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Difficulty in protoplast regeneration is a major obstacle to apply the CRISPR/Cas9 gene

editing technique effectively in research and breeding of rapeseed (Brassica napus L.).

The present study describes for the first time a rapid and efficient protocol for the isolation,

regeneration and transfection of protoplasts of rapeseed cv. Kumily, and its application

in gene editing. Protoplasts isolated from leaves of 3–4 weeks old were cultured in MI

and MII liquid media for cell wall formation and cell division, followed by subculture on

shoot induction medium and shoot regeneration medium for shoot production. Different

basal media, types and combinations of plant growth regulators, and protoplast culture

duration on each type of media were investigated in relation to protoplast regeneration.

The results showed that relatively high concentrations of NAA (0.5mg l−1) and 2,4-D

(0.5mg l−1) in the MI medium were essential for protoplasts to form cell walls and

maintain cell divisions, and thereafter auxin should be reduced for callus formation and

shoot induction. For shoot regeneration, relatively high concentrations of cytokinin were

required, and among all the combinations tested, 2.2mg l−1 TDZ in combination with

auxin 0.5mg l−1 NAA gave the best result with up to 45% shoot regeneration. Our results

also showed the duration of protoplast culture on different media was critical, as longer

culture durations would significantly reduce the shoot regeneration frequency. In addition,

we have optimized the transfection protocol for rapeseed. Using this optimized protocol,

we have successfully edited the BnGTR genes controlling glucosinolate transport in

rapeseed with a high mutation frequency.

Keywords: Brassica napus, CRISPR/Cas9, gene editing, glucosinolate transporter, GTR gene, protoplast

regeneration

INTRODUCTION

The CRISPR/Cas9 technology has now become a prevailing tool for plant genome editing owing
to its high precision, efficiency and simplicity in use (Arora and Narula, 2017). Apart from its
powerful role in functional genomics analysis, it has also revolutionized the strategy for crop
breeding and improvement. So far the CRISPR/Cas9 system has been successfully applied to edit
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FIGURE 2 | Types of mutations in the BnGTR1 and BnGTR2 genes detected in the three mutants in comparison with wild type of rapeseed cv. Kumily, determined by

DNA sequencing. PAM sites are highlighted in bold letters. Mismatches with the sgRNAs are highlighted in green. Mutated nucleotides were highlighted in different

colors, in which deletions are shown with hyphens in blue, substitution and insertions are highlighted in red and pink, respectively.
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The protoplast transient transfection system is a promising
approach for delivering CRISPR complexes, but the bottleneck
of this approach is the difficulty in protoplast regeneration.

Protoplasts are plant cells that lack the cell wall, but possess
plasma membrane and all other cellular components. The first
developmental stage of protoplasts is formation of the cell
wall, followed by cell divisions. The cell wall formation starts
within a few hours after isolation, and may take several days
to complete (Kartha et al., 1974). In this period, the protoplasts
are very fragile and sensitive to the culture conditions and
surrounding environment. It has been reported that for the
culture of rapeseed hypocotyl protoplasts, the auxins 2,4-D
and NAA were both necessary for cell wall formation and cell
division. The ratio of NAA to 2,4-D content that stimulates
protoplast colony growth best appears to be species- and even
genotype-dependent. It has been reported that, in one case, a
higher level of NAA than 2,4-D was either similar or better
in stimulating protoplast colony growth of all genotypes tested
(Glimelius, 1984), while in another study, higher levels of 2,4-D
than NAA was reported to be beneficial for hypocotyl protoplast
development in rapeseed (Barsby et al., 1986). In this study, we
used identical quantities of 2,4-D and NAA, and it turned out to
work well in this case.

