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Abstract 

Background: Entering and exiting winter dormancy present important trade‑offs between growth and survival at 
northern latitudes. Many forest trees display local adaptation across latitude in traits associated with these phenology 
transitions. Transfers of a species outside its native range introduce the species to novel combinations of environmen‑
tal conditions potentially requiring different combinations of alleles to optimize growth and survival. In this study, we 
performed genome wide association analyses and a selection scan in a P. trichocarpa mapping population derived 
from crossings between clones collected across the native range and introduced into Sweden. GWAS analyses were 
performed using phenotypic data collected across two field seasons and in a controlled phytotron experiment.

Results: We uncovered 584 putative candidate genes associated with spring and autumn phenology traits as well as 
with growth. Many regions harboring variation significantly associated with the initiation of leaf shed and leaf autumn 
coloring appeared to have been evolving under positive selection in the native environments of P. trichocarpa. A 
comparison between the candidate genes identified with results from earlier GWAS analyses performed in the native 
environment found a smaller overlap for spring phenology traits than for autumn phenology traits, aligning well with 
earlier observations that spring phenology transitions have a more complex genetic basis than autumn phenology 
transitions.

Conclusions: In a small and structured introduced population of P. trichocarpa, we find complex genetic architec‑
tures underlying all phenology and growth traits, and identify multiple putative candidate genes despite the limita‑
tions of the study population.

Keywords: Populus trichocarpa, Phenology, Local adaptation, Bud burst, Leaf senescence, Introduced population

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
At northern latitudes winter conditions are unfavorable 
to active plant growth through a combination of low tem-
peratures, frosts, and light conditions leading perennial 

plants to avoid these conditions by entering winter 
dormancy (hereafter dormancy) [1]. Transitions from 
active growth to dormancy and from dormancy to active 
growth are controlled by different environmental cues 
where the transition to dormancy is primarily induced by 
changes in photoperiod [2] or light quality [3], while the 
release of dormancy is induced by prolonged exposure to 
low temperatures followed by increasing temperatures 
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reactivating growth [4]. Incorrect timing of phenology 
transitions is known to result in loss of potential growth 
through extended dormancy or loss of realized growth in 
the form of damage to important tissues such as meris-
tems and leaves from exposure to unfavorable conditions 
or even death. Dormancy hence represents an important 
life history trade-off between growth and survival. Mala-
dapted individuals are likely to suffer lowered reproduc-
tive success and/or biomass production, both of which 
may have large ecological and economic repercussions 
[5].

Populations of widespread species often display signa-
tures of phenotypic and genetic adaptation to their native 
environments, even in species with considerable gene 
flow between the populations [6]. This phenomenon, 
known as local adaptation, often arises from positive 
selection [7], which leaves distinct and detectable sig-
natures across the genome [8, 9]. The strength of selec-
tion along with local rates of recombination and gene 
flow are the major determining factors of the extent and 
magnitude of signatures of selection [9, 10]. Furthermore, 
associations between segregating polymorphisms in the 
genomes of individuals and their phenotypes or meas-
ures of their natal environment can be explored by per-
forming genome wide association studies (GWAS) [11]. 
Local adaptation to climate and photoperiod has been 
observed in a large number of species with wide South-
North distribution ranges including Arabidopsis thaliana 
[7], Picea abies [12] and Populus tremula [13]. Empirical 
studies suggest that the genetic basis of local adaptation 
can be highly polygenic, where a majority of the loci and 
alleles conferring local adaptation have small effects [14] 
although large effect loci have been observed in some 
systems (e.g. [15]). Due to the polygenic nature of these 
traits, the genetic architecture of local adaptation to cli-
mate can be very diverse among even closely related spe-
cies, despite the adaptation being driven by very similar 
environmental conditions (e.g. [15, 16]).

Species within the genus Populus are deciduous, early 
succession trees with wide distributions across the 
northern hemisphere, spanning from the equator to the 
northern limits of tree growth. The rapid growth rate and 
ability to generate natural clones [17, 18] has spurred eco-
nomic interest in the genus [17], while many of the spe-
cies in the genus are also considered keystone species in 
their natural habitats [19]. Populus species are frequently 
utilized in biomass production for forest industry, even 
outside of their natural distribution ranges [20]. In north-
ern Europe, biomass production with Populus species is 
an underutilized option due to the phenological malad-
aptation of commercially bred varieties [21]. Commer-
cial interest thus exists for adapting non-native Populus 
species to growth under northern European conditions, 

but the required genetic resources and understanding of 
relevant traits for such an undertaking are lacking [22]. 
Black cottonwood (Populus trichocarpa) is a deciduous 
tree native to North America with continuous distri-
bution in western and northwest North America from 
California to Alaska. The species has been thoroughly 
studied in its natural range and has been found to dis-
play signatures of local adaptation to climate and photo-
period across its natural range [16, 23]. Introduction of 
the species to novel conditions such as those character-
izing northern Sweden allow further exploration of the 
genetic architecture of these traits, and have the potential 
to reveal novel genes associated with them and compari-
sons with the results and signatures of selection from the 
natural range present an opportunity to uncover further 
details of adaptation, and potential constraints of it in the 
novel conditions, in these traits. Finally, exploration of 
the adaptive potential [22] and its genetic basis in small 
populations resulting from introductions will also offer 
insight into how to perform cost-effective breeding in 
forest trees in terms of breeding population size.

In this study, we perform a field trial and a controlled 
environment phytotron trial to collect data on spring and 
autumn phenology and growth traits in P. trichocarpa. 
We use the data to dissect the genetic basis of these traits 
using both population genomic approaches and genome-
wide association studies. We compare candidate genes 
identified across two successive years and between field 
and phytotron grown plants, in order to identify genes 
that appear to have reliable effects on different phenology 
traits. Finally, we compare candidate genes we identified 
with results from earlier association studies performed in 
the natural range of P. trichocarpa to contrast the genetic 
control of phenology traits under native and novel 
environments.

