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A B S T R A C T   

Heavy duty unmanned aerial vehicles (UAVs) have made it possible to fly with large gamma-ray spectrometers 
that weigh several kilograms. Moreover, they can be purchased at an affordable price. These large UAV-borne 
gamma-ray detection systems are used to map the naturally occurring radionuclides 40K, 238U, 232Th. Such 
platforms have the advantage that they can be deployed over terrain that is difficult to access, while still 
maintaining a high spatial resolution. In contrast to UAV-borne radioactive pollution studies, the naturally 
occurring radionuclides have a much lower activity and therefore require longer integration time, slower flying 
speed or a larger detector, in order to effectively determine the spatial radionuclide distribution. Therefore, the 
question arises: what is the minimum practical detector size required to successfully map 40K, 238U and 232Th 
concentrations from UAV platforms. 

In this study an agricultural field has been mapped with three different scintillator-based gamma-ray spec-
trometers: a 2000 ml, 1000 ml, and 350 ml detector. They were mounted together on the same UAV. At a flying 
height of 20 m and a speed of 5.6 m s− 1 the field was mapped. The various aerial measurements were compared 
to each other and to the ground-based measurements. The field had a low spatial variation in the 40K concen-
tration (relative standard deviation (RSD) = 9%) and a larger variation for 238U and 232Th concentrations (RSD 
= 24% and 31% respectively). 

Radionuclide concentrations have been extracted from the survey data by Full Spectrum Analysis (FSA). 
Uncertainties and variances of the radionuclides have been determined by using two methods. Firstly, they are 
calculated directly from the FSA output and secondly they are extracted from a variogram. The latter in-
corporates spatial variation and was shown to provide a lower uncertainty. When using small detectors, the 
former approach could lead to the conclusion that the uncertainty is larger than the variance, while the vario-
gram approach does capture the spatial variation. 

All three detectors were able to characterize the spatial distribution of the 232Th concentration. It is shown that 
the 232Th concentration is a good predictor of the sand and clay fraction of the topsoil in the field. By comparing 
the UAV-borne measurements to the ground-based measurements it is found that UAV-borne measurements at 
20 m height are less sensitive to extreme values than ground-based measurements and they have the tendency to 
shift to the mean concentration of the area. 

The results of this study can be used to optimize the detector volume, survey height, and survey speed to 
maintain an acceptable accuracy for gamma-ray studies with small UAV-borne detectors.   

1. Introduction 

Unmanned aerial vehicles (UAVs) have made it possible to use 

gamma-ray spectrometers in unmanned air-borne operations that have 
geophysical applications. The capacity to lift a payload in the order of 
kilograms is a prerequisite for these gamma-ray measurements because 
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these spectrometers rely on volume and weight to capture sufficient 
radiation in the detector (Nicolet and Erdi-Krausz, 2003). Off the shelf 
high capacity UAVs have been produced for some time now and one of 
the advantages of using them is that they are cost-effective. 

Gamma-ray surveys are being used to estimate erosion (Tyler et al., 
2001), to map mine tailings (Koomans et al., 2014), in precision agri-
culture (Egmond et al., 2018; Piikki et al., 2015; Söderström et al., 
2016), to characterize sediments (Anjos et al., 2007; de Meijer, 1998) 
and to map contamination of heavy metals or organic micro-compounds 
in sediments and soils (Söderström and Eriksson, 2013; van der Graaf 
et al., 2007) to name just a few. 

Depending on the required resolution and the area to map, mea-
surements are ground-based, usually by an off-road vehicle, or airborne, 
by a helicopter or aeroplane. When an area has to be mapped with a high 
spatial resolution, ground-based surveys are the preferred choice 
because the detector is close to the surface and has a small footprint. 
Airborne measurements are used when a large area has to be mapped, 
but have the inherent drawback that there will be a loss in resolution 
because of the flying height and speed. However, airborne measure-
ments do have a number of advantages over ground-based measure-
ments, since it is possible to access wet, rocky, dangerous and densely 
vegetated terrain. 

UAV-borne gamma-ray measurements combine the advantages of 
both the ground-based and the airborne measurements. UAVs can fly 
over terrain that is not accessible by a ground-based vehicle while 
remaining close to the soil and they can capture radiometric data with 
high spatial resolution. Furthermore, the UAVs can be used in (radio-
active) polluted areas that would otherwise pose a health risk to the 
operators. Recent publications show examples of these applications by 
mapping the 137Cs concentration as a result from the Fukushima Dai-Ichi 
nuclear power plant disaster (Martin et al., 2016; Mochizuki et al., 2017; 
Sanada and Torii, 2015; Tang et al., 2016). Another study located lost 
radioactive sources (Gong et al., 2019). The UAV-based radiometric 
survey technique is moving away from the proof of concept stage and 
has become routine application. Advanced algorithms are being devel-
oped for inversion problems and hotspot identification (Zhang et al., 
2018). Recently, it has been suggested as a technique to monitor 
radioactive materials in industrial plants (Aleotti et al., 2019). Reme-
diation operations are generally executed in areas with a relatively high 
count rate due to the radioactive pollution, and therefore these opera-
tions use relatively small scintillation detectors (which can be carried by 
UAVs). 

The use of gamma-ray spectrometers in geophysical applications is 
significantly different from radioactive pollution mapping because, in 
general, the spectrometer has to determine the concentrations of the 
naturally occurring radionuclides 40K, 238U and 232Th from the much 
lower flux of gamma-rays the soil emits. Despite this limitation, the new 
possibilities of UAV-borne radiometric surveys have been recognized 
and various studies have been done to pioneer this new field. Promising 
results have been obtained in the characterizations of legacy uranium 
and iron mines (MacFarlane et al., 2014; Martin et al., 2015; Pirttijärvi 
and Oy, 2016; Šálek et al., 2018). 

However, a common denominator of all UAV-borne studies in recent 
literature is the use of relatively small scintillation detectors (<210 ml) 
and their focus on applications with high count rates, for example when 
locating radioactive sources, or mapping highly radioactive areas. 

