce the accuracy of such forecasted data. Management
actions will also change the state of the forest. Thinning,
where typically about 30% of the basal area is removed, is
carried out as a standard procedure in Swedish forestry.
Annually around 2% of the productive forest land is
thinned and 1% is finally felled in central Sweden. Average
annual growth rates of growing stock volume are in the
range of 7–8 m³/ha in the same area (Nilsson et al. 2015).
Even if an ALS-based prediction is accurate at the starting
point, an update is thus necessary after a few years. Incorpor-
ating more frequently available data sources, possibly in com-
bination with the older ALS data could be one option to
create such an update.

Three-dimensional (3D) point clouds, similar to the ones
produced from ALS, can also be obtained from Digital Photo-
grammetry (DP). In the case of Sweden, the current second
national laser scanning program will take at least seven

years, whereas aerial photos with stereo overlap on average
are acquired by a government program every third year
(Lantmäteriet 2019). From the air photos, a 3D point cloud
can be obtained by image matching of the overlapping
stereo images (Ginzler and Hobi 2015). This DP point cloud
will mainly provide data about the height of the forest
canopy that can be used in an area-based approach, for pre-
dictions of forest variables together with a Digital Elevation
Model (DEM) from ALS (Bohlin et al. 2012).

The Swedish National Land Survey (Lantmäteriet) has since
the year 2009 been scanning Sweden with ALS, originally to
produce a nationwide DEM with 2 × 2 m grid cells (Lantmä-
teriet 2019). The ALS data have also been used to produce
maps of forest attributes (typically Lorey’s mean height,
basal area, volume, mean diameter) in raster format by
several forest companies as well as by the Swedish University
of Agricultural Sciences (SLU) in cooperation with the
Swedish Forest Agency (Nilsson et al. 2017). A new second
national laser scanning of Sweden, primarily for the needs
of the forest sector and co-financed between the government
and the forest sector, started during 2018.

A markedly different property of DP compared to ALS is
that the former mainly relates to the upper part of the
canopy. Several studies have found that stand density-
related measures and lower canopy information are less accu-
rate from DP than from ALS (St-Onge et al. 2008; Bohlin et al.
2012; Vastaranta et al. 2013; Gobakken et al. 2015). The better
results with ALS in particular for variables that are related to
stand density are confirmed in studies where predictions
from ALS are directly compared with predictions from DP
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using the same test area and reference data (Rahlf et al. 2014;
Yu et al. 2015; Hawryło et al. 2017; Ullah et al. 2017). The
results by Bohlin et al. (2017) showed that predictions of
volume (and other forest variables) from ALS data that were
3–6 years older than the DP data still were slightly better
than volume predictions using the more recent DP data.
That study discarded, however, any plots that had been
subject to management actions since the ALS data
acquisition.

Focusing on the forest where no harvest has occurred,
several recent studies have used the framework of data assim-
ilation to combine new and old data using forecast models to
update earlier predictions (Ehlers et al. 2013; Nyström et al.
2015; Lindgren et al. 2017; Ehlers et al. 2018). These early
data assimilation studies used the extended Kalman filter
(Kalman and Bucy 1961). When using the Kalman filter, the
forest data is forecasted and iteratively combined with new
remote sensing data with weights being based on the predic-
tion errors for the different data sources. Only the combined
prediction together with its error estimate needs to be carried
on to be combined with the next data set at a later time point.
Empirical results from the above-cited studies about data
assimilation show that the methods need to be developed
further before their potential can be realized. Goodbody
et al. (2017) investigated a method to update predictions
after selective harvest using drones. By combining metrics
from ALS and very high-resolution DP from drone imagery,
an updated map was created. The study by Goodbody
focuses on the selectively harvested sites only. However,
changes such as growth and damages also affect the state
of the forest. Potentially, information related to these
changes could be found in the difference between two data-
sets in a time series.

