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Abstract
Strong historical and predicted future warming over high-latitudes prompt significant effects on agricultural and forest eco-
systems. Thus, there is an urgent need for spatially-detailed information of current thermal growing season (GS) conditions 
and their past changes. Here, we deployed a large network of weather stations, high-resolution geospatial environmental data 
and semi-parametric regression to model the spatial variation in multiple GS variables (i.e. beginning, end, length, degree 
day sum [GDDS, base temperature + 5 °C]) and their intra-annual variability and temporal trends in respect to geographical 
location, topography, water and forest cover, and urban land use variables over northern Europe. Our analyses revealed sub-
stantial spatial variability in average GS conditions (1990–2019) and consistent temporal trends (1950–2019). We showed 
that there have been significant changes in thermal GS towards earlier beginnings (on average 15 days over the study period), 
increased length (23 days) and GDDS (287 °C days). By using a spatial interpolation of weather station data to a regular grid 
we predicted current GS conditions at high resolution (100 m × 100 m) and with high accuracy (correlation ≥ 0.92 between 
observed and predicted mean GS values), whereas spatial variation in temporal trends and interannual variability were more 
demanding to predict. The spatial variation in GS variables was mostly driven by latitudinal and elevational gradients, albeit 
they were constrained by local scale variables. The proximity of sea and lakes, and high forest cover suppressed temporal 
trends and inter-annual variability potentially indicating local climate buffering. The produced high-resolution datasets 
showcased the diversity in thermal GS conditions and impacts of climate change over northern Europe. They are valuable 
in various forest management and ecosystem applications, and in adaptation to climate change.

Keywords  Thermal growing season · Statistical modeling · Climate change · Generalized additive model · Local climate · 
GIS

1  Introduction

Climate change has led to major alterations in global air tem-
perature and precipitation patterns with asymmetric mani-
festation between seasons, and these changes are projected 
to further continue over the upcoming decades (IPCC 2013; 
Bintanja and Andry 2017). As a consequence, changes in 
thermal growing season (GS), that is, the period of suitable 
conditions for plant growth, have been widely observed and 
projected over northern hemisphere (Linderholm et al. 2008; 
Jeong et al. 2011; Ruosteenoja et al. 2016, 2019). In general, 
such changes have included earlier beginning and later end 
of GS, with consequent increases in the length of GS and 
accumulated growing degree day sum (°C days, GDDS). 
These changes in thermal GS will profoundly impact on 
ecosystem functions, biodiversity patterns, agricultural and 
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forest management practices, bioeconomical activities as 
well as exposure to natural hazards (Venäläinen et al. 2001; 
Piao et al. 2007; Linderholm 2006; Liu et al. 2018; Jactel 
et al. 2019). Consequently, there is an urgent need for up-to-
date and spatially detailed information of current variability 
and recent changes of thermal growing season conditions.

Northern Europe experiences large spatial and tempo-
ral variability in weather and climate due to its position in 
the end of North Atlantic storm track (i.e. the Polar Front), 
Scandes mountain, proximity to Atlantic ocean in the west 
and large Eurasian continent in the east (Tikkanen 2005; 
Wernli and Schwierz 2006). Moreover, its distinct snow cli-
mate and specialized ecosystems makes it especially vulner-
able to climate change (Aalto et al. 2017a; Niittynen et al. 
2018; Niskanen et al. 2019). Boreal environments are in gen-
eral humid and moist, particularly in the spring after snow 
melt. Thus, water availability is not limiting the onset of the 
thermal growing season. The northern Europe (i.e. Finland, 
Sweden, Norway and Denmark) is a unique region in that 
it is covered by a dense and reliable network of weather 
observation stations operated already in the 1950s, that is, 
before the main satellite era. Such a well-established obser-
vational network is a prerequisite for accurate tracking of 
climate change and conducting detailed spatial analyses of 
climate variability (Tveito et al. 2001; Aalto et al. 2017b). 
Weather stations are often placed on open landscape to 
represent broad environmental conditions (De Frenne and 
Verheyen 2016). Recent studies show that, with sufficiently 
large station network, such data may be used to model local 
air temperature, and further assess thermal growing season 
variability in respect to local conditions such as topography 
and water cover variables over large spatial domains (Mein-
eri and Hylander 2016; Aalto et al. 2017b).

Current knowledge of GS variability over northern 
Europe is founded on partly outdated analyses, short analysis 
periods, limited geographical coverage and/or coarse spa-
tial resolution. For example, Tveito et al. (2001) presented 
a collection of climate maps over Nordic areas including 
also beginning (hereafter GSbeg), end (GSend) and length 
(GSlen) of GS over the period of 1961–1990. Surprisingly, 
no updated GS maps or analyses of past trends covering 
the northern Europe have been published since [but see 
Linderholm et al. (2008) for the Greater Baltic Area]. This 
knowledge-gap limits our understanding of the current pace 
of climate change and its potential ecosystem impacts over 
northern Europe. In more thorough but spatially limited 
analysis, Irannezhad and Kløve (2015) used gridded daily 
weather data to quantify changes in GSbeg, GSend and GSlen 
over Finland 1961–2011. The authors related the spatial 
variability in temporal GS trends to various atmospheric 
teleconnection patterns. They found significant correlations 
with multiple oscillation indices indicating that interan-
nual GS variability is responsive to large-scale atmospheric 

circulation dynamics. However, the use of rather coarse-
scale climate data (spatial resolution of 10 km × 10 km) 
masks out much of the landscape level GS variability impor-
tant for understanding changes that local ecosystems are fac-
ing (Aalto et al. 2017b). In addition to thermally defined 
GS, vegetation phenology—based GS estimates have been 
produced over northern Europe (Karlsen et al. 2007, 2008, 
2009; Høgda et al. 2013). The use of remote sensing tech-
niques allows for improving the spatial details of the analy-
ses (e.g. 250 m for Moderate Resolution Imaging Spectrora-
diometer [MODIS]), but so far such investigations have been 
limited to relatively short periods of past 20 years hindering 
understanding of long-term GS dynamics. Therefore, there is 
a clear gap in understanding current and past GS variability 
in Northern Europe.