Results
Phenotypic variation and heritability
All traits (see List of Abbreviations) display variation both 
within and between years, though BB2-top (Fig. 1E) and 
BS2 (Fig.  1F) are noticeably less variable than the other 
traits (Fig.  1). In the field traits there are highly signifi-
cant (p < 0.001) differences between years 2017 and 2018. 
All chosen traits with the exception of BB2-top and BS2 
had an appreciable level of both broad and narrow sense 
heritability  (H2 > 0.4,  h2 > 0.15) with only BB2-top having 
narrow sense heritability less than 0.05 and BS2 having 
broad sense heritability below 0.25. There were signs of 
overfitting for CO8-18 and LS5-18 of the field traits and 
BS2, BS7, BB2-top, BB4-top, BB2-brn, BB4-brn and BB2-
stt, which all were potentially overfitted in the model for 
BLUP -estimation for calculating the broad sense herit-
ability estimations, as the values approached a singularity 
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fit (Table S7). None of the traits could be considered to be 
identical, though BB2-stt and BB4-stt, BB4-stt and BB4-
stb, and CO3-17 and CO8-17 all had high correlations 
 (r2 > 0.8) (Fig. S2).

The initiation of bud burst was visibly different between 
the different parts of the plant in the phytotron experi-
ment (brn, stb, stt and top). However, these differences 
largely disappeared by the  3rd stage for brn, stb and top, 
while stt remained different until the  4th stage. At stage 5, 
the different parts of the plants were all behaving in a sim-
ilar fashion (Fig. 2A). On  1st of August 2018, the phyto-
tron equipment malfunctioned during the first simulated 
winter, before the spring of the second season, causing 
the simulated winter temperatures of 4  °C (Table S5) to 
shift to as high as 21 °C for a few hours, causing early bud 
flush and subsequent bud damage in some of the cuttings 
once the winter conditions were restored. When individ-
uals with a damaged or absent apical bud were compared, 
bud burst timing of both stt (Fig.  2B) and stb (Fig.  2C) 
were significantly different whereas branches showed no 
difference (Fig. 2D). A significant difference was also seen 
in the latter stages of bud set (Fig. 2E).

Summary of Lindley scores and candidate genes
The Lindley score method located between 0 and 80 sig-
nificant slopes for the different traits, yielding overall 
250 significant slopes (Table  1, see also Figs.  S3 and S4 
for traditional Manhattan and quantile–quantile plots). 

Autumn phenology traits LS5-17 (Fig.  3A), LS2-17 
(Fig.  3B) and CO3-17 had the highest numbers of sig-
nificant slopes with 80, 25 and 21, respectively, followed 
by BB4-top with 20 significant slopes. Finally, LS5-18, 
BB4-stb and BB4-brn had 14, 13 and 10 significant slopes 
respectively. The remainder of the traits, including BS7 
(Fig.  3C), had nine or less significant slopes, with no 
significant slopes identified for BB2-brn (Table  1). The 
growth trait (DBH-17) had 4 significant slopes (Fig. 3D).

Between 0 and 101 genes were located within 10 kbp 
of the significant slopes across all traits with 584 unique 
genes included overall (Table  1). GO-term enrichment 
analysis for these genes yielded 41 enriched terms across 
8 of our traits after multiple test correction. Of these 
enrichments, 20 were in the category biological process, 
13 in cellular component and 8 in molecular function. 
Overall, 5 out of the 13 significantly enriched cellular 
components were membranes (Table S8).

Signatures of positive selection and GO‑term enrichment
One hundred eight,106 SNPs were located within 10 kbp 
of the significant slopes and 189 were located in the top 
0.1 percentile in the iHS selection scan (Fig.  4A). Simi-
larly, 120,914 SNPs (higher due to the difference in han-
dling zero recombination values) were located within 10 
kbp of the significant slopes and 65 falls in the top 0.1 
percentile for the H12 statistic (Fig. 4B). The SNP mark-
ers surrounding candidate genes of CO3-17 and LS2-17 

Fig. 1 Phenotypes of all study traits. a Bud burst (BB), b Autumn coloring (CO), c Leaf shed (LS), d Diameter at breast height (DBH) in the field and 
(e) bud burst and (f) bud set (BS) in phytotron. In the box plots, the box spans the first to the third quartile and the median is marked as the thick 
black line. The whiskers span at most 1.5 times the length of the box with any values further away than that being marked as outliers
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were significantly (p < 0.05) enriched in the top 0.1 per-
centile in both selection scans (Table S9) using hypergeo-
metric distribution tests. 710 and 685 genes fell within 10 
kbp of the top peaks, yielding 13 and 15 GO-term enrich-
ments for iHS and H12 selection estimates respectively 
(Fig. 5, Table S8).

Autumn phenology
One hundred sixty four and six significant slopes were 
observed for field and phytotron autumn phenology 
traits and the extended slopes contained 336 and 30 can-
didate genes, respectively. Of the 366 candidate genes, 34 
were shared between different fall phenology traits and 6 
were shared for the same trait measured in different years 
in the field. We observed overlaps between years for CO3 
and LS2 only, but no overlaps were seen for CO8 and 
LS5 (Fig.  S6, Table  S10). Twenty three candidate genes 

were shared between two different autumn phenology 
traits and five candidate genes were shared between four 
autumn phenology traits in the field. The five candidate 
genes were shared between CO3-17, CO3-18, LS2-17 and 
LS5-18 (Table S10).

Two candidate genes for autumn phenology traits were 
shared between our study and Evans [23] and McKown 
[16]. Thirty two candidate genes were shared between 
Evans [23] and our results and one candidate gene was 
shared between McKown [16] and our results (Fig.  6A, 
Table S11). The AT GO-term enrichment analysis yielded 
13 enrichments for autumn phenology (Fig.  5), 10 of 
which were found in BS (Fig. 5B). Four of the 13 enrich-
ments were shared with selection estimates, 2 with H12 
and 3 with iHS (Fig. 5), of which one was shared between 
both selection estimates and field autumn phenology 
traits (Fig. 5A).