Whereas site index and age are needed in the forecasting
step of data assimilation, these data are often not available
for large-area mapping. A straightforward way to obtain
updated predictions from old ALS data might instead be to
use the ALS data for direct modeling with the aid of up-to-
date field reference plots. The old ALS data carries infor-
mation about the stand structure that also could be com-
bined with the more recent data from DP. One way to
achieve this is by using metrics from both older ALS data
and recent DP data in one model developed using present
field reference plots. Furthermore, changes that have
occurred after the ALS data acquisition and are difficult to
detect with DP, such as thinning (Ali-Sisto and Packalen
2017), should be considered when they are known. The
forest owners usually have information about their past man-
agement activities, but such register data is usually not avail-
able for government organizations making wall-to-wall forest
resource maps for large areas.

One aim of this article is to investigate if the prediction
accuracy of present stand level growing stock volume can
be improved by combining old ALS and present DP data in
the same predictive model. The model using the combined
datasets is compared to models using each dataset separ-
ately. In contrast to the similar study by Bohlin et al. (2017),
we also aim to examine how stands that were thinned
since the ALS acquisition affect the result, both when these

management actions are assumed to be known and when
that information is unavailable. Our results show that predic-
tions based on old ALS and recent DP in combination only
were marginally better in terms than using either old ALS
or recent photogrammetry alone given that abrupt changes
like thinning cuttings are known.

Materials and methods

Study area

The study area covers about 120 by 120 km in eastern
Sweden (Figure 1). Norway spruce (Picea abies) and Scots
pine (Pinus sylvestris) in pure or mixed stands dominate the
forest in the area. There is also a smaller proportion of decid-
uous tree species, mainly birch (Betula spp). Forest manage-
ment in the area usually includes the planting of conifers,
pre-commercial thinning followed by one or several thin-
nings for commercial purposes and final felling.

Sample plots from the Swedish National Forest
Inventory

The Swedish National Forest Inventory (NFI) (Fridman et al.
2014) regularly assess the forest over the entire country
using two sets of objectively selected sample plots: one per-
manent set where plots are measured every five years, and
one temporary set that is not revisited. Permanent sample
plots have a radius of 10 m and temporary 7 m. Sample
plots are located along the perimeter of rectangular clusters.
The NFI positions the plots using standard handheld GPS-
units, but some of the plots have also been positioned
using precision GPS devices, see Nilsson et al. (2017) for infor-
mation about the positioning of the NFI plots. On each plot,
tree stems are measured on concentric plots with different

Figure 1. Geographical location of the study area in eastern Sweden.
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sizes depending on the diameter at breast height (dbh) of the
trees. For trees on temporary and permanent plots with a dbh
> 100 mm, stem diameters are measured on circular plots
with 7 or 10 m radius, respectively. Smaller trees with a dbh
> 40 mm and trees with a dbh > 0 mm are measured on
plots with 3.5 or 1.0 m radius, respectively, on both temporary
and permanent plots. For a subsample of the trees, the height
is measured as well. In addition, any forestry activity such as
thinning or final felling is recorded and the time since the
action is assessed. Site index is evaluated according to site
properties (Hägglund and Lundmark 1977), which together
with age and the forest state at the time for inventory was
used for prediction of Current Annual Increment of volume
(CAI) (Wikström et al. 2011). The temporary and permanent
plots measured in 2014 and 2015 from the NFI made up
the forest reference dataset for this study. Ten percent of
the plots which had been subject to final felling after the
ALS data acquisition were removed. A few plots were found
to have obvious coordinate errors and one plot had been
finally felled since the field inventory date. These outliers
were also removed from the data, leaving 262 plots for the
final development of the models. To represent the forest
state in 2015, one year of CAI was added to plots that had
been measured in 2014.

Validation stands

The results were evaluated using 74 stands objectively inven-
toried by forest companies in the study area. These stands
were measured for forest holding inventories in 2015 follow-
ing the procedure of the Forest Management Planning
Package (Jonsson et al. 1993). Out of these, 22 stands were
randomly sampled from stands that had not been thinned
before. In addition to these, 26 stands that had been
thinned since the ALS acquisition were selected and
measured. The validation stands were between 0.4 and 49.5
ha (mean 9.8 ha) and were measured using a systematic
sample of 3–12 plots per stand (depending on the size of
the stand) with 8 m radius placed in a regular grid. Diameters
at breast height were measured for all trees on the plots
above 5 cm using a caliper. Height and age (via core drilling)
were determined for a subsample of the trees (on average 1.5
trees per plot). Forest attributes at stand level were derived by
averaging plot level attributes. Statistics about the sample
plots used for model development and validation stand
data is given in Table 1.