In general, GS variability follows air temperature pat-
terns that in turn can show substantial local scale variabil-
ity depending on e.g. topographical settings and proximity 
to water bodies (Ashcroft and Gollan 2012; Meineri and 
Hylander 2016; Aalto et al. 2017b). In addition to strong 
effects of geographical location (i.e. latitudinal and longi-
tudinal position) and elevation gradient on air temperatures 
via lapse rate (Rolland 2003), local scale variation in incom-
ing solar radiation intercepted by topographical and forest 
canopy shading together with effects due to e.g. latent heat 
fluxes can create substantial spatial heterogeneity in GS vari-
ables (Fridley 2009; Dobrowski 2011; Meineri and Hylander 
2016; Greiser et al. 2018; De Frenne et al. 2021). Lakes are 
prominent in the northern Europe due to multiple glaciations 
and they are known to influence local climate by suppressing 
temperature variations due to their high specific heat capac-
ity that leads to a cooling effect during early GS (i.e. delay-
ing beginning) and warming effect during late GS (delaying 
end, Lookingbill and Urban 2003). Such local effects may 
lead to temperature and GS trends that by their magnitude 
and spatio-temporal dynamics can differ from regional pat-
terns, with potentially important consequences on local eco-
system dynamics (Pepin and Seidel 2005; Daly et al. 2010; 
Dobrowski 2011; Lenoir et al. 2016). Moreover, studies sug-
gest that the Urban Heat Island effect (UHI; elevated urban 
temperatures compared to surrounding countryside; Oke 
1973) can exert a control on thermal growing seasons and 
phenology in urban areas, where urban surfaces and struc-
tures alter energy balance, heat fluxes and air-mixing (Oke 
1995; Jochner et al. 2012; Zipper et al. 2016). However, 
contemporary gridded GS data does not capture such local 
scale heterogeneity impeding our ability to understand GS 
dynamics and their ecosystem impacts in northern Europe.

Here, we document and analyze current (1990–2019) 
thermal growing season conditions, their interannual 
variability and past changes (1950–2019) over northern 
Europe using a large network of weather stations. We 
provide the most up-to-date and spatially detailed picture 
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of the current and past variability in multiple GS vari-
ables (i.e. GSbeg, GSend, GSlen and GDDS) by statistically 
modeling their spatial variation in respect to geographical 
location, topographical, water and forest cover, and urban 
land use variables. Finally, we produce geospatial GS data 
layers covering northern Europe at very high spatial reso-
lution (100 m × 100 m) to be used in various ecosystem 
applications.

2 � Data and methods

2.1 � Study domain

We analysed GS variability in northern Europe, within the 
domain of ca. 55–71° N, 5–35° E (Fig. 1). The climate of this 
region is dominated by the effects of proximate Atlantic Ocean, 
annual and decadal variability of North Atlantic Oscillation, 
moving low pressure systems at the Polar front, elevation due 
to Scandes Mountain range and large Eurasian continent (Hur-
rell 1995; Tikkanen 2005). Based on the daily gridded climate 
dataset (Nordic Gridded Climate Dataset [Tveito et al. 2005, 
updated], spatial resolution of 1 km × 1 km, https://​surfo​bs.​
clima​te.​coper​nicus.​eu/​dataa​ccess/​access_​ngcd.​php), the aver-
age annual air temperature conditions (1990–2019) vary from 
− 7.8 to 9.6 °C. The study area has extensive latitudinal and 
elevational gradients leading large variations in incoming solar 
radiation. Due to recent glaciations, lakes are prominent in the 
study area.

2.2 � Weather station data

Weather station data for Finland, Sweden, Norway, Denmark 
and westernmost parts of Russia were compiled from the 
European Climate Assessment & Dataset (ECA&D, accessed 
19.6.2019, total of 1395 stations) data base (Klok and Klein 
Tank 2009) and represent daily mean air temperature (Tday) 
data 1950–2019 (“non-blended” data series). The data have 
passed national operative quality control schemes. Russian 
stations were included to the dataset to reduce border effect 
in subsequent spatial modeling as well as to increase the envi-
ronmental representativeness of the station data.

The spatial distribution of the observations is dense enough 
for studying daily aggregated values, especially when those 
daily values are used to compute annual quantities (average 
distance < 200 km; Fig. 1). Such station density is adequate in 
characterizing weather phenomena of the region having the 
smallest spatial scales between 20 and 200 km (Thunis and 
Bornstein 1996). Despite this, there are regions, such as the 
mountains in South Norway, where the network is sparser and 
where greater uncertainty in the reconstruction of the gridded 
fields can be expected.

2.3 � Response variables: growing season variables

We analyzed four variables that captures the key properties 
of thermal growing seasons: beginning of the GS (GSbeg, day 
of the year [DOY]), end of the GS (GSend, DOY), length of 
the GS (GSlen, days) and growing degree day sums (GDDS, 
°C days). We define the thermal growing season as the period 
when daily mean temperature (Tday) is permanently at or 
above + 5 °C (Eqs. 1–2). The beginning and end of the grow-
ing season was determined using the so-called integral method 
(see Ruosteenoja et al. 2016), which identifies the date after 
the absolute minimum of the sum(Tday-threshold) has been 
reached (GSbeg) and analogously GSend when the absolute 
maximum of the sum(Tday-threshold) has been reached, but 
not earlier than 1st of June.

A minimum of 95% of the annual Tday data must exist in 
order to merit further calculations of GS variables.

To characterize the current spatial variability in GS con-
ditions over the study area, we averaged the four annual GS 
variables over the period of 1990–2019 (hereafter denoted 
as µGSbeg, µGSend, µGSlen and µGDDS). A minimum of 
10 years of data was required to calculate the average val-
ues. This liberal limit was chosen in order to increase sta-
tions’ coverage over the environmental gradients especially 
towards high elevations (Fig. S1), where the observational 
network is sparser. Further, this preselection yielded 482 
stations for consequent analyses with an average of 26 years 
of data (Fig. 1b).