Fig. 2 The mean of number days and 95% confidence interval to reach a stage (x‑axis) for the phytotron traits. a The four different bud types under 
intact apical bud, b the stem top buds (BB‑stt) under intact (red) and damaged/dead (blue) apical bud, c the stem bottom buds (BB‑stb) under 
intact and damaged/dead apical bud, d the branch buds (BB‑brn) under intact and damaged/dead apical bud and e bud set (BS) under intact and 
damaged/dead apical bud
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Spring phenology
In total 21 and 55 significant slopes were observed 
for field and phytotron spring phenology traits and 
the extended slopes encompass 61 and 148 candidate 
genes, respectively. Five genes were shared between the 
same trait across years in the field and 2 were shared 
between BB4-stb and BB4-brn in the phytotron (Fig. S6, 
Table S10). These 2 candidate genes constitute the only 
overlap for the phytotron bud burst as the four phyto-
tron bud burst traits showed no within stage overlap in 
candidate genes for either stage, BB2 or BB4 (Fig. 7). No 
overlap was observed between the phytotron and field 
estimates for these stages either (Table S10). Addition-
ally, a total of 7 candidate genes were shared between at 
least one autumn and one spring phenology trait.

For spring phenology traits, we observed no candi-
date genes that were shared between our results and 
McKown [16], while a total of 19 genes were shared 
between our results and Evans [23] (bud burst) (Fig. 6B, 
Table S11). There were 28 enrichments found for spring 
phenology traits in the AT GO-term analysis (Fig.  5). 
Finally, 2 GO -term enrichments were shared between 

spring phenology and H12 and iHS selection estimates 
respectively (Fig. 5).

Discussion
Genome wide association study issues
The relatedness structure of our mapping population and 
the small size of the study population both presented 
challenges for conducting an unbiased GWAS. Even if 
the mapping population we have used is small and fam-
ily structured, the population display similar extents of 
LD than have previously been reported from samples 
obtained from wild individuals [24, 25], suggesting that 
the structure and any previous selection have not had 
major effects on the level of LD in the population. We 
also attempted to mitigate the issue of the relatedness of 
individuals by including a kinship matrix in the GWAS 
analyses [26, 27], though this is unlikely to remove the 
confounding effect of relatedness fully. The small size of 
our study population likely presents another problem for 
the power of our GWAS. However, this population has 
previously been found to harbor substantial genetic vari-
ability in phenology traits, sufficient for future adaptation 
[22]. Thus, while much of the smaller effect architecture 
will likely remain undetected, we should have the power 
to locate at least large effect loci within the traits [15, 16, 
23] despite the small size of our population. Another fac-
tor in mitigating both of these issues is our choice to use 
the Lindley method [28], allowing us to utilize the infor-
mation contained in the full 7,076,549 set of SNP’s and 
their respective linkage statuses, though this is unlikely 
to fully remove false positives caused by the small size, 
structure and previous selection in this population. How-
ever, despite our best efforts to mitigate these issues, we 
acknowledge our GWAS results are not globally appli-
cable to Populus trichocarpa as species, but specific to 
our study population to further explore the possibility 
of better adapting it to the novel conditions of Northern 
Europe for breeding purposes.

Phenotypic variation and heritability
Despite the size and structure of the population, vast 
majority of the traits displayed appreciable levels of 
phenotypic variation (Fig. 1) and had appreciable levels 
of both narrow and broad sense heritability (Table S7). 
The clear exceptions to this were BB2-top and BS2 
which both showed a general lack of phenotypic varia-
tion as well as low narrow sense heritabilites and over-
fitting in the model used for estimating the BLUP’s 
used in broad sense heritability estimations. (Fig. 1E & 
F, Table  S7). Heritabilities are known to vary between 
different environments, though for most species and 
traits, measurements taken in a controlled environ-
ment usually produce higher heritability estimates 

Table 1 Numbers of significant slopes and candidate genes 
(within 10 kbp of significant slope) for each of our 23 chosen 
autumn phenology, spring phenology and lifetime growth field 
and phytotron traits

Site Trait Significant slopes Genes

Field BB2‑17 1 2

Field BB2‑18 5 10

Phytotron BB2‑brn 0 0

Phytotron BB2‑stb 5 9

Phytotron BB2‑stt 5 22

Field BB4‑17 9 28

Field BB4‑18 6 21

Phytotron BB4‑brn 10 28

Phytotron BB4‑stb 13 30

Phytotron BB4‑stt 2 5

Phytotron BB4‑top 20 54

Phytotron BS7 6 30

Field CO3‑17 21 57

Field CO3‑18 7 27

Field CO8‑17 6 23

Field CO8‑18 7 14

Field DBH‑17 4 9

Field LS2‑17 25 53

Field LS2‑18 4 16

Field LS5‑17 80 101

Field LS5‑18 14 45

Total 250 584
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[29], but our results show the opposite trend. BB2-top 
and BS2 are normally the traits that best capture the 

timing of when plants exit and enter dormancy, respec-
tively and their drastic lack of phenotypic variation 

Fig. 3 Manhattan plot of the Lindley score for four example traits. a Leaf shed completion in 2017 (LS5‑17), b bud set initiation (BS2), c bud 
burst initiation in the apical bud (BB2‑top) and d diameter at breast height (DBH‑17). The red lines denote the chromosome‑specific threshold of 
significance

Fig. 4 Manhattan plot of the two selection scans. a Absolute iHS and b H12 selection estimates. The gray dots are markers within 10 kbp of 
significant slopes
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and heritability are thus slightly concerning. However, 
this can at least partially explained by the damage to 
the apical buds sustained by many individuals in our 
phytotron experiment. As such, we decided to exclude 
these two traits from further analyses. Finally, overfit-
ting seemed to be a considerable issue in broad sense 
heritability estimates in the phytotron with BB2-brn, 
BB2-stt. BB2-top, BB4-brn, BB4-top and both initia-
tion and completion of bud set models for BLUP -esti-
mation overfitting, while of the field traits CO8-18 and 

LS5-18 were overfit. The generally lower numbers of 
observations might at least partially explain the overfit-
ting problem, especially in the phytotron.