Remote sensing data and predictor variables

The ALS data from the Swedish National Land Survey were
acquired in scan blocks of nominally 25 × 50 km, planned to
be scanned in one day. In the study area, there were 11
blocks of ALS acquisitions. Two different types of scanners
were used: Leica ALS 60 and Optech ALTM Gemeni. The
blocks were scanned during 2010–2011 and during
different seasons (Table 2). The scannings were performed
from flying heights between 1700m and 2300 m resulting
in a point density of 0.5–1 pulses/m2 and a 20% side-lap
between scanning strips. The maximum scan angle was 20°.

Based on the date in combination with historical weather
data and phenology observations, the season of the acqui-
sitions was subjectively classified as leaf-off or leaf-on
(Nilsson et al. 2017).

The Swedish National Land Survey repeatedly acquires
aerial images with stereo overlap covering the whole
country. Images over the study area were acquired in 2015
during leaf-on season. The flight height was 3700 meters
above ground level. The camera was a Vexel UltraCam
Eagle triggered for a 60/30% overlap (along flight line/cross
flight lines) and the pixel size was 25 cm (Lantmäteriet
2019). Digital stereo matching to point clouds was done
using the state of the art software SURE from nFrames
(Rothermel and Wenzel 2012; Wenzel et al. 2013) which
uses the semi-global matching method (Hirschmuller 2008).
Settings for aerial images with 60/30% overlap were applied.

Processing of both point clouds from DP and ALS fol-
lowed a standard area-based approach (Næsset et al.
2004). First, the two datasets were normalized to the
height above ground, using the DEM produced by the
Swedish National Land Survey from the same ALS data as
used in this study. Normalized points with a height above
50 m or below −2 m were discarded. Only first or single
returns in the ALS point cloud were retained in order to
minimize the influence of different data acquisitions (Bater
et al. 2011). In addition, where points from adjacent flight
lines overlapped, only the points with the lowest scan
angle were kept. Points within the sample plots were
extracted and area-based metrics were calculated using
FUSION (McGaughey 2014). The metrics included height
percentiles (P), the square root of quadratic average (Quad-
Mean) and the third root of the cubic average (CubeMean)
of the points’ heights above ground. Metrics also included
vegetation ratios calculated as the proportion of points
above a height threshold (VRThreshold). Thresholds used
were 2 m (Nilsson 1996), the mean and median of the
points. The same set of metrics were also calculated for
raster cells with size 12.5 by 12.5 m covering the entire
study area. For more details on all metrics calculated refer
to the FUSION manual (McGaughey 2014).

Table 1. Descriptive statistics of the field inventory data sets. Models for the
volume per hectare (ha) were developed using NFI plots and evaluated on
the validation stands data sets. The number of observations refers to sample
plots for the NFI plots, while for the validation stands it refers to the
number of stands measured.

Field data set Number of
observations

Proportion
thinned

Median
volume

Volume IQ
range

Validation
stands

100 stands 33% 167 m³/ha 114 m³/ha

NFI plots 262 plots 10% 190 m³/ha 156 m³/ha

Table 2. Number of NFI sample plots per property of the ALS acquisitions:
Season for leaf-off or on conditions and scanner manufacturer. The values
represent the number of plots per combination of the two properties, and
the sum is the total number of plots per property.

Scanner/season Leaf-off Leaf-on Sum:
Optech 80 52 132
Leica 60 70 130
Sum 140 122
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Model development

Ordinary Least Squares regression was used to develop
models for prediction of growing stock volume correspond-
ing to the forest state of 2015. The NFI sample plots were
used as reference data for the model development. Three
different sets of predictor variables were examined:

(i) Only DP metrics.
(ii) Only ALS metrics.
(iii) All available metrics, both the old ALS data and the

present DP metrics in one model.