We estimated the temporal trends in GS conditions 
(βGSbeg, βGSend, βGSlen and βGDDS) over the period of 
1950–2019 using Sen’s slope estimator (Sen 1968) (function 
sens.slope in R package trend) (Pohlert 2020) for stations 
having at least 45 years of data. This preselection resulted 
in trend estimates for 349 stations to be used in consequent 
spatial analyses, which on average have 61 years of data 
(Fig. 1c), and on average 28 years of data covering the three 
most recent decades (i.e. 1991–2019). Using the same subset 
of 349 stations, interannual variability of the GS variables 
(σGSbeg, σGSend, σGSlen and σGDDS) were quantified in 
terms of standard deviation over the period of 1950–2019.

2.4 � Predictors: geospatial data

We used several geospatial data to derive predictor vari-
ables (hereafter referred as predictors) for explaining the 

(1)GDD =

{

Tday − 5 ◦C if Tday ≥ 5 ◦C

0 otherwise

(2)GDDS =
∑

GDD

https://surfobs.climate.copernicus.eu/dataaccess/access_ngcd.php
https://surfobs.climate.copernicus.eu/dataaccess/access_ngcd.php
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spatial variation in the response variables. The geospatial 
data were managed using ArcMap (version 10.7.1.) Spatial 
Analyst-functions.

Topography exerts a strong control on air temperature 
and thus GS variability via elevation (temperature lapse rate) 
and solar radiation interception (surface energy input). For 

Fig. 1   Weather station network. a Weather stations recording daily air 
temperatures that were used to calculate temporal trends (β) and inter-
annual variability (σ, standard deviation; 1950–2019, red squares, 
n = 349) and mean conditions over 1990–2019 (µ, black squares, 
n = 482 including also the previously mentioned 349 stations) in ther-
mal growing season variables. The background map depicts the ele-
vation above the sea level (m a.s.l.) and grey coloring indicates areas 
outside the analysis domain. b–c Histograms showing the amount of 
years available for calculating µ (b), and β and σ (c), respectively. d–g 

Examples of time series of thermal growing degree day sum (GDDS), 
beginning of the growing season (GSbeg), end of the growing season 
(GSend) and length of the growing season (GSlen), respectively, from 
selected weather stations (locations indicated in a). DOY day of the 
year. Statistical significance of the temporal trends (β, estimated using 
Sen’s slope) is indicated as *** = p ≤ 0.001, * = p ≤ 0.05, n.s. = not 
significant (p > 0.05). The black lines in d–g depict the average of 
1990–2019 and the blue lines depict the temporal trends fitted using 
spline smoothing
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obtaining elevation information we used the values reported 
in the station metadata. Other topography-related predictors 
were derived from the Merit DEM (Multi-Error-Removed 
Improved-Terrain Digital Elevation Model) that covers land 
areas between 90° N and 60° S at the spatial resolution of 
90 m × 90 m (Yamazaki et al. 2017). We calculated several 
potential predictors from the DEM that have previously 
been used to explain spatial variation in local air tempera-
tures at the study area (Meineri and Hylander 2016; Aalto 
et al. 2017b). To capture the effect of solar radiation on air 
temperatures, we calculated the northness index, which is a 
cosine-transformation of an aspect layer (in degrees). The 
resulting layer has values ranging from − 1 (south-facing 
slope) to 1 (north-facing slope). We also calculated poten-
tial incoming solar radiation (PISR, MJ cm−2 a−1) using 
the equations in (McCune and Keon 2002). However, this 
potential predictor was excluded from the analyses due to 
very high positive correlation with latitude that confounds 
the multivariate models (Meineri and Hylander 2016). We 
also considered the effect of stations’ local topographical 
position as a potential predictor for capturing the effect of 
local topography on air-mixing (Ashcroft and Gollan 2013). 
Following the methodology by Aalto et al. (2017b) we cal-
culated relative elevation as the difference of a cell to the 
minimum elevation at the radius of 500 m and 2000 m. Here, 
we assumed that locations that have relative elevation close 
to zero are prone to more stable atmospheric conditions 
than locations above the local minimum (Pepin et al. 2009). 
However, after preliminary testing this potential predictor 
(both with 500 m and 2000 m radius) was omitted for further 
analyses due to highly positively skewed distribution (results 
not shown).

Air temperatures in the study area are strongly affected 
by the proximity of the North Atlantic Ocean, The Baltic 
Sea and the Barents Sea (Tikkanen 2005). Following the 
methodology in Meineri and Hylander (2016) we calculated 
distance to sea (in meters, using ArcGIS Spatial Analyst-
function Cost Distance), and to simplify our approach, we 
assumed that all surrounding sea areas have similar effect on 
GS variables. However, due to varying ocean dynamics e.g. 
in freeze-up and circulation this assumption may not hold 
and can introduce additional uncertainty to our analyses. We 
used global water cover data (World Water Bodies; UCLA 
Institute for Digital Research and Education 2019) to delin-
eate lakes and shorelines. Following the methodology in 
Aalto et al. (2016), Meineri and Hylander (2016) and Aalto 
et al. (2017b) we calculated distance to lakes (lakes ≥ 10 km2 
considered) to capture local effects of lakes on daily air 
temperatures and further GS variability (Lookingbill and 
Urban 2003). To account for the effects of forest cover on 
air temperatures via mediating net radiation, air flow and 
latent heat fluxes, we used the global data product by Hansen 

et al. (2013) which represents a remotely-sensed estimate of 
the percentage forest cover (0–100%) in 2000 at the spatial 
resolution of 30 m × 30 m. Finally, we used the data by Gao 
and O'Neill (2020) to depict the fraction of urban land to all 
land areas (0–1) in 2000 (https://​datav​erse.​harva​rd.​edu/​file.​
xhtml?​persi​stent​Id=​doi:​10.​7910/​DVN/​ZHMI1L/​TEVEB​0&​
versi​on=1.0; accessed 9.6.2021). The spatial resolution of 
the urban fraction data is 0.125° × 0.125° (ca. 12.5 km at the 
equator). Despite this relatively coarse spatial resolution, we 
find the data suitable for our modeling in quantifying the 
general effect of urban land use on air temperatures and con-
sequently on thermal GS. For the subsequent modeling, the 
forest cover and urban fraction variables were log(x + 1) and 
log(x + 0.01) transformed to balance their highly positively-
skewed distributions (Fig. S1), respectively.