Temperature and water availability may have had effect 
on phenology transitions
We observed drastic differences in temperature and pre-
cipitation across the two years 2017 and 2018 in the field 
trial. Year 2018 was hotter, with monthly mean tempera-
tures consistently at least ~ 2  °C higher from April until 

Fig. 5 Enriched GO ‑terms for autumn and spring phenology and the selection estimates iHS and H12. a Field and b Phytotron

Fig. 6 Putative candidate genes in introduced population and native North American range. Overlap between our (a) autumn phenology and (b) 
spring phenology (bud burst) candidate genes and those identified in two other studies (Evans [22] and McKown [16])
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August, with more considerable difference (3–5  °C) in 
temperatures in April, May and July. In 2017 the aver-
age temperature was above 5  °C from May to October 
with an average temperature of 12.8 °C whereas the aver-
age temperature in 2018 was above 5 °C already in April 
and lasted until October with an average temperature of 
13.9  °C. The difference in mean temperature is largely 
caused by an early and very warm spring and an excep-
tional heatwave during July in 2018. Furthermore, year 
2018 had lower levels of precipitation, and the end of the 
growing season may have been affected by lowered water 
availability as well (Table S2), though the availability was 
not directly measured.

Temperature is the main driver of the initiation of 
spring phenology transitions in many annual and peren-
nial species, including Populus [4]. Furthermore, higher 
temperatures have been seen to lead to faster completion 
of bud burst in other species [30, 31]. As such, it is no 
surprise that we observed earlier initiation and comple-
tion of spring phenology transitions in 2017 compared 
to 2018 (Fig.  1). Even though the initiation of autumn 
phenology is largely driven by day length in Populus [2], 
there is some evidence that both temperature and water 
availability may affect both the timing of initation and 
completion of autumn phenology transition, especially in 
terms of leaf phenology [32–34]. There is also some evi-
dence of earlier spring phenology transition leading to an 
earlier autumn phenology transition [35]. Similarly, water 
availability and rain patterns have been seen to affect 
both initiation and speed of autumn phenology, though 

the direction of these effects seem species dependent 
[33]. Our findings are well in line with previously estab-
lished relationships between temperature, rainfall, water 
availability and spring phenology. As such, it is likely that 
the conditions during year 2018 affected the earlier onset 
and completion of autumn senescence in the year, though 
it yet remains unclear to us which of these relationships 
were the causal ones. On top of the phenotypical dif-
ferences observed, we also identified noticeably fewer 
significant slopes for autumn phenology traits in 2018 
compared to 2017 (Table 1), which could be indicative of 
differential genetic control of autumn phenology in year 
2018, though further work is required to confirm such 
claims.

Genetic architecture of phenology and growth
Linkage disequilibrium (LD) decays over, on average, 10 
kbp (Fig.  S5) in our P. trichocarpa population, which in 
similar to earlier studies in P. trichocarpa in its native 
range [24]. Based on this extent of LD we augmented all 
significant slopes by 10 kb in either direction in order to 
identify possible candidate genes. We identified a total 
250 significant slopes across the study traits with suf-
ficient genetic variation. Among the traits, LS5-17 has 
more than three times as many significant slopes than 
the trait with next highest number of slopes (Fig.  3A, 
Table 1). This supports earlier evidence for the complex 
genetic basis of autumn phenology traits in P. trichocarpa 
[16, 23]. For growth (DBH-17) we only identified 4 sig-
nificant slopes (Fig. 3D, Table 1) likely due to the highly 

Fig. 7 The candidate gene overlap in the four different bud types in phytotron. a The initiation stage (BB2) and (b) for the completion stage (BB4)
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polygenic nature of growth traits and the low power to 
detect loci with small effects due to the small size of our 
population and due to, to lesser extent, limitations of 
even the modern GWAS methods [36, 37].

Changes in lipid and protein metabolism have been 
previously observed during phenology transitions in 
Populus and other tree species [38, 39]. Lipid contents 
of various membranes are well-established indicators of 
cell status, such as cold hardiness [39, 40]. Our GO-term 
analyses support this as we uncovered 5 enrichments 
across our traits that are directly linked to membrane 
structures three of which were in GO-term plasma mem-
brane (GO:0,005,886) found in BB-18, BS and CO-17 
(Table S8).

Signatures of positive selection and GO‑term enrichment
Positive selection often drives local adaptation [7], leav-
ing detectable signatures in genetic variation across the 
genome. Using two test statistics, iHS [41] and H12 [42], 
we identified clear signatures of positive selection at mul-
tiple locations across the genomes of our P. trichocarpa 
study population. We observed hundreds of markers 
within 10 kbp of significant slopes in the top 0.1 percen-
tile of estimated selection values for both of the selec-
tion scans (Fig.  4). Thus, many of the significant slopes 
we identify likely also correspond to genome regions that 
have been under positive selection in the native environ-
ments of the parents of our study population.

The GO-term analysis of putative candidate genes 
under selection also yielded enrichments in plasma 
membrane (GO:0,005,886) for both statistics, chloro-
plast envelope (GO:0,009,941) for iHS and membrane 
(GO:0,016,020) for H12, lending further support to 
the importance of membrane structures for adaptation 
to northern climates [39, 40]. Among other notewor-
thy enrichments was response to cold (GO:0,009,409) 
enriched for iHS (Table  S8) intuitively linking to both 
autumn and spring phenology as some aspects of both 
have been found to be temperature dependent in Populus 
[2].

