Skip to main content
SLU publication database (SLUpub)

Research article2021Peer reviewedOpen access

Age-related response of forest floor biogenic volatile organic compound fluxes to boreal forest succession after wildfires

Zhang-Turpeinen, Huizhong; Kivimaenpaa, Minna; Berninger, Frank; Koster, Kajar; Zhao, Peng; Zhou, Xuan; Pumpanen, Jukka

Abstract

The amplification of global warming in the Northern regions results in a higher probability of wildfires in boreal forests. On the forest floor, wildfires have long-term effects on vegetation composition as well as soil and its microbial communities. A large variety of biogenic volatile organic compounds (BVOCs) such as isoprene, monoterpenes, sesquiterpenes have been observed to be emitted from soil and understory vegetation of boreal forest floor. Ultimately, the fire-induced changes in the forest floor affect its BVOC fluxes, and the recovery of the forest floor determines the quantity and quality of BVOC fluxes. However, the effects of wildfires on forest floor BVOC fluxes are rarely studied. Here we conducted a study of the impacts of post-fire succession on forest floor BVOC fluxes along a 158-year fire chronosequence in boreal Scots pine stands near the northern timberline in north-eastern Finland throughout a growing season. We determined the forest floor BVOC fluxes and investigated how the environmental and ground vegetation characteristics, soil respiration rates, and soil microbial and fungal biomass are associated with the BVOC fluxes during the post-fire succession. The forest floor was a source of diverse BVOCs. Monoterpenes (MTs) were the largest group of emitted BVOCs. We observed forest age-related differences in the forest floor BVOC fluxes along the fire chronosequence. The forest floor BVOC fluxes decreased with the reduction in ground vegetation coverage resulted from wildfire, and the decreased fluxes were also connected to a decrease in microbial activity as a result of the loss of plant roots and soil organic matter. The increase in BVOC fluxes was associated with the recovery of aboveground plant coverage and soils. Our results suggested taking into consideration the implications of BVOC flux variations on the atmospheric chemistry and climate feedbacks.

Keywords

Forest floor BVOC fluxes; Wildfire; Forest succession; Ground vegetation changes; Scots pine forests

Published in

Agricultural and Forest Meteorology
2021, Volume: 308, article number: 108584
Publisher: ELSEVIER

    UKÄ Subject classification

    Forest Science

    Publication identifier

    DOI: https://doi.org/10.1016/j.agrformet.2021.108584

    Permanent link to this page (URI)

    https://res.slu.se/id/publ/113683