In addition, each set of predictors were tested in combi-
nation with an indicator variable if the plot had been
thinned in the time between the ALS acquisition and the
field measurement of each plot. This thinning variable
(denoted IND) was based on the NFI data of management
history assessed on the plots during the field measurement.
Plots that were subject to final felling in the time between
the laser data and the aerial image acquisition were excluded
from the analysis.

A linear regression model predicting growing stock
volume was selected for each set of predictor variables
using forward selection. Two transformations of the depen-
dent variable were evaluated: square root transformation
and natural-logarithm transformation. Square root transform-
ation was selected after studying residual plots, and MSE of
the back transformed residuals. Regression diagnostics (p-
values and Akaike information criterion) were used for the
selection of metrics and the appropriate number of predictor
variables to retain in each model. IND was tested for effect on
either intercept, slopes of other variables or both. The prelimi-
nary models were fitted, and large outliers were examined
with an ortho-photo as a background. We examined differ-
ences in ALS acquisition properties using indicator variables
added to the intercept and/or the slope of the models. Indi-
cators were scan area, scanner manufacturer, year of acqui-
sition and leaf-off or leaf-on conditions. To test if there was
a detectable effect of the growth between the ALS acquisition
and the prediction time point, the predicted CAI by Heureka
on the sample plots was tested for significance. This was done
to discern any trends in the data due to the old ALS data,
trained with new sample plots material.

A correction factor ( f ) for back transformation bias was
calculated (Snowdon 1991) as the ratio of the untransformed
reference values (yi) over the back transformed uncorrected
fitted values ŷi, sqrt :

f =
∑n

i yi∑n
i ŷi, back−transformed

.

All models were then used to predict volume in grid cells of
the metrics rasters. Predictions were back transformed and
the correction factor f was applied. Predicted growing stock
volume for each validation stand was then calculated as the
average of raster cells with their cell center within the
stands in the validation data set. Deviations (di = yi − ŷi)
were calculated from the field measured growing stock
volume of the stand. Accuracy of the predictions was

assessed by RMSE, bias and their relative measures to the
mean growing stock volume of the validation stands (�y):

RMSE =
�����������
1
n

∑n
i=1

(di)
2

√
,

rRMSE(%) = 100× RMSE
�y

,

Bias = 1
n

∑n
i=1

(di),

rBias(%) = 100× Bias
�y

.

Results

Model development with NFI plots

Power-weighted mean height metrics (CubeMean, Quad-
Mean) showed to be strong predictors for both DP and ALS
models. All models including ALS data performed best in
terms of R²-adjusted if QuadMean was selected, while for
DP CubeMean was preferred. For ALS, we found different
VR metrics to be the second most important and a small
improvement was also obtained when we added a low per-
centile (P01-P30). For DP models, a low percentile was more
important than any VR metric, but VR2m was still improving
the model. Selected metrics for different models are pre-
sented in Table 3. Models that combined ALS and DP
metrics contained similar metrics that were found to be
important when modeling the sensors separately. QuadMean
from ALS along with the DP metrics VR and MinH gave more
precise models than other candidate models using metrics
with higher correlation with HL from DP, and VR metrics
from ALS.

The indicator variable IND showed a greater effect for ALS
only models. This variable indicates if the stand or sample
plot was thinned in the time since the ALS data acquisition.
There was a significant effect when IND was included in the
DP only model, and also for the combined ALS/DP models.
Indicators (season, scanner) to test for the effect of different
properties of ALS acquisitions (Table 2) showed no signifi-
cance for any model and was left out from the models.
Residual studies showed that growth (CAI) made no signifi-
cant contribution to any of the models, including the ALS
only and ALS + INDmodels where the ALS data were acquired
some 4–5 growing seasons prior to the field data. All models
showed a trend for the residuals over deciduous proportion,
measured as the proportion of the growing stock volume,

Table 3. Selected model forms for different combinations of sensor data (ALS
and DP) as well as the indicator variable for thinning (IND).