The present study has been initiated to provide information on the 
influence of detector volume on the accuracy of the measurement that 
can be achieved with a gamma-ray spectrometer used on a UAV for 
mapping natural soils. Because of the weight restriction that is associ-
ated with UAV gamma-ray studies, this led to the main research question 
addressed in this article: what is the minimum practical detector size, 
while still providing accurate spatial information on the radionuclide 
distribution of natural soils. 

The stochastic nature of radioactive decay introduces an uncertainty 
related to the number of detected counts, which again is related to the 

detector volume. In order to answer the main question of this study two 
approaches are used. First, the physics approach, by calculating the un-
certainty per measurement point, based on the number of measured 
counts and the data processing method. Second, the geology approach, 
by looking at the spatial variation of the measured concentrations. 

In order to make comparisons between detector volumes, this study 
compares data collected on the ground to data from three CsI scintilla-
tion detectors with different volumes. The detectors were mounted 
simultaneously on a UAV to map the radionuclide concentrations of an 
agricultural field. The radionuclide concentrations were extracted by 
using Full Spectrum Analysis (FSA) with height corrections (van der 
Veeke et al., 2021). Because the detectors have collected data simulta-
neously, differences in the resulting radionuclide concentrations can 
only be caused by differences in detector characteristics. Previous 
comparisons between ground-based and airborne measurements have 
been used as a reference to construct a comparison methodology (Kock 
and Samuelsson, 2011). 

The physics approach, to determine if spatial variation in the radio-
nuclide concentration is recorded, entails calculating the uncertainty in 
each measurement point and calculating statistical properties of the 
dataset, such as the mean value and the variance of the radionuclide 
concentrations. If the measurement is sufficiently precise to capture 
spatial variation, these parameters can also be represented in a vario-
gram. A variogram is commonly used to characterize the spatial auto-
correlation of the measured radionuclide concentrations (Viscarra 
Rossel et al., 2014). The variogram shows the semivariance as a function 
of the separation distance between point measurements and thus char-
acterizes the uncertainty of points measured close together, and it shows 
the variance of the whole dataset. 

Points measured close together in a gamma-ray survey are correlated 
due to their overlapping footprint (van der Veeke et al., 2021), and due 
to the inherent geological connection between neighboring locations. 
Therefore, kriging interpolation is used to resample the measurement to 
include the spatial information that the surrounding data points provide 
(Burrough et al., 2015). This geostatistical interpolation technique, to 
estimate the likely value at the resampled positions, can only be applied 
if a proper variogram is constructed from which a weighting function 
can be determined. The geologist’s approach entails comparing the 
resulting interpolated radionuclide distribution at each spatial position 
for the different detector volumes. 

The information presented in this paper is relevant for the design of 
UAV-based radiometric operations that map the naturally occurring 
radionuclides (40K, 238U and 232Th). Most important for these surveys is 
a well-motivated balance between the size of the gamma-ray spec-
trometer and the accuracy of the measured activity concentration. 
Characterizing the differences between detector volumes will help 
choosing the optimum detector for the intended application. 

The aim of the study is to compare the outcome in radionuclide 
concentrations, that result from measuring with various sizes of gamma- 
ray spectrometers mounted under a UAV, to the radionuclide concen-
trations measured on the ground. This research should contribute to 
drafting the first version of a ‘guidelines for UAV-borne radioelement 
mapping’. 

2. Materials and methods 

2.1. Material 

2.1.1. UAV 
A commercially available APID One UAV (Fig. 1) manufactured by 

MainBase (Linköping, Sweden) was used. This platform is designed in 
the shape of a helicopter and uses standard petrol to power the engines. 
The APID One has a rotor diameter of 3.3 m, empty weight of 130 kg and 
a maximum take-off weight of 210 kg. With a payload of 25 kg the UAV 
can fly up to 4 h continuously. The UAV can fly with wind speeds up to 
15 m s− 1 (Beaufort 7) and during rainy weather. 
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Fig. 1. Photograph of the APID One UAV carrying three gamma-ray spectrometers.  

Fig. 2. Location of the test field (hatched) at the Bjertorp farm in southwest Sweden. Clay (fraction <0.002 mm) and sand content (fraction 0.06–2 mm) in already 
available topsoil samples are shown. The background map is a generalization of the Quaternary map from Geological Survey of Sweden (SGU, Uppsala, Sweden) 
showing large scale distribution of deposits (original scale 1:50000). Stippled areas are agricultural fields. 
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2.1.2. Gamma-ray spectrometers 
Three gamma-ray spectrometers developed by Medusa Radiometrics 

(Medusa Radiometrics BV, 2020) have been used. The MS-2000 Agri 
detector (12 kg), the MS-1000 Drone-borne detector (7 kg) and the 
MS-350 Ultralight drone detector (2.2 kg). These systems contain a 
2000 ml CsI(Na), 1000 ml CsI(Tl) and a 350 ml CsI(Tl) scintillation 
crystal, respectively. Lidar, GPS and a barometer were connected to the 
measurement system to accurately determine the position and height of 
the measurements. 

2.1.3. Test site 
The survey was carried out at the Bjertorp farm that is managed by 

Lantmännen, the Swedish Farmers’ Co-operative. This is a farm located 
about 100 km northeast of Gothenburg, Sweden (58.248◦ N; 13.128◦ E) 
(Fig. 2). The total 880 ha area of the farm is used for crop production and 
agricultural research. One field with known and considerable spatial 
variability in soil texture was selected for this study. This field was 
judged to be suitable for carrying out UAV flights since there were no 
high obstacles such as trees in the field. The test field has a rectangular 
shape with dimensions of 400 m by 800 m (hatched area of Fig. 2). The 
field provided data collected by the UAV- and tractor-borne surveys. The 
area is in a transition zone between postglacial fine sand in the north and 
northwest (with very high sand content in the topsoil (70–80%), and 
relatively clayey sediments in the south (>35% clay; <10% sand), but 
with local variation (Fig. 2). At the time of the survey (May 7–8, 2019) 
the field was covered by winter wheat (Triticum aestivum L.) not higher 
than 20 cm (approximately growth stage DC31-32 (Zadoks et al., 1974)). 