Autumn phenology
Initiation of both bud set and leaf senescence has been 
previously observed to be consistent between years and 
conditions for the same trees, suggesting a more strin-
gent genetic control of the initiation of autumn phenol-
ogy traits [2, 22, 43]. Our results are in line with this, as 
the 11 candidate genes we found shared between years 
were exclusively found in the early stages (CO3 and LS2) 
(Fig.  S6, Table  S10). Similarly, autumn phenology traits 
have been previously shown to have a degree of shared 
genetic architecture [16] and be genetically correlated 
in this population [22]. Our results support this as we 

observe a notable overlap in candidate genes between 
different autumn phenology traits in the field includ-
ing shared associations of five candidate genes across 
four field traits. The largest of these overlaps occurring 
between CO3-18 and LS5-18 and encompassing 15 can-
didate genes (Table  S10), could potentially be taken as 
further evidence of a systematic stress response to heat 
and/or drought (Table  S10, Table  S2). The senescence 
hastening effects of these stresses have been observed in 
model species [16, 44] fitting well with our observations 
in 2018. The overlap we observe may in part have been 
driven by false positives, possibly due to earlier selection 
in the population for growth and adaptation. However, 
even if the latter is true, it does not alter the fact that 
same genes have been under artificial selection in the 
traits and as such are likely important for adaptation to 
the novel conditions.

We identified two candidate genes for autumn phenol-
ogy traits that were also identified in the earlier stud-
ies of Evans [23] and McKown [16] (Fig.  6A). These 
genes were glucan synthase-like 12 (Potri.003G214200) 
shared between LS2-18 and bud set in both Evans [23] 
and McKown [16], and additional traits such as yel-
lowing and leaf drop in the latter, and glucuronidase 2 
(Potri.015G049100) shared between LS5-17 and leaf drop 
in McKown [16] and bud set in Evans [23]. As both of 
these have functions in metabolism of complex carbohy-
drates (https:// unipr ot. org), they may have roles in cell 
wall degradation or production of storage carbohydrates. 
An additional 34 candidate genes that we identify in this 
study are also shared with Evans [23] but only a single 
gene is shared with McKown [16] (Fig. 6A). These over-
laps are similar in magnitude to previous comparisons 
[45] and suggest that the some of the larger effect loci 
of genetic architecture of autumn phenology traits are 
shared across both native and novel environments, and 
observable even in our small and structured population. 
However, the relatively large numbers of study specific 
candidate genes could also hint at the complexity of these 
traits under the variable natural conditions. The lack of 
overlap between genes shared between the two years in 
our results under the novel conditions of northern Swe-
den and the genes found in the two studies across the 
native range [16, 23] could indicate that there are novel 
stresses in the non-native conditions, highlighting the 
need for unique allele combinations needed for optimal 
adaptation.

Both the selection statistics showed significant enrich-
ment with GWAS hits in the top 0.1 percentile for CO3-
17 and LS2-17 (Table S9). This suggests that the start of 
the autumn phenology transition is a more important 
adaptation than the completion, a view that has been 
supported in earlier studies in Populus [2]. Furthermore, 

https://uniprot.org
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the fact that we observe significant enrichments in these 
two traits but fail to detect any enrichments in the cor-
responding traits in 2018 lends support to our view that 
different environmental factors were driving autumn 
senescence across the two years. These observations sug-
gest that results from the more usual year of 2017 and in 
particular the candidate genes we identify, are more rel-
evant for driving local adaptation.

Spring phenology
The apical meristem has more functions than axillary 
meristems in species with apical dominance. One such 
extra function is the inhibition of axillary buds through 
apically produced auxins [46, 47] that are basipetally 
transported to the buds along the stem [48]. We studied 
the timing of bud burst of different buds in our phyto-
tron experiment and the results reflect the apical domi-
nance effect, as the apical bud (top) initiates bud burst 
earlier than other types of buds (Fig.  2A). Furthermore, 
the stem top 50% (stt) and stem bottom 50% (stb) buds 
display considerably different timing of bud burst condi-
tional on the presence of a functional apical bud (Fig. 2B 
& C). As such, our findings are in line with the previous 
reports of suppression of other buds by apical bud [46, 
47]. Our findings underline the importance of the apical 
bud for repressing bud burst of stem buds during spring 
phenology transitions. Branch buds, however, seemed to 
operate independently from the apical bud, with no sig-
nificant difference between undamaged and damaged 
apical buds (Fig. 2D).

The higher numbers of significant genes observed in 
the phytotron in combination with a general lack of over-
lap in candidate genes between bud burst traits within 
our study could support not only the well-established 
view that bud burst is a highly plastic trait but also that 
is has a complex genetic basis [16, 23]. The lack of over-
lap in candidate genes identified between the bud burst 
traits in the phytotron experiment suggests that the 
genes controlling bud burst in different parts of the plant 
are unique (Fig. 7), which may have an effect on the com-
parability of results between studies. While these results 
may seem striking, it is worth keeping in mind that our 
small and structured population required the use of 
stringent thresholds for Lindley score and less strongly 
associated associations for bud burst traits could there-
fore have been filtered out and would represent false neg-
atives. Nonetheless, our results show that no large effect 
loci are shared between bud burst in different parts of the 
plant or between years.

A total of 5 candidate genes were identified for 
bud burst, with 2 and 3 shared between the initiation 
stage BB2 and the completion stage BB4 respectively. 
This aligns nicely with the genetic correlations found 

previously [22], but somewhat surprisingly suggests a 
more consistent genetic control in bud burst between 
years than in autumn phenology (Fig.  S6). Comparing 
our results to Evans [23], we observe an overlap of 20 
genes candidate genes, suggesting that there is a degree 
of similarity in the genetic control of bud burst between 
the native and the novel environments. However, this 
overlap is substantially lower that what we observed for 
the autumn phenology traits (Fig. 6A & B).