In addition to predictors described above, we used geo-
graphical location (latitude and longitude) to describe the 
regional-scale variations in GS variables caused by e.g. mar-
itime-continental gradient, seasonal variation in cloud cover 
and broad scale advection affecting GS temperature patterns.

Water-related predictors were rasterized, and all geospa-
tial data were reprojected to same coordinate reference sys-
tem ETRS89-LAEA (epsg: 3035) and further resampled to 
a common spatial resolution of 100 m × 100 m using bilinear 
interpolation (ArcGIS resample-function).

2.5 � Statistical modeling

All statistical analyses were conducted using the R soft-
ware version 3.6.1. (R Development Core Team 2011). The 
response variables (i.e. µGS, βGS and σGS) were related to 
the predictors using generalized additive modeling (GAM; 
Hastie and Tibshirani 1990) as implemented in R-package 
mgcv (Wood 2011). The GAM are semi-parametric exten-
sions of generalized linear models that use smoothing func-
tions to fit non-linear response functions to the data:

where g(�) is the link function that connects the estimated 
mean to the distribution of the response variable (here we 
assume Gaussian errors), �0 is the intercept, si is the smooth-
ing function to be estimated and xi is a predictor.

Following Meineri and Hylander (2016) we used a two-
staged modeling procedure: first, the response variables 
were modeled as a function of topographical, water and 
land cover predictors (Model1, Eq. 4), and then the residuals 
of model1 (e) were modeled as a function of geographical 
location (Model2, Eq. 5) using anisotropic tensor interac-
tion term (te-function) that allow for an asymmetric effect 
of geographical location (Wood 2011):

(3)g(�) = �0 + s1
(

x1
)

+ s2
(

x2
)

+⋯ + si
(

xi
)

https://dataverse.harvard.edu/file.xhtml?persistentId=doi:10.7910/DVN/ZHMI1L/TEVEB0&version=1.0
https://dataverse.harvard.edu/file.xhtml?persistentId=doi:10.7910/DVN/ZHMI1L/TEVEB0&version=1.0
https://dataverse.harvard.edu/file.xhtml?persistentId=doi:10.7910/DVN/ZHMI1L/TEVEB0&version=1.0
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Here k refers to the maximum smoothing function 
which is further optimized by the model fitting algorithm 
(Wood 2011). To reduce potential overfitting the k-argu-
ment was set to three. The two-staged modeling procedure 
was done so that topographical, water and land cover pre-
dictors can contribute in explaining the variation in the 
response variables, which would otherwise be masked out 
by the strong effect of geographical location on the GS 
variables. We did not use a model selection criterion i.e. 
all considered predictors were kept in the models regard-
less of their statistical significance or other optimization 
criteria. This was done because (i) the most of the chosen 
predictors have previously been used in spatial modeling 
of air temperature conditions in the study region (Aalto 
et al. 2016, 2017b; Meineri and Hylander 2016), and (ii) 
the estimated effects of local-scale predictors, especially 
northness and forest cover, are expected to be modest due 
to weather stations’ placement on open and relatively flat 
landscapes. As a supplementary analysis of spatial vari-
ation in temporal trends (βGS), we included the number 
of years as an additional predictor to the model. This was 
done in order to test whether this feature of the data (i.e. 
varying amount of years for trend calculations) influences 
the observed spatial patterns of temporal GS trends.

Effect sizes (EF) for each predictor, after holding other 
predictors constant at their mean values, were calculated 
by subtracting the predicted maximum GS values from the 
predicted minimum GS values (Aalto et al. 2017b). Thus, 
EF represents the magnitude of variation in a response 
variable caused by a predictor. Finally, the models were 
used to predict the GS variability over the study area at 
the spatial resolution of 100 m × 100 m. For each response 
variable (µGS, βGS and σGS) this was done by summing 
the predictions of the Model1 and the Model2 into final 
predictions. To secure consistency of the final data layers, 
µGSlen was produced by subtracting the predicted µGSend 
from the predicted µGSbeg.

To assess the accuracy of the spatial predictions we used 
leave-one-station-out cross-validation scheme, where each 
station in turn was left aside from the observation data, the 
model was fitted using n − 1 observations and consequently 
predicted over the station withheld from model fitting. This 

(4)

GSvariable = f (elevation, northness, distance to sea, distance to lake, forest cover, urban fraction)

= s(elevation, k = 3) + s(northness, k = 3) + s(distance to sea, k = 3)

+ s(distance to lake, k = 3) + s(forest cover, k = 3) + s(urban fraction, k = 3)

[Model 1]

(5)

e = f (longitude, latitude) = te(longitude, latitude, k = 3)

[Model 2]

procedure was repeated as many times as there were stations 
in the data. The prediction accuracy was assessed in terms 
of Pearson’s correlation coefficient (r), mean error (bias) and 
root mean squared error (rmse) between observed and pre-
dicted values (Aalto et al. 2016).

Spatial autocorrelation (SAC) is a common property of any 
spatial dataset and means that observations are related to one 
another by the geographical distance (Legendre et al. 2002). 
SAC in the model residuals violates the independence assump-
tion commonly required by statistical models and may lead to 
inflated hypothesis testing and biased model estimates (Beale 
et al. 2010). To investigate whether GS observations and model 
residuals were spatially autocorrelated, we calculated correlo-
grams (as implemented in R-package pgirmess version 1.6.9. 
(Giraudoux 2018)) which describes the spatial dependency 
between the observations as a function of distance between 
the point pairs in terms of Moran’s I.