2.2. Survey 

2.2.1. Ground-based measurements 
The MS-2000 CsI(Na) spectrometer and GPS were mounted at the 

back of a tractor and placed at 80 cm above the ground (Fig. 3).The 
tractor mapped the test field by driving at an average speed of 2.7 m s− 1 

(9.7 km h− 1), using a line spacing of 24 m and recording spectra at a rate 
of 0.33 Hz, providing a measurement point along the line each 8.1 m. 
The ground measurements were made on the May 8, 2019. The tem-
peratures during the measurement were between 5 and 9 ◦C. The 
average precipitation in the week prior to the measurement was <1 mm 
per day, and there was no rain during, and in the 24 h before the 
measurement. 

2.2.2. Airborne measurements 
The three detectors, MS-2000, MS-1000 and the MS-350, were 

mounted under the APID One UAV in a custom designed container that 
places the detectors at a distance below the platform (Fig. 4). Sus-
pending the detector under the UAV provided a clear ground view and 
thus minimized shielding of radiation coming from below. The center of 
the crystals were spaced 0.2 m apart, and taking the diameter of the 
crystals into account, this results in a clear field of view of ~100 m when 
flying at 20 m. Each detector contains a microprocessor and on-board 
storage space, so that each spectrometer independently records and 
stores its data. 

The UAV mapped the test field by flying at a height of 20 m and at a 
speed of 5.6 m s− 1 (20 km h− 1. It used a line spacing of 25 m and 
recording spectra at a rate of 0.33 Hz, providing a measurement point 
along the line each 16.8 m. The UAV measurements were made on the 
May 7, 2019. 

In general, the survey speed is a compromise between the available 
survey time, the survey area and the required accuracy of the results. 
The uncertainty is inversely related to the number of measured counts 
per spatial position. The number of detected counts is directly propor-
tional to the detector volume. With the typical volumes of gamma-ray 
detectors used in geophysical surveys, a detector that has twice the 
volume but is moving at twice the speed, will give similar results. The 
survey speed in this research has been chosen to study the differences in 
uncertainty between the detector volumes, and is not optimized to give 
the best results for the smallest detector. 

2.3. Full spectrum analysis and Monte-Carlo simulations 

Spectra that are recorded by a gamma-ray spectrometer in e.g. soil 
mapping applications consist of a combination of gamma radiation 
emitted in the decay of the naturally occurring nuclides 40K, 238U and 
232Th (and sometimes 137Cs), and their radioactive daughter nuclides. In 
order to extract radionuclide concentrations from the measured spectra, 
there are two common analysis approaches: i) the windows methods 
(Nicolet and Erdi-Krausz, 2003), which focuses on specific energy win-
dows in which dominant features of each radionuclide are present, and 
ii) the Full Spectrum Analysis (FSA) approach, which fits the measured 
spectra with calibrated standard spectra that represent the response of 
the detector to a pure source of 40K, 238U or 232Th (Hendriks et al., 
2001). The latter approach thus uses the whole spectrum to determine 

Fig. 3. Mounting of the gamma-ray spectrometer at the back of a tractor. During the survey the detector was lifted to 80 cm above the ground.  
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the nuclide concentrations. 
Radioactive decay is an inherent stochastic process. The total num-

ber of detected events (counts) during a certain time interval is Poisson 
distributed and is proportional to the activity of the source. The statis-
tical uncertainty in the concentration due to the stochastic character of 
decay is proportional to the square root of the number of detected 
counts. In the case of gamma-ray measurements this means that the 
uncertainties in the activities decrease with the square root of the 
number of counts present in the analysis interval. 

FSA is the preferred method for analysing data from spectral surveys 
with relatively small detectors. This is because FSA uses almost the 
complete spectrum and therefore has more counts and spectrum 

structure present in the analysis interval compared to the windows 
method, that only uses the counts present in the three windows. As a 
result, when using FSA and correctly specified detectors, it is possible to 
have up to three times fewer counts present in the spectrum and achieve 
the same accuracy as when using the windows method (Hendriks et al., 
2001). 

The key parameters in FSA are the aforementioned standard spectra, 
which represent the response of the detector if it would measure a pure 
source of 40K, 238U or 232Th in a geometry equal to the actual mea-
surement. These standard spectra are normalized to 1 Bq kg− 1 and they 
are used to derive the activity concentrations of the measured spectra. 
The concentrations are the number of times each standard spectrum 

Fig. 4. Close-up photos of the mounting of the three spectrometers under the UAV (a). The Gamma-ray spectrometers were mounted on a plate (b) that is suspended 
under the UAV (c). 

Fig. 5. Schematic representation of the full spectrum analysis approach in which the standard spectra for 40K, 238U and 232Th are fitted to the spectrum.  
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occurs in the combination of standard spectra that best fit the measured 
spectrum (Fig. 5). The standard spectra used in this study are derived by 
doing Monte-Carlo simulation (MCNP 6.2 (Goorley et al., 2013), F8 tally 
and post simulation gaussian broadening). The standard spectra are 
validated by using the Stonehenge calibration facility, located at Medusa 
Radiometrics in Groningen (Tijs et al., 2016; Van der Graaf et al., 2011). 
To properly model the response at the UAV flying heights, the approach 
described in van der Veeke et al. (2021) has been used. 

This previous reference not only describes the practical imple-
mentation of the Monte-Carlo model, but also predicts the origin of ra-
diation as a function of measurement height. The size of the footprint on 
the ground increases with measurement height. This effect has the 
implication that the resolution from the air and ground differ. The 
limitation in resolution is described by the footprint in van der Veeke 
et al. (2021). 