Osmotic pressure must be maintained at the initial stage
of protoplast culture. The isolated and cultured protoplasts
require osmotic protection until they have developed cell walls
(Kao and Seguin-Swartz, 1987), while the osmolarity should be
gradually reduced to a normal level in order to maintain normal
growth and development. In this study, mannitol was used to
maintain osmotic pressure. We first used a high concentration
of mannitol (100 g l−1) in MI and MII media, which was
then reduced to 50 g l−1 in SIM until the protoplasts became
small colonies, and thereafter removed completely in the SRM
medium. If mannitol was removed from the medium too early,
the protoplasts would become brownish and eventually die. On
the other hand, if the mannitol was removed from medium
too late, the growth and regeneration of protoplasts would be
negatively affected. The reason could be that continuous presence
of mannitol would form an inappropriate cell environment for
normal growth, e.g., affecting negatively the uptake of nutrients
and water.

The culture density of protoplasts is also an important factor
affecting protoplast growth and development. Some studies
suggested that higher culture densities would promote the growth
and division of protoplast cells (Chuong et al., 1985; Kielkowska
and Adamus, 2012). The reason for this could be that cultured
protoplasts stimulate growth and mitotic division of adjacent
cells by releasing growth factors into the surrounding medium
(Davey et al., 2005). In this study, we also found that a low density
of protoplasts could result in poor cell division and thus reduced
callus formation. However, too high density of protoplasts would
result in brownish colonies, likely because of rapidly depleted
available nutrients that caused a large number of protoplasts to
fail to undergo divisions (Chuong et al., 1985). The most suitable
plating density in this study was 0.4 million protoplasts per ml for
rapeseed, while up to 1 million per ml also lead to regeneration of
plants in many cases.

Low regenerative capacity is the major obstacle affecting
the application of protoplasts for rapeseed. With induction
and appropriate manipulations, the protoplasts are able to
undergo a series of differentiation stages, and finally form whole
plants under optimal or suitable conditions. Among all factors
affecting protoplast regeneration, PGRs is thought to be the
most important one. A general concept is that high auxin to
cytokinin ratio is suitable to stimulate cell divisions and cell
wall formation of protoplasts, and high cytokinin to auxin ratio
is required for shoot regeneration. However, this ratio varies
a lot from species to species (Kao and Seguin-Swartz, 1987),
and thus needs to be optimized for each crop. We found in
our study that TDZ gave the best shoot regeneration among
all types of cytokinin tested. Moreover, high concentration of
cytokinin in combination with a relatively high level of auxin
(2.2mg l−1 TDZ and 0.5mg l−1 NAA) had a great positive effect
on protoplast regeneration in rapeseed. Although BAP is widely
used for many crops for in vitro cultures, it did not seem to
be effective for protoplast regeneration in rapeseed, as shown in
this study.

We also found in this study that the culture duration
in different culture media at different developmental stages
played an important role in protoplast regeneration of rapeseed,
in which prolonged culture durations at earlier stages of
development would reduce regeneration rapidly. For instance,
the culture duration in MI medium should not be longer than
5 d, the duration in MII should be shorter than 30 d and not
more than 20 d in SIM medium. These findings suggest that it
is crucial to transfer protoplast cultures into the successive media
in a timely manner.

In this study, the BnGTR genes were successfully edited
by CRISPR/Cas9 in rapeseed using our optimized protoplast
regeneration and transfection protocols, demonstrating for the
first time the high capacity of the protoplast approach in
genetic improvement of rapeseed by CRISPR/Cas9. We believe
that this optimized protoplast regeneration protocol will be
beneficial to other researchers working with rapeseed or other
Brassica species. We are still working on generating more
mutation lines in order to get desirable and more homozygous
mutation lines. It should be kept in mind that modern widely
cultivated cultivars are allotetraploid. This allopolyploidization
leads to multiple homologs of most genes controlling the
same traits in the rapeseed genome compared with the related
diploid model species A. thaliana (Chalhoub et al., 2014).
In order to develop a knockout mutant in rapeseed, it is
imperative to edit all paralogous sequences of the BnGTR genes.
Therefore, selfing for a couple of generations might be needed
to obtain homozygous mutation lines in all paralogs of the
BnGTR genes.
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