3 � Results

3.1 � Observed GS variability

We found remarkable spatio-temporal variability in aver-
age GS conditions over the study area with µGSlen ranging 
from 105 to 252 days (98% range of variation, mean = 179; 
Fig.  2c) and µGDDS ranging from 452 to 1933  °C  days 
(mean = 1246 °C days; Fig. 2d). On average GS started 26th 
April (22nd March–4th June; Fig. 2a) and ended 20th October 
(13th September–4th December; Fig. 2b). The estimated tem-
poral trends βGS were consistent (Fig. 2; Fig. S2); GSbeg has 
changed on average − 2.2 days per decade (− 5.8 to 0.0, 98% 
range of variation, trend sig. [P ≤ 0.05] over 73% of the stations; 
Fig. 2e), GSend has changed on average 1.1 days per decade 
(− 0.8 to 3.6, trend sig. over 19% of the stations; Fig. 2f), GSlen 
has increased on average 3.3 days per decade (0.5–9.3, trend sig. 
over 63% of the stations; Fig. 2g) and GDDS has increased on 
average 41 °C days per decade (12–86, trend sig. over 93% of the 
stations; Fig. 2h). Our data indicated large interannual variability 
in the four GS variables over the study area (Fig. 2i–l).

3.2 � Prediction accuracy of the spatial models

The tested predictors were only moderately inter-correlated 
(pairwise Pearson’s correlation coefficient ≤ 0.55) and thus 
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our models were not confounded by multicollinearity (Fig. 
S3–S4). The statistical models were able to predict µGS 
with high accuracy (Fig. 3a–d) with correlation (r) between 
observed and predicted values ≥ 0.92. Spatial variation in 
βGS was more challenging to predict as for example the 
model for βGSend resulted in poor agreement with observa-
tions (r = 0.33; Fig. 3f). The other βGS predictions showed 
reasonable agreement with correlations ranging from 0.56 
(βGSlen; Fig. 3g) to 0.63 (βGSbeg and βGDDS; Fig. 3e, h, 
respectively). Prediction accuracy for interannual variability 
σGS was reasonable with correlations ranging from 0.46 
(σGSend) to 0.76 (σGSbeg) (Fig. 3i–l).

3.3 � Spatial GS patterns and their drivers

In general, spatial variation in µGS was strongly constrained 
by geographical location with clear latitudinal gradients 
and elevation (Figs. 4, 5). However, the predictions suggest 

substantial local variability in µGS (Fig. 6). For µGSbeg we 
found that northness has a positive effect (EF = 1.50 days) 
after holding other predictors at their mean values. On aver-
age µGSbeg increased along an increasing distance to sea 
(EF = 8.69 days) whereas for µGSend and µGSlen we found an 
opposite relationship. Both µGSend and µGSlen were found to 
be positively related to the distance to lakes (EF = 27.51 days 
and 35.74 days, respectively) and negatively to forest cover 
(EF = − 2.86 days and − 3.96 days, respectively). Urban 
fraction was found to be negatively related to µGSbeg 
(EF = −  17.25  days) and positively related to µGSend 
(EF = 12.71 days) and µGDDS (EF = 366.61 °C days).  

Our analyses indicated that on average βGSbeg has 
decreased (i.e. earlier beginning) the most in southern parts 
of the study area (over five days per decade) and at low 
elevations (Figs. 7, 8, Fig. S2). Moreover, the modeling 
suggests that βGSbeg is positively related to distance to sea 
(EF = 1.45, when trends are expressed as per decade; Fig. 8c) 
while increasing distance to lakes tends to lead to larger 
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Fig. 2   Variation in thermal growing season (GS) conditions over the 
weather stations. a–d The average GS conditions (µ) were calculated 
over the period of 1990–2019 (n = 482). e–h The temporal trends (β) 
and i–l interannual variability (σ, bottom row, n = 349) in GS condi-
tions were calculated over the period of 1950–2019. The solid lines 
indicate means of the distributions, while dashed lines indicate 1st 

and 99th percentiles (i.e. 98% range of variation). The number of sta-
tions with statistically significant temporal trends (p ≤ 0.05) is shown 
on top of e–h. GSbeg beginning of the growing season, GSend end of 
the growing season, GSlen length of the growing season, GDDS grow-
ing degree day sum, DOY day of year
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decreases in βGSbeg (EF = − 1.55; Fig. 8d). While there are 
considerable uncertainties in the modeled spatial patterns of 
βGSend (Fig. 3f), our modeling identified positive links (i.e. 
increasing trend) with elevation (EF = 0.54), distance to sea 
(EF = 0.66) and distance to lakes having the largest effect 
(EF = 1.34). βGSend was found to be negatively related to for-
est cover and urban fraction. The spatial patterns of βGSlen 
are mostly constrained by geographical location (EF = 3.17) 
and a positive effect of distance to lakes (EF = 2.65). βGDDS 
showed clear negative trends along latitudinal and eleva-
tional gradients having the largest effect. Further, our results 
suggest that βGDDS is negatively related to the distance of 
the sea (EF = − 7.89), forest cover (EF = − 5.65) and posi-
tively related to the distance of lakes (EF = 22.15) and urban 
fraction (EF = 8.56). In supplementary analysis we found 
that the number of years of data were significantly related to 

all four βGS variables (Fig. S5) indicating smaller temporal 
trends over stations with more data. However, the estimated 
effects (response shapes and effect sizes) are in good agree-
ment with the model results neglecting this predictor (Fig. 8) 
and thus we consider our initial modeling being valid. 