2.3.1. Spectral data processing 
For each of the four datasets (one tractor-based; three UAV-based) 

collected in this study, the radionuclide concentrations have been 
extracted with FSA by using the commercially available Gamman® 
spectral analysis software (Medusa Radiometrics, 2020). No cosmic or 
radon corrections where applied. The resulting radionuclide concen-
trations and summed spectra were exported for further analysis. 

2.4. Variogram and kriging 

The spatial distribution of 40K, 238U and 232Th resulting from the 
spectral analysis have been used to calculate three detrended semi-
variograms for each dataset. A semivariogram is used in geostatistics to 
describe the (dis)similarity in observed values between spatial positions 
of a dataset (Burrough et al., 2015). This semivariogram is fitted by a 
function which represents the weight factors used for kriging interpo-
lation of the data. Kriging interpolation has been developed for inter-
polation of mining data where a relatively low amount of samples was 
taken to predict the spatial distribution of analysis data (Cressie, 1990). 
In this research, however, it is used to include spatial information 
embedded in neighboring points to redistribute the data. For a semi-
variogram that describes spatial radiometric data of the agricultural 
field in this research, a spherical model with a nugget was an appro-
priate choice of function to fit (Burgess and Webster, 1980). 

In the semi-variogram (Fig. 6) we can distinguish the following 
elements: 

Nugget N0: is defined as the intersection of the fitted model with the 
vertical axis and represents the uncertainty in the data including the 
spatial variation occurring at distances closer than the sampling spacing. 
For a radiometric dataset this represents the square of the uncertainty in 
the data that is measured at the same spatial position. This uncertainty 
results from the combination of statistical and systematic uncertainties 
and consists of the following: the inherent uncertainty in radioactive 
decay that is described by Poisson statistics, the uncertainty in the 
ability of the equipment to register the decay, the uncertainty intro-
duced when converting the spectra to radionuclide concentration, var-
iations at a scale smaller than the sampled grid, and the uncertainty in 
the spatial position. In this research the statistical uncertainties decrease 
with detector size while the systematic uncertainties are equal for all 
measurements. 

Range r: Is defined as the distance where the model flattens. Points 
separated by more than this distance are not spatially autocorrelated, 
while points separated by less than this distance are spatially correlated. 
In geophysical radiometric measurements the height dependent size of 
the footprint that describes the origin of radiation (van der Veeke et al., 
2021) influences the range. It is expected that this footprint imposes a 
lower limit on the value for the range, which results in the inability to 
resolve spatial variation with a scale shorter than this range. 

Sill: The sill of the semi-variogram can often be approximated by the 
total variance of the dataset (Barnes, 1991). 

The nugget and sill can be estimated from the uncertainties and 
variations in radionuclide concentrations. This leads to an estimate of 
the partial sill (see Fig. 6) by subtracting the nugget from the sill. The 
nugget is calculated by taking the square of the average uncertainty, and 
the sill is estimated by calculating the standard deviation of the whole 
dataset. Values for the nugget, sill and partial sill directly calculated 
from the radionuclide concentrations are here referred to as calculated 
values and represent the physics approach. 

The variograms are used to compare the performance of the various 
sensors. The shape of these variograms is used to determine whether the 
recorded spectral data is sufficiently accurate to make an interpolated 
map. If the variance in the data is larger than the uncertainty, this will 
result in the identification of a partial sill in the variogram. When the 
uncertainty is equal to or larger than the variance in the data, no partial 
sill is present in the variogram. Consequently, only the nugget is defined, 
resulting in a homogenous map, and interpolation is not meaningful. 

Values for the nugget, sill and partial sill, extracted from the exper-
imental variogram are here referred to as extracted values and represent 
the geologist’s approach. Spatial nuclide distribution maps in this study 
were interpolated using the geostatistical method named ordinary block 
kriging (Burrough et al., 2015). This method determines the average 
concentration within a block, here a square surface area. 

Interpolated maps have been made by using a block size of 1 × 1 m2. 
Additionally, to compare the concentrations at the same spatial posi-
tions between the datasets, interpolated blocks with a size of 25 × 25 m2 

have been made for 232Th. The latter size has been chosen to be equal to 
the line spacing to make sure that each block contains measured data. 

2.5. Soil sample validation 

The topsoil samples (black points shown in Fig. 2) were acquired 
from an earlier survey carried out in 2010 (Hushållningssällskapet, 
Skara, Sweden). Each soil sample consisted of about 10 subsamples 
collected with an auger within a 3-m radius circle from a soil depth of 

Fig. 6. Schematic representation of the shape of a spherical semi-variogram 
(the green line) expected for a radionuclide distribution with strong auto- 
correlation. γ(h) is the semi-variance of the difference between the concentra-
tion values at field points separated by a so-called lag distance h. The green line 
is constructed by using a spherical model with an offset. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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0–20 cm. The sampling locations were positioned with a Trimble GPS 
using a network-RTK service (Lantmäteriet, Gävle, Sweden; ≈2 cm po-
sitional accuracy). The samples were air-dried at 35–40 ◦C, milled and 
sieved through a 2-mm mesh. Clay content (fraction <0.002 mm) and 
sand content (fraction 0.06–2 mm) were analyzed by a sedimentation 
method (ISO 11277; Gee and Bauder, 1986). 

3. Results 

3.1. General results and ground-based maps 

Fig. 7 shows spatial activity concentration maps for 40K, 238U- and 
232Th-series resulting from the survey and kriging interpolation. The 
average concentration and standard deviation of all the measurements 
are directly calculated from the FSA output and are listed in Table 1. All 
concentrations resulting from the airborne measurements agree within 
1σ with the ground-based measurements. The 40K and 238U maps for the 
MS-350 have been omitted because the uncertainty in the data is larger 
than the variance and thus a homogenous concentration for the whole 
field was found. Fig. 8c, f, i, l shows the histograms of the data used to 
calculate the values listed in Table 1. 