Summary of phenology candidate genes for adaptation 
to northern Europe
Candidate genes identified for phenology traits across the 
two years offer potential targets for adaptive improve-
ment of P. trichocarpa to northern European conditions 
as they are stable across the two very different years, 
though complementary studies are required to confirm 
the roles of the specific candidate genes due to the weak-
nesses of our population. In general, we observed can-
didate genes with functions in auxin metabolism, lipid 
metabolism and as helicases (Table  S10), each of which 
have intuitively fitting functions for timing or speed of 
phenology transitions. Auxins have a well-established 
role in delaying of senescence in plants [49, 50]. The 
timing of the initiation of senescence has been previ-
ously observed to be under stringent genetic control in 
Populus [2, 22, 43], suggesting that the initiation rather 
than completion of autumn senescence is of greater 
importance for adaptation. Lipid contents of various 
membranes are indicators of cell status, such as cold 
hardiness [39, 40], which is a key part of winter dor-
mancy. Spring and autumn phenology transitions rep-
resent larges transcriptomic changes in the yearly life of 
perennial plants at northern latitudes [51]. Many of the 
changes that perennial plants exhibit during these transi-
tions are also dependent on prerequisite conditions being 
met. For example, in Populus bud set has been observed 
to be a prerequisite for leaf shed [2]. As the summer of 
2018 was extremely warm, the high number of genes 
shared between CO and LS could offer insight into stress 
induced senescence. The genes shared between the traits 
would seem to be in agreement with previously estab-
lished roles of the cell wall and cytokines in phenology 
transitions [50, 51].

Conclusions
The study presented here is the first to study the genetic 
basis of phenology traits in a population of P. trichocarpa 
introduced to northern Europe. We find considerable and 
heritable phenotypic variation in and complex genetic 
architectures underlying most of the studied phenol-
ogy and growth traits, and identify multiple putative 
candidate genes despite the small and structured study 
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population. Many of the candidate genes we identify 
function in cell membranes or cell wall, which both have 
significant biological functions during phenology transi-
tions in the novel environment of northern Europe. Com-
parison of candidate genes with studies performed in the 
native range show some overlap for both autumn and 
spring phenology transitions although the latter show far 
less overlap. Aside from these observations we find evi-
dence for significant enrichment of SNPs under selection 
in significant slopes for the initiation steps of autumn 
phenology transitions. These findings are in line with 
earlier observations of a more genetically well-defined 
control of the initiation of autumn phenology compared 
to both the completion of autumn phenology transitions 
and spring phenology in general. Together with results 
from Richards [22] in the same population it strongly 
seems there is potential for adaptive improvement in 
our small P. trichocarpa population, though these results 
are likely highly population specific and any applica-
tion of the results presented here to other populations 
of P. trichocarpa should be done carefully. Our findings 
here will hopefully encourage smaller scale tree breed-
ers, showing that massive collections are not necessarily 
needed for adaptation to novel conditions in highly out-
crossed species.

Methods
Plant material, phenotyping of field experiment 
and climate data
The trees used in this study are first- or second-gen-
eration offspring generated from crosses between P. 
trichocarpa trees collected from across the natural range 
in western North America (Table  S1). Individuals with 
high growth and well-adapted phenology timing were 
previously chosen from 34 families with 1 to 21 full-sibs 
per family utilizing a screening trial. Chosen individuals 
were then clonally replicated and planted in 2003 in five 
complete blocks together with some of the parent and 
unrelated non-parent trees at Krusenberg near Uppsala, 
Sweden (59°44′44.2"N 17°40′31.5"E). At the time of this 
study (2017–2018), 564 live ramets from 109 unique gen-
otypes remained at the field site, all of which were geno-
typed with additional 12 non-field individuals. Climate 
data for the field site was obtained from the SLU Ultuna 
climate station (Table S2). No permissions were required 
to sample the plant material.

The trees were phenotyped every 2–5 days in two suc-
cessive years, 2017 (17) and 2018 (18), for bud burst (BB) 
(spring phenology) and for leaf shed (LS) and autumn 
coloring (CO) (autumn phenology). Bud set (BS) is the 
most relevant measurement of season-ending growth 
[2], but is very hard to measure accurately in fully grown 
trees. Leaf shed and autumn coloring were measured as 

proxies for bud set as they are easy to measure in adult 
trees and have been observed to happen only after bud 
set [2]. The diameter at breast height (DBH) of the trees 
was measured in 2017 and was used as a proxy for life-
time growth.

Bud burst was scored using a scale with six steps, rang-
ing from fully dormant buds [1] to fully opened buds with 
unfurled leaves and active shoot growth [6] (Table  S3). 
Leaf shed was scored on a scale ranging from 1 to 5, with 
each stage describing a window of 20% of leaves shed 
(stage 1: 0% to 20% leaves shed, stage 5: 80% to 100% 
leaves shed). Autumn coloring was measured slightly 
differently between the two years, using a scale ranging 
from 1 to 5 in 2017 and a scale ranging from 1 to 8 in 
2018 (Table S4), based on the level of yellowing in the leaf 
crown with 1 being fully green leaves and 5/8 being fully 
yellow leaves.

Plant material, conditions and phenotyping of phytotron 
experiment
In February of 2018, cuttings were taken from 99 clones 
in the Krusenberg field trial. These cuttings were taken 
from stems of root suckers growing from stumps of 
thinned individuals or from branches of mature trees and 
stored at—4  °C until planted in pots in March of 2018. 
Two cuttings of similar length (~ 10 cm) from the same 
clone were planted in each pot. This was done in three 
replicates to produce a 3-block randomized design. After 
sprouting, the less vigorous cutting was removed leaving 
only one cutting per pot. Cuttings were then put through 
two simulated seasons described in Table S5.

Bud burst and bud set were measured during the 
second simulated season (Table  S5). Bud burst was 
scored following the six-step scale used in the field trial 
(Table S3), but the buds on the saplings were divided into 
four classes and scored separately. These classes were the 
apical bud on the longest stem (top), the branch buds 
(brn) consisting of all the buds on lateral branches if pre-
sent, the top 50% of the stem buds (stt) and the bottom 
50% of the stem buds (stb) consisting of all the buds on 
the top and the bottom half of the main stem respec-
tively. Bud set was scored in the highest situated undam-
aged bud, apical bud if it remained undamaged, following 
a seven-stage scale introduced in Rohde [43] with minor 
changes in stage numbering, ranging from growing apical 
meristem (1 in our numbering, 3 in Rohde [43]) to fully 
set bud (7 in our numbering, 0 in Rohde [43]).