We found that in general the spatial variation of σGS was 
related to elevation gradient (negative effects for σGSend, 
σGSlen and σGDDS) and distance to sea (negative effect) 
as well as distance to lakes (positive) (Figs. S6–S7). All GS 
variables and the residuals of Model1 (Eq. 3) showed sig-
nificant spatial autocorrelation patterns (Fig. S8). It is also 
worth remarking Fig. 5 (panels a, g, m, and s) shows that 
the uncertainty of the GS variables increases at higher eleva-
tions, most likely because of the sparser observational net-
work available there, as pointed out in the previous sections.
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Fig. 3   Spatial models’ predictive performance. The predictive per-
formance is quantified in terms of Pearson’s correlation coefficient 
(r), mean error (bias) and root mean squared error (rmse) between 
observed (y-axis) and predicted (x-axis) values, based on leave-one-

station-out cross-validation. a–d mean (µ) growing season (GS) con-
ditions, e–h temporal trends (β, expressed as per decade) in GS and 
i–l interannual variability (σ) in GS. The solid lines depict 1:1 and 
dashed grey lines in e–h indicate no temporal trend
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4 � Discussion and conclusions

4.1 � Comparison of the estimated growing season 
trends with previous studies

Our results highlight the remarkable spectrum of growing sea-
son conditions over northern Europe and consistent temporal 
trends (e.g. GDDS increase ranging 84–602 °C days over the 
study period of 1950–2019) that may be mediated by several 
environmental gradients. In agreement with previous research 
from the area, we found that the increase in GSlen can mainly 
be attributable to earlier beginning of GS (Linderholm et al. 

2008; Irannezhad and Kløve 2015), as we found substantially 
less statistically significant changes in GSend (19% of the sta-
tions, mean trend of 1.1 days per decade) compared to GSbeg 
(73% of the stations, mean trend of − 2.2 days per decade) 
over the period of 1950–2019. Linderholm et al. (2008) found 
an average trend of ca. 1.2 days per decade for GSbeg while 
GSlen has increased on average ca. 1.4 days per decade during 
1951–2000 over the Greater Baltic area. Similarly, Irannezhad 
and Kløve (2015) reported an average trend of − 1.6 days 
per decade and 3.0 days per decade for GSbeg and GSlen dur-
ing 1961–2010 over Finland, respectively. Moreover, using 
satellite remote-sensing analysis of surface phenology data, 
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10.5. - 20.5.
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31.3. - 10.4.
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17.10. - 27.10.
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28.8 - 7.9.
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Fig. 4   Spatial variability in average thermal growing season condi-
tions in northern Europe. The maps depict the predicted mean (µ) 
conditions (1990–2019) in a beginning of the growing season, b end 

of the growing season, c length of the growing season and d growing 
season degree days sum. The maps are based on generalized additive 
model predictions at the spatial resolution of 100 m × 100 m
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Karlsen et al. (2009) found an average trend of − 2.7 days per 
decade for GSbeg, 3.7 days per decade for GSend and 6.4 day 
per decade for GSlen over the Fennoscandia during 1982–2006, 
of which the GSbeg is in good agreement with the other pre-
sented estimates of thermally-defined GSbeg. Noteworthy, the 
estimates GSend (and thus GSlen) by Karlsen et al. (2009) are 
embedded with a considerable amount of uncertainty due to 
relatively high bias (ranging from − 17 to 14 days) between 
satellite and field data used to construct the estimates. There-
fore, despite the aforementioned studies being fairly well in-
line with our findings, direct comparison of magnitude of the 
thermal GS trends between studies is challenging due to dif-
ferences in analysis periods and methods (i.e. thermal GS vs. 
satellite remote-sensing), large spatial variability in temporal 
trends and the coverage of station networks (for thermal GS).

4.2 � Thermal growing seasons in respect 
to large‑scale processes

The finding that the increase in GSlen is mainly due to earlier 
beginning of GS can be partly explained with the recently 
established understanding of the changes in atmospheric cir-
culations in northern Europe. According to Räisänen (2019), 
especially in southern Finland there has been a pronounced 
negative effect of circulation change for October temperature 
trends, suggesting change in circulation towards increased 
frequency of northerly winds. The found smaller temporal 
trends in GSend in southern Finland and the larger temporal 
trends in northern Finland are thus in agreement with the 
result by Räisänen (2019). Moreover, during July–Septem-
ber the effect of circulation change has mainly been positive 

Fig. 5   The relationships between average thermal growing season 
conditions (µ) and the predictors. The fitted functions were estimated 
using generalized additive models and they depict the relationships 
between the response variables (µGSbeg = beginning of the growing 
season [DOY, a–f], µGSend = end of the growing season [DOY, g–l], 
µGSlen = length of the growing season [days, m–r], µGDDS = grow-
ing degree day sum [°C days, s–x]) and predictors (elevation [1st col-
umn], northness [2nd column], distance to sea [3rd column], distance 

to lake [4th column], log-transformed forest cover [5th column] and 
log-transformed urban fraction [6th column]), after holding other 
predictors constant. The shaded areas represent standard errors. The 
y-axes are scaled to unit variance. In the last row, the maps depict the 
residual variation as a function of latitude (Y, in ETRS89-LAEA) and 
longitude (X). Effect size (EF) quantifies how much variation a pre-
dictor causes on a response variable when analyzed over the station 
data
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suggesting more southern air masses to prevail. These results 
are largely consistent with Nilsen et al. (2017) who found 
that changes in synoptic circulation have induced warming in 
July–September and cooling in October in 1981–2010 over 
northern Europe. However, the observed temperature trends 
during the growing season can be only partly explained by 
the changes in the atmospheric circulation (Räisänen 2019). 
When the effect of circulation is removed, the remaining 
warming in all months has shown to be robustly positive.