40K has a very different concentration range than 238U and 232Th. 
Comparing the spatial variation of these radionuclides to each other, the 
maps have been plotted with concentration limits that extend to ± 2σ of 
the average value of the ground-based measurements. The largest spatial 
variation is found in the thorium concentration (Fig. 7c). For the po-
tassium concentration, most spatial variation lies within 1σ (Fig. 7a). 
Uranium exhibits a similar, but less pronounced spatial variation 
(Fig. 7b) than thorium. This is further substantiated by the relative 
standard deviations of the three radionuclides (Table 1). Potassium and 
thorium represent the two extreme situations encountered in spatial 
radionuclide mapping: a homogenous and heterogenous field. Because 
uranium is similar, but less extreme than thorium, the subsequent sec-
tions omit the uranium data from the discussion. 

3.2. Variograms 

Fig. 8 shows the variograms for the 40K (red) and 232Th (blue) for the 
four datasets derived by the method described in section 2.4. Detrending 
is necessary for thorium because of the presence of a northwest- 
southeast gradient in the field (Figs. 2 and 7). The coloured circles in 
Fig. 8 represent the calculated semivariances as a function of lag dis-
tance. The black line is the spherical function fitted to the data by chi- 
squared minimization when using the calculated values as an initial 
guess (Table 2 in brackets). The initial range has been estimated by a 
visual inspection of the variogram data. Table 2 shows the extracted 
values for the nugget sill and range, taken from the spherical fit in the 
variogram and the calculated values are based on the data in Table 1. 

3.2.1. General variogram results 
The ranges for potassium are in all measurements shorter than for 

thorium when comparing the values per detector. All ranges are larger 
than the 95% footprint radius, indicating a scale of spatial variability 
that is larger than the footprint size. Because the spatial variability is 
larger than the footprint, even at 20 m, the same spatial variation in the 
field can be captured by both the ground-based and airborne 
measurements. 

3.2.2. Calculated values vs variogram values 
The variograms shown in Fig. 8 are inspected and compared to the 

typical spherical variogram structure presented in section 2.4 and shown 
in Fig. 6. The presence of this structure allows for the extraction of the 
nugget and sill, which are shown in Table 2. Only the variogram for 
potassium collected with the MS-350 detector (Fig. 8j) does not show 
this spherical structure. This is an indication that for this dataset the 
error (nugget) is larger than the variation (sill). Consequently, only the 

nugget can be determined from this variogram. For all other variograms 
the nugget and partial sill can be determined. The values for the nugget 
and sill extracted from the variogram are compared to the square of the 
average error and the standard deviation, respectively, which are 
calculated from all the datasets without taking the spatial component 
into account (section 2.4). 

Potassium: For both the nugget and the sill, the extracted and 
calculated values are very similar and only show small differences 
(<10%). 

Thorium: With the exception of the nugget in the MS-2000gnd 
measurement, the estimated values for the nugget and sill are exclu-
sively lower than the calculated values. For the nugget this difference 
becomes relatively more pronounced for decreasing detector size, 
whereas for the sill this difference becomes relatively less pronounced 
with decreasing detector size. Using the extracted values as the true 
values, the difference in the nugget varies between − 12% for the MS- 
2000gnd down to − 55% for the MS-350air. The sill varies between 48% 
for the MS-2000gnd to 10% for the MS-350air. 

3.3. Detector – detector comparison 

Fig. 9a–c shows the comparison of the interpolated 232Th concen-
trations recorded on the ground versus the concentrations recorded from 
the air. 232Th has been chosen because, based on Fig. 7, this is the 
radionuclide that has the largest spatial concentration variations and 
based on Fig. 8, this is for the MS-350air the only radionuclide for which 
a weighting function can be defined that result in a non-homogenous 
kriging interpolated map. 

The identity lines (the 1:1 lines) have been added to each plot in 
Fig. 9, and by comparing the concentrations measured in the air-to the 
ground-based measurements (a-c), it can be seen that:  

1. For all plotted datasets there is a larger number of points above the 
identity line than below, indicating that the measurements from the 
air result in a higher concentration than those from the ground.  

2. This effect is stronger for low concentrations (<30 Bq kg− 1) than for 
high concentrations. 

No fit (y = bx) on the data is shown in these figures (Fig. 9a–c) 
because the footprint when measuring at 20 m is significantly larger 
than measuring at 80 cm (van der Veeke et al., 2021) and because of 
these different measurement geometries, no strict equality is expected. 
Additionally, differences in the absolute value can be caused by soil 
moisture variations, or by calibration uncertainty. During the two 
measurement days, no significant amount of moisture was added to the 
soil (rainfall or irrigation) and temperature did not cause significant 
evaporation over this time period. Therefore, moisture is not considered 
to be of influence in this comparison. All detectors have been calibrated 
using the same procedure, using a Monte-Carlo model to predict the 
shape of the spectrum and a calibration measurement to verify the de-
tector response (Tijs et al., 2016; Van der Graaf et al., 2011). However, 
these calibrations assume a perfectly flat surface with no vertical geo-
metric elements (such as trees and ditches). This assumption is not 
completely valid at the edges of the field. This effect would be stronger 
for the measurements at height than the ground-based measurements 
and is the manifestation of a different footprint. 