Sensor data Selected metrics R²
ALS + DP + IND IND, QuadMeanALS, MinHDP, VRDP,2m 0.849
ALS + DP QuadMeanALS, MinHDP, VRDP,2m 0.847
DP + IND IND, CubeMeanDP, MinHDP, VRDP,2m 0.821
DP CubeMeanDP, MinHDP, VRDP,2m 0.821
ALS + IND IND, QuadMeanALS, P10ALS, VRALS,mean 0.834
ALS QuadMeanALS, P10ALS, VRALS,mean 0.825
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and all models were also significantly improved by adding
deciduous proportion, measured at the NFI plots, as a variable
in the models.

Validation at stand level

We present results for model predictions of the validation
stands in Table 4, with models ordered from lowest to
highest RMSE.

All models including IND performed better than models
without IND. Among the models including IND, differences
in RMSE were lower, with the two models ALS + IND and
ALS + DP + IND performing best. The ALS + DP model
showed lower RMSE compared to only ALS. Comparing ALS
+ DP to the DP model the rRMSE was only 0.6% units lower
for the combined model.

We found that the biases for thinned stands were large for
many models, while it was reasonably low for the un-thinned
stands. The negative bias means a prediction on average
being higher than the true reference value. Recent DP data
showed bias for thinned stands in the same range as for
the model based on only old ALS data. DP + IND model
showed almost as large bias, despite the inclusion of the
IND variable, indicating if the forest was thinned or un-
thinned since the timing of the ALS scanning.

Discussion

Model development with NFI plots

The main goal of this study was to identify and compare
approaches to update forest stand information and look at
the sources of errors with a special interest in volume
change and management actions on primarily old data. We
analyze how to make use of new 3D-data from DP given
that older laser data exist: Discard old data and only use
the new data or combine them to get the best updated
stand register data. Given the current situation, where DP is
more frequently available compared to ALS, effects on com-
bining the data are relevant for operational forestry. If DP
can give information about changes and growth during the
time since an ALS scanning.

The issue of updating forest variable predictions by com-
binations of datasets has been addressed in other studies
as well (e.g. Pippuri et al. 2013). A modeling approach to
update growing stock volume after selective harvest was
suggested by Goodbody et al. (2017). In that study, DP
point clouds from drones were used in combination with
pre-harvest ALS data with promising results. Data assimilation
is another approach to combine predictions (Ehlers et al.

2013; Nyström et al. 2015; Lindgren et al. 2017; Ehlers et al.
2018). In the data assimilation approach, using for example
an extended Kalman filter (Kalman 1960; Kalman and Bucy
1961), the combination of different data sets is split into
two parts: (1) update old data through forecast models, (2)
combination of forecasted data with new data through
weighting inversely proportional to their respective uncer-
tainties. Input data required for the growth forecast models
are normally not available in large-area applications. In
addition, changes would have to be addressed in the data
assimilation approach as well since they would affect the
updates.

Not surprisingly, the IND variable was important for
models using the old ALS data. Based on what has been
noted in previous studies (e.g. Bohlin et al. 2017), it was
also expected that incorporating DP data would not solve
the issue of over-estimating thinned stands. A major draw-
back of DP data for forest applications is its recognized lack
of density-sensitive information. Therefore, it was expected
that a model with density-related metrics from ALS and
height-related metrics from DP would perform well. Surpris-
ingly, the model with QuadMean from ALS combined with
VR and MinH from DP performed best, better than models
with VR from ALS. Our interpretation is that QuadMean is
height related but also density related, and therefore a suit-
able metric from ALS.

Estimating a function that combines different data sources
demands a sufficient number of reference data with a com-
plete set of independent variables for each sample plot.
Each ALS block of 25 × 50 km is too small for obtaining
enough NFI plots. Thus blocks scanned during different
dates and with different scanners had to be used in the
same prediction model. Visual inspection of the predicted
raster could in this study not reveal the different scan areas
scanned with different scanners, nor did any dummy variable
tested and therefore the models were fitted to the whole
area. Season has previously been regarded as an important
factor (Nilsson et al. 2017), and the lack of significance
might be related to the scarcity of deciduous-dominated
plots in this particular rather than the lack of an effect. The
result that predicted CAI from Heureka on the sample plots
was not significant to the model, was probably because the
time since the ALS scanning is relatively short and other
error sources are more important.