In tandem with longer growing seasons the accumulated 
GDDS has significantly increased over 93% of the stations. 
Noteworthy, for many stations the increasing trend e.g. 
in GDDS has not been linear (see Fig. 1d), but instead an 
acceleration of the GDDS increase is evident from ca. 1990 
onwards. The increase in GDDS has been the most notable 
in the southwestern part of the domain (Fig. 7d). While the 
warming throughout the whole GS affects the increase in 
GDDS, the observed pattern in GDDS trends resonates with 
the fact that summer temperatures have increased in Europe 
during the recent decades largely due to anthropogenic 
forcing (Christidis et al. 2015). In many cases, relatively 
stable or even reversed GS trends prevailed. Due to this non-
linearity in the observation data our linear trend estimates 
over the past 70 years are not likely to capture the entire 
dynamics of recent warming in the region and thus are likely 
underestimates. The pattern of increase in GDDS near the 
Baltic Sea also agrees with future projections of the thermal 
growing season documented in other studies (Ruosteenoja 
et al. 2011; Zhou et al. 2018). By performing an attribution 
study, Christidis et al. (2007) detected the human influence 
on the lengthening of GS. While they used an earlier time 
period (1950–1999), they also report that the lengthening 
of GS attributable to human activity is expected to become 
more prominent in the future as greenhouse gas emissions 

continue to warm the climate system. In concordance with 
Christidis et al. (2007) we suggest that anthropogenic global 
warming has played a significant role in lengthening the 
growing seasons in northern Europe. A key concern related 
to increased GDDS and longer growing seasons, particularly 
GSbeg, relates to altered phenology and life cycle of organ-
isms, especially reproduction and voltinism of pest insects 
in the northern Europe, facilitating to higher outbreak fre-
quency and shifts in distribution (Annila 1969; Bentz et al. 
2019).

4.3 � The role of local environmental conditions 
in driving GS variability

We found evidence of local environmental mediation on the 
spatial variation of the GS variables. For example, the used 
northness predictor (a proxy for incoming direct solar radia-
tion) showed reasonable but relatively weak effects for mean 
GS conditions—after controlling for the effects of other pre-
dictors, growing seasons tend to begin earlier (ca. 1.5 days) 
and GS being ca. three days longer over southern aspects 
compared to northern aspects. Slightly stronger relationships 
were found for forest cover. However, due to the characteris-
tics of our observation data (i.e. weather stations are located 
on relatively flat ground) the found effects are likely to be 
underestimates of the true effect, as slope orientation and 
forest cover have previously been shown to impact spatial 
variation in various bioclimatic variables (Ashcroft and Gol-
lan 2012; Maclean et al. 2016; Meineri and Hylander 2016; 
Greiser et al. 2018). This is relevant since for example aspect 
affects performance of poikilothermic organisms, such as 
insects (Kantola et al. 2014; Blomqvist et al. 2018). Inter-
estingly, we found relatively strong effects of urban fraction 
on the investigated GS variables; on average the increase in 

Fig. 6   Local variability in 
average thermal growing season 
conditions. The maps depict the 
predicted mean (µ) conditions 
(1990–2019) in a beginning of 
the growing season, b end of the 
growing season, c length of the 
growing season and d growing 
season degree days sum over 
four 437.5 km2 landscapes. The 
maps are based on generalized 
additive model predictions 
at the spatial resolution of 
100 m × 100 m. Light blue color 
depicts water covers
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urban land use lead to a lengthening of the growing seasons 
(both earlier beginning and later end) and increase in GDDS. 
These results are in agreement with previous research show-
ing how urban climates mediated by land use and built 
structures can lead to differences in the timing of vegetation 
phenology compared to surrounding rural areas and within 
urban areas (Jochner et al. 2012; Zipper et al. 2016). Our 
spatial modeling further suggests that temporal changes 
in GS variables have remained smaller close to lakes and 
sea, and areas of dense forest cover indicating mechanisms 
related to latent and sensible heat transfer, and radiation 
interception, respectively, that can have implications on 

local temperature buffering (Ashcroft et al. 2009; De Frenne 
et al. 2021). These areas with potentially slower than average 
velocity of climate change may turn out to be important for 
e.g. biodiversity conservation under future warming (Loarie 
et al. 2009; Suggitt et al. 2018; Heikkinen et al. 2020). Simi-
lar spatial patterns hold for interannual GS variability (or GS 
predictability)—our results suggest that there is on average 
less year-to-year variability in GS variables at high eleva-
tion areas, close to water bodies and in areas of high forest 
cover, although the variability is predicted to increase along 
urban land use.
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> 0
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-3.5 - -3.0
-4.0 - -3.5
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Fig. 7   Spatial variability in temporal trends of thermal growing sea-
son conditions in northern Europe. The maps depict the estimated 
temporal trend (β, 1950–2019) in a beginning of the growing season, 

b end of the growing season, c length of the growing season and d 
growing season degree days sum. The maps are based on generalized 
additive model predictions at the spatial resolution of 100 m × 100 m
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4.4 � Data and modeling uncertainties

Despite the placement of weather stations mostly on low-
land, relatively flat and/or open areas (Graae et al. 2012; De 
Frenne and Verheyen 2016), we were able to produce spa-
tial estimates of the multiple GS variables at unprecedented 
high-spatial resolution over a large domain. Importantly, 
these estimates are in good agreement with observations and 
show meaningful responses to the investigated environmen-
tal gradients. Nevertheless, we argue that the inefficiency 
of weather stations to represent environmental conditions 
relevant for local ecosystems, often not well represented by 
the closest weather station or gridded data, is one of the 
key uncertainties in tracking climate change and its impacts 
globally. Recently, much effort has been made to develop 

semi-mechanistic local climate modeling approaches (oper-
ating at spatial scales < 0.01 km2) that are based on known 
physical constraints of air and surface temperature vari-
ability (Kearney and Porter 2016; Maclean et al. 2019) and 
are also applicable over future climate scenarios (Maclean 
2020). However, due to computational constraints such mod-
els are not yet applicable over large regional domains (such 
as northern Europe) and over long time periods, and thus 
empirical approaches built on static landscape variables as 
proxies for various surface-atmosphere processes are still 
needed. In addition, other statistical methods for spatial pre-
diction exist ranging from regression to machine-learning 
(Li and Heap 2011). Geostatistical approaches, such as krig-
ing, have also been widely-used in predicting environmental 
variables (Matheron 1963; Haylock et al. 2008; Hofstra et al. 