Fig. 9d–e shows a comparison of the 232Th concentrations from the 
MS-1000air and the MS-350air to the MS-2000air. A linear fit is added to 
the graph because all three measurements in the comparison measure 
the same footprint and thus it is expected that this will result in the same 
radionuclide concentrations at each spatial position. A fit of the function 
y = bx fit through the points shows a slope close to unity for both plots, 
which is an indication of good agreement between the concentrations 
measured in the air by the various detectors. Furthermore, the points are 
distributed on both sides of the identity lines, indicating no bias for one 
of the detectors. 
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Fig. 7. Spatial distributions of 40K (a, d, g), 238U (b, e, h) and 232Th (c, f, i, j) resulting from mapping the target area with the three detectors at two different heights 
(80 cm (ground) and 20 m (air)). Maps have been made by using block kriging with the weighting functions shown in Fig. 8. For comparison the concentration scales 
have been fixed to the range of ± 2σ of the average value of the dataset as recorded by the ground-based measurement. 
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3.4. Validation of clay and sand content 

Fig. 10 shows the 232Th concentrations as a function of the clay and 
sand content of the soil samples (section 2.5) as measured in the various 
detector/height combinations. It is observed that there is a good cor-
relation between the 232Th concentration in the ground-based mea-
surement and the clay/sand content of the soil samples taken at the same 
spatial position (R2 = 0.92, 0.97 respectively). This correlation is pre-
viously shown to exists for ground-based radiometric measurements 
(Van Der Klooster et al., 2011; Wijngaarden and Venema, 2002) The 
same correlation, but less pronounced, holds for the radionuclide con-
centrations recorded from the air. Consistent with the deviations in 
Fig. 9a–c this is expected since the plots show a comparison between the 
sampled ground-based concentrations (point measurements) and the 
UAV-borne concentrations (surface measurements). 

4. Discussion 

The objective of this study is to determine the minimum practical 
detector size of a UAV-borne gamma-ray spectrometer, that will still 
providing accurate spatial information on the radionuclide distribution 
of 40K, 238U and 232Th. A tractor-borne survey with a 2000 ml CsI 
gamma-ray spectrometer is compared to the results from three different 
detector sizes, used simultaneously in a UAV-borne survey (2000 ml, 
1000 ml and 350 ml CsI detectors). Full Spectrum Analysis (FSA) is used 
to extract radionuclide concentrations from the measured spectra. Var-
iograms are calculated and used in kriging interpolation to calculate the 
spatial variation of the radionuclides. From these variograms the un-
certainty per point and the variance of the test field are estimated and 
compared to the same parameters extracted directly from the FSA re-
sults. Thereafter, the interpolated UAV-borne measurements are 
compared to both each other and to ground-based measurements, made 
with the same 2000 ml spectrometer to characterize the spatial accu-
racy. And finally, the correlation between the clay and sand concen-
trations in the soil versus the measured 232Th concentration is assessed 
for the various surveys. 

4.1. Ground-based maps 

Fig. 7 shows the spatial variation in 40K, 238U and 232Th concentra-
tion for the agricultural field at the Bjertorp farm test area. The ground- 
based measurements have been analyzed by using the validated pro-
tocols described in (Van der Graaf et al., 2011) and the resulting con-
centrations are assumed to represent the ground truth. The UAV-borne 

measurements have been analyzed by using the same protocols in 
combination with the spectral height corrections for the UAV range (van 
der Veeke et al., 2021). The radionuclide distributions have been plotted 
on a scale of ±2σ of the average ground-based concentration which 
clearly shows that there is significantly more relative variation in the 
238U and 232Th concentrations distribution than in the 40K distribution. 
To characterize the spatial differences for this field, a survey has to be 
conducted in which the uncertainty (nugget) is smaller than the varia-
tion (sill) of the field. In this study, this prerequisite is met for all 
measurements except for the 40K and 238U concentrations measured by 
the MS-350air and therefore these datasets cannot produce valid spatial 
distribution maps. 

All maps that result from kriging interpolation show very similar 
spatial concentration structures throughout the field, where the largest 
short scale variation is present in the soil measurements. Fig. 10 shows 
that 232Th values for all detectors can be used up to a high degree of 
confidence to predict the clay and sand concentrations of the area, and 
thus all spectrometers and measurement geometries used in this study 
can be used to construct high resolution spatial maps of the soil 
composition. 

4.2. Physics versus geology approach 

Average values of radionuclide concentration are listed in Table 1 for 
the four datasets which are calculated from the data presented in the 
histograms shown in Fig. 8c, f, i, l. The listed average radionuclide 
concentrations agree within the 1σ uncertainty for the four detectors. As 
expected, the uncertainty and variations increase with decreasing de-
tector size. This table shows that when the spatial component is not 
taken into account, the four datasets are in agreement with each other, 
which means that for this purpose the smallest 350 ml detector will be 
adequate to characterize the mean value area. 

The variograms that include a spatial component for all measure-
ments are shown in Fig. 8. An overview of the comparison of the 
calculated values to the variogram extracted values is listed in Table 2. 
From this table it can be observed that the values estimated directly from 
the FSA output match the values extracted from the variograms for 40K 
within 8%. The 232Th estimates all differ more than 10% from the values 
extracted from the variograms, and this difference becomes larger with 
decreasing detector size. These results show that the physics approach, 
that looks at the uncertainty and variance in the whole dataset, provides 
a good prediction of the spatial uncertainty and variance if the surveyed 
area is homogeneous, as is the case for 40K. When there is significant 
spatial variation in radionuclide concentration, as is the case for 232Th, 
this physics approach overestimates the uncertainty and variance. 

Based on this physics approach a certain uncertainty is expected in 
the dataset. However, for all UAV-borne 232Th datasets in this research, 
it is demonstrated that the recorded radionuclide concentrations in a 
variogram show a lower uncertainty. This allows a weighting function to 
be established that results in an interpolated map which accurately 
describes the spatial variation throughout the field. The erroneous 
estimation of the physics approach would have led to the conclusion that 
the MS-350air 

232Th measurements cannot be used to construct a spatial 
variation map. Table 2 lists the nugget as 510 and the sill as 430, 
meaning that the uncertainty is larger than the variance of the dataset 
and therefore, based on these numbers, all the variation would fall 
within this uncertainty, although the detrended variogram does show 
spatial correlation (Fig. 8k). The interpolated map (Fig. 7j) clearly shows 
the same structures as mapped with the other sensors (Fig. 7c, f, i). This 
is an example where the physics approach would have led to a different 
conclusion than the geology approach. Therefore, inspection of the 
(detrended) variogram during the survey would provide valuable 
information. 