Genotyping, SNP calling and filtering
Leaf samples were collected from trees in the Krusenberg 
trial in the autumn of 2016 and stored dried with silica gel 
until DNA extractions. DNA extractions were repeated 
for a few clones using leaves taken from the cuttings 
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used for the phytotron experiment. Genomic DNA was 
extracted using a Macherey–Nagel NucleoSpin® Plant 
II kit according to manufacturer’s instructions. Qual-
ity and concentrations of the DNA was assessed using 
a NanoDrop spectrophotometer. Paired-end sequenc-
ing libraries with insert sizes of 350 bp were constructed 
for all samples at the National Genomics Infrastructure 
at the Science for Life Laboratory in Stockholm, Swe-
den. Whole-genome sequencing with a target depth of 
20 × was performed using an Illumina HiSeq X platform 
with 2 × 150-bp paired-end reads, generating on average 
47.6 M reads per sample with median depth of 21.6.

Sequencing reads for all accessions were mapped 
against the reference genome of P. trichocarpa v3.0, using 
BWA-MEM (v0.7.17) [52] using default parameters. 
Depth and breadth of coverage were assessed in order to 
confirm that all samples had a minimum coverage of 10X 
(range from 12 to 49X, see Table S6) Post-mapping filter-
ing removed unmapped reads (samtools v1.10) [53] and 
tagged duplicate reads (picard MarkDuplicates v2.10.3) 
(http:// broad insti tute. github. io/ picard/), which did not 
exceed 14% of the libraries (ranging from 3 to 13.8%).

We used GATK v3.8 [54] to call variants. We per-
formed local realignment around indels with Realigner-
TargetCreator and IndelRealigner (default parameters). 
Sample variants were called using HaplotypeCaller, pro-
ducing gVCF files (-ERC GVCF). Samples were hier-
archically merged into intermediate gVCF files using 
CombineGVCFs and were finally called jointly with 
GenotypeGVCFs. SNPs were selected using Select-
Variants and filtered with VariantFiltration (QD < 2.0; 
FS > 60.0; MQ < 40.0; ReadPosRankSum < -8.0; SOR > 3.0; 
MQRankSum < -12.5). SNPs were pruning with vcf/
bcftools [53, 55] to remove positions with extreme depth 
(min-meanDP 16, max-meanDP 33; these thresholds cor-
respond to the average depth ± one standard deviation), 
missing in more that 30% of the samples, non-biallelic 
SNPs with minor allele frequencies < 0.05, or SNPs dis-
playing an excess of heterozygosity (FDR < 0.01). This 
resulted in a data set consisting of 7,297,862 SNPs. SNPs 
were further filtered for allele number = 2, minor allele 
frequency (MAF) > 0.05 and extreme deviation from 
Hardy–Weinberg equilibrium (HWE) <  10–6. After filter-
ing, 7,076,549 SNPs were retained and used in all down-
stream analyses.

Missing data and phenotypic data imputation
During the field experiment individual trees sometimes 
passed through more than one phenology stage between 
two successive phenotypings. To account for these miss-
ing phenotypes, we first converted each ordinal stage 
into the number of Julian days (measured from January 
1) when a stage was first observed for a given individual 

tree. This was done to remove accidental reversals of phe-
nology stages which occurred at low frequencies in the 
data set due differences in subjective scoring by different 
observers or through shedding of yellowed leaves which 
sometimes case an apparent ‘greening’ of some trees. 
Once an individual tree had transitioned to the next phe-
nology stage the Julian date was recorded for that stage 
and any subsequent reversals were discarded. For the 
first (1) stage for both spring and autumn phenology we 
used the last observed date as the observation point, as 
the first stage denotes ‘no change’ making earlier obser-
vations of the stage uninformative about the progress of 
phenology.

A local regression model (LOESS) was fitted through 
the transition days to estimate the missing stage transi-
tion days for each individual separately. The method 
fits a non-linear curve that is not constrained to fit any 
a-priori distribution for each individual separately. This 
allows estimation of the day in which these individuals 
entered each ordinal developmental stage allowing us to 
include individuals not observed at transitions between 
stages in the downstream analyses (For more information 
see Richards [22]). The mean of each clone was then cal-
culated and used as the stage-specific phenotype for the 
genotype in all subsequent analyses. We observed neg-
ligible differences between estimated BLUPs and means 
(Fig. S1) due to the simplicity of our experimental design.

Choice of stages
The phenology traits were phenotyped using multi-
ple stages that are highly correlated across individuals 
(Fig.  S2). Most information is conferred by the initial 
transition (stage 1 to 2) and final transition stages in 
terms of growth period and vulnerability to damage and 
we therefore chose these two stages to serve as represent-
ative time points for phenology transitions in our data. 
For bud set and leaf shed, the stages used were the sec-
ond and the last stage. For autumn coloring, the last stage 
was chosen to represent the end of the phenology transi-
tion, but here we instead used the third stage to repre-
sent the initiation stage, as the third stage was directly 
phenotyped in both years (Table S4). For bud burst, the 
start of the second stage was chosen as the beginning of 
phenology transition, and the fourth stage was chosen 
as the end of transition as this represents the stage when 
leaves begin to emerge and unfurl beginning the active 
photosynthesis.