Validation at stand level

The obtained results for DP are similar to previous studies
where large areas have been predicted and evaluated at

Table 4. Validation results for model predictions of volume at 100 stands. Different sets of sensor data (ALS and DB) as well as an indicator variable for thinning
(IND) were used when developing models with NFI plots as reference data.

Metric group rRMSE (%) rBias (%) rBias, thinned (%) rBias, un-thinned (%)

ALS + DP + IND 23.0 −1.1 −5.7 0.54
ALS + IND 23.3 1.5 0.15 1.8
DP + IND 23.8 −6.2 −15.2 −3.0
ALS + DP 24.3 −3.6 −17.3 1.4
DP 24.9 −7.7 −21.9 −2.5
ALS 26.0 −2.9 −22.6 4.2
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stand level (Bohlin et al. 2017). Some other studies (Gobakken
et al. 2015; Yu et al. 2015) have obtained better results for DP.
A reason for this might be that our study was carried out
within a large area with varying forest conditions.

The results show that the combination of old laser data
and recent photogrammetry data, trained with recent field
data, provided the best predictions both when thinning cut-
tings were known and unknown. In the case when thinnings
were unknown, the improvement when combining DP and
ALS in terms of RMSE was only minor compared to DP only.
ALS without the IND, the indicator variable for thinning,
had considerably higher RMSE. The validation dataset has a
high proportion of thinned stands compared to what is
expected in a random sample such as the NFI training data.
This will affect the result, in particular for the old ALS data,
but also for DP data that is less sensitive to the stand
density. The bias for the thinned stands is severe for all
models not including IND. This confirms the lack of density-
related information in DP data.

The knowledge of thinning cuttings improved results for
all models. In particular, the use of old ALS data in combi-
nation with IND performed better than using only recent
DP data or DP data including IND. The RMSE of models utiliz-
ing ALS and knowledge about thinning were only 0.3% units
higher than models also including DP metrics. The DP + IND
bias in thinned stands was surprisingly large, despite the
IND variable being included in the model.

The results highlight that, if old laser scanning data are
available, incorporating new data from a less information-
rich source such as point clouds from photogrammetry is
less valuable when changes are known. The case where man-
agement actions are not known, but older information in
general is of high quality, contrasts this. In this case, more
up-to-date information should be considered. This article
shows that combining ALS and DP, or just using DP data, is
valuable in keeping stand data up to date. It is expected
from previous studies that ALS show good results compared
to DP. The advantage of the frequent availability of DP does
not fully out-compete the advantage of the better infor-
mation content of the ALS in this study, especially when man-
agement actions are known. Thus, using even a few years
older ALS together with recent field data and knowledge
about thinning appears to be a practical solution for
keeping stand registers up to date, and an alternative to
using forecasting functions. It should however be kept in
mind that this method does not compensate for differences
in site index and can thus only be recommended for a few
years of forecasting. In this study, growth (CAI) since the
time of the ALS acquisition did not show any significant
trend in any model. This study was done over a relatively
short period of time, and longer intervals would probably
increase the importance of CAI and therefore possibly the
value of including DP into an old ALS prediction.

Conclusion

We found a small improvement by combining older ALS with
recent DP data sets, both when thinning since the acquisition
of the ALS data was assumed known and assumed unknown.

The quality of ALS data could be maintained if thinnings were
included in the model, yielding better result than DP data and
almost as low RMSE as the combination of ALS and DP. In case
thinnings were not known, DP data had lower RMSE than ALS.
An even lower RMSE was found for the combination of DP
and ALS in this case, but the improvement was only minor.
These results also highlight the importance of detecting
changes to the forest for maintaining the accuracy of forest
predictions.
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