Modern spectrometers such as the ones used in this study (Medusa 
Radiometrics BV, 2020) contain an algorithm that does a real time 
analysis of the measured spectra, which, in theory, can produce 

Table 1 
Overview of the radionuclide activity concentrations extracted from the four 
measurements. The 1σ uncertainty has been calculated by taking the average of 
the uncertainties for the individual concentrations as reported by FSA. The 
standard deviation of the entire dataset is listed in Bq kg− 1 units and in the 
brackets as the relative standard deviation (RSD).   

Average Concentration 1σ uncertainty  StdDev ((RSD))  

(Bq kg− 1) (Bq kg− 1) (Bq kg− 1) 
MS-2000gnd 

40K 690 51 62 (9%)  
238U 41 6.7 9.8 (24%)  
232Th 32 4.7 10 (31%)  

MS-2000air 
40K 754 64 73 (10%)  
238U 49 8.8 11 (23%)  
232Th 36 6.0 10 (27%)  

MS-1000air 
40K 733 92 96 (13%)  
238U 48 14 15 (30%)  
232Th 36 10 11 (31%)  

MS-350air 
40K 770 180 170 (22%)  
238U 43 31 28 (65%)  
232Th 37 23 21 (55%)  
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variograms during the measurement. This allows the operator to directly 
assess the results and, if necessary, adjust the survey by either flying 
lower and slower if the results are not sufficient, or flying higher and 
faster if the results are better than required for the survey. 

4.3. Loss of short scale concentration variations 

Fig. 9 shows a plot of the 232Th concentration measured from the air 
as a function of the concentration measured on the ground, when the 

spectral data has been redistributed by using kriging interpolation. 
Fig. 9a–c shows a small structural overestimation of the concentration 
measured at 20 m compared to the concentration measured on the 
ground (12–16%), which is also observed in the average values for 232Th 
in Table 1. Fig. 9d–e shows a comparison between the measurements 
made at 20 m, showing good agreement and thus indicating that all 
three detectors in the air measure the same spatially distributed con-
centrations, albeit more widely spread with the smallest sensor (Fig. 8c, 
f, i, l). 

Fig. 8. Collection of variograms and showing the spatial correlation for 40K and 232Th and the associated histograms. The dotted points in the variograms represent 
the calculated semi-variances for potassium (red dots) and thorium (blue dots) and have units of (Bq kg− 1)2. The four rows represent (from top to bottom) data from 
the MS-2000gnd, MS-2000air, MS-1000air, and MS-350air, respectively. The black line in the variograms represent the fitted spherical weighting function and the 
brown background represents the footprints of the origin of radiation of 65%, 95% and 99% from dark to light, respectively (van der Veeke et al., 2021). For a 
measurement height of 80 cm these footprints have a radius of 2, 14 and 67 m and for 20 m these have radii of 39, 143 and 342 m. The histograms show the variation 
in the dataset for the four measurements. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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This structural overestimation is hypothesized to be an underesti-
mation of the soil concentrations. The calibration files that are used to 
extract the radionuclide concentrations assume a clear field of view for 
the detectors. This geometry is met for the UAV-borne detectors where 
they are mounted under the UAV, but in the case of the tractor mea-
surements there is a small shielding effect due to the tires of the vehicle. 
Not correcting for this shielding effect, as is the case in this research, 
results in slightly lower radionuclide concentrations reported by the 
radionuclide analysis algorithm. This effect explains the structural 
overestimation, and it predicts that this effect is stronger for low con-
centrations. When the detector is at the position of a cold spot, the 
shielding causes a stronger relative reduction of signal (counts from the 
surrounding hotter area are missed) than when the detector is above a 
hot spot (counts from the surrounding colder area are missed). 

Ground-based measurements have a different footprint compared to 
measurements made with a UAV. At 80 cm the estimated 65% footprint 
is 2 m while this same amount of radiation originates from a footprint of 
39 m at a measurement height of 20 m (van der Veeke et al., 2021). 
Measuring at the exact same spatial location, results in the same 

measured concentrations when the average concentration in the volume 
of both footprints is equal. 

It is expected that measurements from a higher altitude report 
radionuclide concentrations toward the mean value of the spatial dis-
tribution. In case of an area with a locally elevated (hot spot) or reduced 
(cold spot) concentration which has a spatial size that is around 10 m in 
diameter, a measurement at 80 cm would include datapoints that solely 
capture the concentration of this local anomaly, and it should be 
possible to identify the boundaries of this anomaly. However, if this 
point would be measured from 20 m height, the detector always mea-
sures a contribution of the surrounding radionuclide concentrations. 
Thus, the measurements at a larger elevation measure concentrations 
towards the mean value of the distribution. 

The shift towards the mean value would imply that the UAV-borne 
measurements as plotted against the ground-based measurements in 
Fig. 9a–c would lie on a line with a slope <1. Indeed, when fitting the 
data Fig. 9a–c with a linear relation y = a + bx we find slopes of 0.86, 
0.80 and 0.76 for the MS-2000, MS-1000 and MS-350 respectively. 

Additionally, the shift towards the mean can be observed in Fig. 9 for 

Table 2 
Overview of the values for the nugget, partial sill and range extracted from fitting the variogram in Fig. 8 with an exponential function. The numbers in () brackets 
represent the calculated values (section 2.3.1). Calculated values have been marked with a * if the difference with respect to the extracted values is more than 10%.   