For the field phenology traits, a Welch two sample 
t-test was performed to confirm whether the differ-
ences observed in phenology timing between the two 
years was statistically significant. Broad  (H2) and nar-
row sense heritabilities  (h2) were also calculated for 
each of our chosen traits using the R packages (R Core 

http://broadinstitute.github.io/picard/
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Team, 2014) “inti”, utilizing the Cullis -method [56] 
using a simple model for estimating BLUP’s, where the 
repeat and status of apical bud (if applicable) are fixed 
effects and repeat within block and genotype were ran-
dom effects, and “heritability”, a marker-based method 
developed specifically for plant data [57], utilizing the 
standardized kinship matrix calculated in GEMMA 
[27] and apical bud status (if applicable) as covariate, 
using the imputed phenotypes from each individual 
as replicates for each clone to estimate to what extent 
phenotypic variation was heritable (Table S7).

GWAS and Lindley score
Though small and heavily structured, the study popu-
lation has been previously found to harbor enough 
genetic variability in phenology traits for adaptation 
[22]. Thus, we performed a genome wide association 
study for each of the 23 chosen traits utilizing a univar-
iate linear mixed model implemented in with GEMMA 
(v. 0.98.1). Due to the aforementioned relatedness 
structure in our data, consisting of a mixture of indi-
viduals spanning the range from full-sibs to unrelated, 
we utilized a kinship matrix (produced in GEMMA) to 
partially mitigate the issues caused by the confounding 
effect introduced by the relatedness structure. All field 
traits were run with no covariates, but for traits meas-
ured in the phytotron, a binary covariate was included 
to indicate the status of the apical meristem (damaged/
not damaged) to account for effects of the phytotron 
issues (see Results). To take advantage of the large num-
ber of markers available, better utilize the information 
contained in the linkage disequilibrium among adjacent 
markers and further mitigate the effects of our small 
and related population, we used the Lindley score-
based method introduced by Bonhomme [28]. The local 
Lindley score is calculated using information derived 
from multiple adjacent SNPs, thereby limiting the num-
ber of tests performed while utilizing all the available 
data. Each p-value that exceeds a user set threshold 
(ξ, on a logarithmic scale) will contribute positively 
to a local Lindley score and vice versa for SNPs that 
fall below the threshold. Lindley scores can not to go 
below zero regardless of how many p-values that fall 
below a given threshold. If enough adjacent tests are 
significant or a single test is highly significant, the local 
Lindley score will rise above the chromosome specific 
significance level, signifying an area of interest, which 
is especially useful for highlighting areas containing 
multiple weakly significant markers. This threshold is 
determined for each linked, autocorrelating set of SNPs 
separately and is essentially the null distribution of said 
set of markers [28]. The Lindley score is the result of a 

directional process and the leading-edge slope (hereaf-
ter slope) is the area of interest.

LD decay, candidate genes and candidate gene 
comparisons
To identify candidate genes around the significant slopes 
revealed by the local Lindley score analyses, the rate of 
decay of linkage disequilibrium (LD) was estimated fol-
lowing method of Wang [25]. Briefly, SNP markers 
were randomly thinned down to 100,000 markers using 
PLINK 1.9 [58] and remaining markers were used to cal-
culate the squared correlation coefficients  (r2) between 
all SNP pairs in non-overlapping 50 kbp windows using 
PLINK 1.9. The decay of LD across physical distance was 
then estimated using nonlinear regression of pairwise r2 
against physical distance between sites in base pairs [59]. 
LD decays over, on average, 10 kbp (Fig.  S5) in our P. 
trichocarpa population, and we used this information to 
determine putative candidate genes for the regions that 
showed significant association in the GWAS. Boundaries 
of significant slopes were extended by ± 10 kbp to search 
for genes using the P. trichocarpa v3.1 annotation [60] 
available at Phytozome 12 (https:// phyto zome. jgi. doe. 
gov/ pz/ portal. html).

The found candidate genes were compared between 
the years for the field traits and between the different bud 
set traits for the phytotron experiment. The results of 
these comparisons were illustrated using Venn diagrams. 
We compared candidate genes identified for spring and 
autumn phenology with candidate genes identified in two 
earlier studies in P. trichocarpa, Evans (results from all 
sites and tests compiled) [23] and McKown [16], to reveal 
any similarities in candidate genes identified based on 
common garden data from Sweden, Canada or the phy-
totron experiment.

GO-term enrichment analysis was performed on each 
of the study traits by merging the candidate genes from 
each stage of the trait. The analysis was performed online 
at PopGenIE (https:// popge nie. org) and was performed 
on the Arabidopsis thaliana synonyms of the genes using 
the default settings of the tool. PopGenIE uses Fisher’s 
exact test with False Discovery Rate (FDR) correction 
with a corrected p-value threshold of 0.05 and minimum 
of two genes by default.

Signatures of positive selection
We calculated two haplotype-based test statistics to 
detect positive selection, the integrated haplotype score 
iHS, [41] and H12, which measures haplotype homozy-
gosity and is especially useful for finding soft selective 
sweeps [42]. Both test statistics were calculated using 
selscan v1.2.0a [61]. The genetic map positions of all 

https://phytozome.jgi.doe.gov/pz/portal.html
https://phytozome.jgi.doe.gov/pz/portal.html
https://popgenie.org
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SNP markers were calculated based on the population 
averaged recombination rates estimated using LDhat 
[25] with missing values set to zero. iHS does not pro-
duce estimates for zero values leading to slightly differ-
ent numbers of estimates between the two methods. 
For both statistics the top 0.1 percentile was used as a 
threshold for signatures of selection. To test for possible 
enrichments between SNPs showing evidence for posi-
tive selection and significant SNPs from the GWAS, we 
used hypergeometric distribution tests on each trait sep-
arately. Peak SNP’s were then pinpointed for each selec-
tion scan using the ggpmisc package (Aphalo, 2020) in R. 
A peak was the SNP with highest selection scan score of 
all SNP’s within a window of 20,001 bp centered at that 
SNP. Only the peaks in the top 0.1 percentile (hereafter 
top peaks) were used for downstream analyses for both 
estimates. Genes within 10 kbp of the top peaks were 
then identified and compared with our GWAS candidate 
genes. Genes surrounding the selection peaks were ana-
lyzed for GO-enrichments using the default settings on 
PopGenIE enrichment analysis tool.
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