Potassium Thorium 

Nugget 
N0  

Sill Range 
r  

Nugget 
N0  

Sill Range 
r  

MS-2000gnd 2640 (2610) 3620 (3820) 140 25 (22*) 67 (99*) 210  

MS-2000air 4240 (4150) 5180 (5360) 160 30 (36*) 64 (95*) 200  

MS-1000 air 8415 (8450) 9170 (9190) 210 73 (95*) 100 (130*) 240  

MS-350 air 29800 (31800) – – 330 (510*) 390 (430*) 140  

Fig. 9. Comparison between detectors and survey geometries for the 232Th concentrations resulting from kriging interpolation when using a block size of 25 m Top 
(a–c): comparison between the concentrations measured from the air (20 m) on the y-axis to the ground-based concentrations (80 cm) on the x-axis. Bottom (d–e): 
comparison of the concentrations detected from the air with the MS-2000 concentrations on the x-axis and the MS-1000 (d) and MS-350 (e) on the y-axis. 
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the low concentrations (<30 Bq kg− 1). The points plotted in this part of 
the graphs lie almost exclusively above the identity line. At the high end 
of the graph this distribution shifts towards the identity line, although 
the majority does not shift below the line. The absence of this shift below 
the identity line at high concentrations is hypothesized to be due to the 
absence of sufficiently pronounced hot spots in this field. This leads to 
the conclusion that the impact on the absolute concentrations of the shift 
to the mean value effect remains to be studied. Such a study should take 
the effects of different footprints into account due to the difference in 
measurement height, and possibly come up with a prediction of this 
effect. 

The presented results are specific to the radionuclide variation that 
was found in the agricultural field when measuring at 20 m height at a 
speed of 5.6 m s− 1 while using CsI detectors that recorded spectra at an 
interval of 0.33 Hz. These results contribute to drafting the ‘guidelines for 
UAV-borne radioelement mapping’ at some point in the future. A full 
discussion of the various choices and requirements of such a generalized 
approach of a UAV-borne survey is out of the scope of the present 
research. The ‘guidelines for UAV-borne radioelement mapping’ should 
contain a generalized approach in choosing the appropriate measure-
ment parameters for a survey, among which the detector volume, 
measurement height and speed. The guidelines should also include a 
discussion on the detector material and the detector cost, which will 
influence the chosen detector volume. The choice for the survey pa-
rameters should be motivated by the required accuracy of the 
measurement. 

5. Conclusions 

In brief, the first question that comes up when choosing a detector for 
of a UAV-borne gamma-ray study is: “what is the minimum gamma-ray 
spectrometer size required to successfully map 40K, 238U and 232Th concen-
trations?”. An appropriate choice results in collecting sufficient counts 
per unit of time to characterize the spatial radionuclide distribution 
when using practical flying speeds. This research has characterized the 

differences in radionuclide concentrations that result from measuring 
with various sizes of gamma-ray spectrometers under a UAV. The results 
are compared to the radionuclide concentrations measured from the 
ground. 

The physics approach would be to estimate the count rate of the 
measurement which results in an average uncertainty per measurement 
point. The typical geology approach is to interpolate the data and look at 
resulting maps which represent the spatial radionuclide distribution. 
This approach interpolates the individual data points and uses infor-
mation embedded in neighboring points to estimate the spatial varia-
tion. Using a variogram to assess the radionuclide data combines both 
these requirements in a single graph. 

When dealing with significant spatial variation in the radionuclide 
concentration, a variogram is a better tool to estimate the uncertainty 
and variance (nugget and sill, respectively) than calculating these 
directly from the concentrations reported by full spectrum analysis. This 
study shows the case where the physics approach reports an uncertainty 
that is larger than the variance, which erroneously would lead to the 
conclusion that the used detector cannot be used to measure spatial 
variation. However, the geology approach shows that the sensor can 
perform better than expected and spatial variation can be mapped. 
Consequently, both approaches lead to different conclusions: the physics 
approach concludes that the sensor measures a homogenous field 
whereas the geology approach shows spatial radionuclide variation. 

In the gamma-ray spectrometers typically used in geophysical mea-
surements, the uncertainty depends on the number of collected counts in 
the measurement time interval. This count rate depends on the crystal 
volume, measurement height and measurement speed. All these pa-
rameters can be optimized to fulfill the requirements of the survey that 
typically aims to capture a spatial variation within a certain accuracy. 
Using solely the physics approach to determine the detector re-
quirements for a survey can lead to overspecification of the detector. 
This research has shown that the physics approach shows the worst case 
scenario and the actual measurements have a better uncertainty when 
the variogram is used for interpolation. A spectrometer that allows the 

Fig. 10. Thorium concentration as a function of the percentage of clay and sand content at selected spatial positions in the field. The soil sample analysis procedure is 
described in section 2.5. 
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inspection of the survey results in real-time would allow the operator to 
assess the results during the survey. If necessary, the survey parameters 
such as the flying height or speed can be adjusted to decrease the un-
certainty in the resulting radionuclide concentrations. This will lead to a 
more efficient and more cost effective radionuclide mapping, which will 
be better suited for the survey requirements. 

Measurements at increasing detector height have the tendency to 
shift towards the mean value of the distribution due to the increase of 
the footprint with measurement height. This has consequences for the 
interpretation of the results, in particular for the identification of hot 
and cold spots and their absolute radionuclide concentrations or when 
comparing soil samples to field measurements. Because of this effect, 
radionuclide concentration maps that result from airborne surveys do 
not necessarily map the same distribution as ground-based surveys. It is 
concluded that flying higher results in less sensitivity to extreme values 
and less spatial structure in the resulting radionuclide maps. Therefore, 
the required spatial resolution specifies the maximum flying height. 
Additionally, because of this sensitivity effect, the correlation between 
soil samples and mapped radionuclide concentrations is weaker. 

Finally, it is shown in this study that for an agricultural field that has 
a relative spatial variation of 9% for 40K, a 350 ml scintillation detector 
at a flying height and speed of 20 m and of 5.6 m s− 1 can predict the 
average value, but does not collect sufficient counts at a 0.33 Hz sam-
pling rate to characterize the spatial radionuclide concentration of the 
field. However, the same data can predict both the average concentra-
tion as well as the spatial variation for 232Th, which has 31% relative 
spatial variation. A 1 l scintillation detector, or a bigger one, with the 
same survey parameters collects sufficient information to spatially 
characterize the radionuclide distribution for 40K and 232Th in this 
particular survey. It is shown that the spatial radionuclide information 
of 232Th can be used up to a high degree of confidence to predict the clay 
and sand concentrations of the measured area. This case study and its 
detector sizes can be used in the design of the survey parameters for 
UAV-borne surveys. 
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