Fig. 8   The relationships between the spatial variation in temporal 
trends (β) and the environmental predictors. The fitted functions were 
estimated using generalized additive models and they depict the rela-
tionships between the response variables (βGSbeg = beginning of the 
growing season [days per decade, a–f], βGSend = end of the growing 
season [days per decade, g–l], βGSlen = length of the growing sea-
son [days per decade, m–r], βGDDS = growing degree day sum [°C 
days per decade, s–x]) and predictors (elevation [1st column], north-

ness [2nd column], distance to sea [3rd column], and distance to lake 
[4th column], log-transformed forest cover 5th column] and log-
transformed urban fraction [6th column]), after holding other predic-
tors constant. The y-axes are scaled to unit variance. In the last row, 
the maps depict the residual variation as a function of latitude (Y, in 
ETRS89-LAEA) and longitude (X). Effect size (EF) quantifies how 
much variation a predictor causes on a response variable when ana-
lyzed over the station data
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2008). However, in this study the use of e.g. kriging inter-
polation would not be computationally feasible due to the 
high-resolution of the analysis. Moreover, Aalto et al. (2013) 
showed that generalized additive models (GAM, as deployed 
here) can outperform kriging interpolation in predicting air 
temperature variability over Finland.

Consequently, the large spatial domain poses multitude 
challenges for the adopted static modeling approach (Mein-
eri and Hylander 2016; Aalto et al. 2017b). For example, 
the threshold for defining the thermal growing season 
(here + 5 °C) may not be appropriate for characterizing bio-
logical activity in different parts of the study area ranging 
from Arctic-alpine tundra to southern hemi-boreal forests 
(Fronzek and Carter 2007). Moreover, sea and lake freeze-up 
(and melting) dynamics and phenology are likely to sub-
stantially differ over the study area. While the estimated 
relationships between GS and water cover variables are 
reasonable, such spatially asynchronous seasonal dynamics 
can increase uncertainty to the estimated relationships. It 
is also important to note that due to large model extrapo-
lation a fair amount of uncertainty remains in predictions 
over areas located above ca. 1300 m above sea level. Finally, 
one deficiency of our approach is that the GS trends were 
calculated using data with varying temporal coverage. This 
compromise was necessary in order to increase the station 
network’s environmental coverage which in turn allowed us 
to predict the spatial variation of the temporal trends over 
the study domain with reasonable accuracy.

4.5 � Implications of changing growing seasons 
and the need for high‑resolution GS data

Longer growing seasons and increase in GDDS impact 
northern ecosystems in various ways, but the issue is still 
bearing plenty of uncertainty. In general, northern forest 
ecosystems are resilient to long-term environmental changes, 
but they are vulnerable to sudden changes due to limitations 
to adapt promptly to climate driven risks of natural distur-
bances (Forzieri et al. 2021). Altered tree ecophysiology 
at high latitudes predispose trees to intensified numbers of 
biotic agents, like insects and pathogens. Along with forest 
pests, increasing impact of insect pests in agricultural sys-
tems affect production of food, fiber, bioenergy feedstock, 
and growing renewable materials. According to Lehmann 
et al. (2020), several current agricultural and forest insect 
pests are alien invasive species, which benefit from elevat-
ing temperatures and contribute to high monetary losses due 
to mitigation and management. Previously, predicting such 
impacts has been hampered by the use of climate data hav-
ing spatial resolution not relevant for the modeling targets 
(Potter et al. 2013).

A benefit following longer growing seasons and a warming 
trend is evidently seen in higher production and spatiotemporal 

shifts in cultivation areas of agricultural crops (Peltonen-
Sainio and Jauhiainen 2020) and in stem volume increment 
of trees (Kauppi et al. 2014; Henttonen et al. 2017). How-
ever, the impact of climate-driven natural disturbance agents 
increasingly cut crop and forest biomass production and lower 
the profit. The carbon sink of forests may not persist continu-
ously in the long term (Nabuurs et al. 2013). Above-mentioned 
cases emphasize the need of modeling tools targeted for accu-
rate predictions in agricultural and forest ecosystems, apply-
ing high-resolution gridded data as a source for modeling 
approaches. Detailed thermal growing season data at 100 m 
resolution provide valuable information, e.g., for ecosystem 
and risk models (Netherer et al. 2019), forest growth (Minunno 
et al. 2019), and insect migration models (Zurell et al. 2016). 
Ultimately, such data provide us with means for mitigation 
and adaptation to changing climate, and supervising decision-
making and management options. For example, knowledge on 
growing seasons is vital in agriculture (Peltonen-Sainio et al. 
2016), horticulture (Campoy et al. 2011) and forest manage-
ment (Castanha et al. 2013), both in theory and in practice. In 
addition, plant breeding uses detailed information on variation 
of growing seasons (Lillemo et al. 2010) and practitioners are 
well-familiar with the concept of GDDS. Climate warming 
affects natural disturbances of forest trees such as the life cycle 
and voltinism of bark beetles (Bentz et al. 2019).

5 � Conclusions

We found remarkable spatio-temporal variability in GS vari-
ables over northern Europe. Such variation was strongly con-
trolled by latitudinal and elevational gradients albeit partly 
constrained by local topography, proximity to water bodies, 
forest cover and urban land use. By deploying a large network 
of weather stations this study provides the most up-to-date 
and spatially detailed understanding of the current variation 
and past changes in multiple GS variables in northern Europe. 
Past changes in GS variables could be used as predictors for 
temporal and spatial shifts in occurrence of various organisms. 
As thermal growing season conditions are the most proximally 
related to the organisms’ performance, the produced high-res-
olution data layers will be highly relevant in various ecosystem 
applications such as in assessing suitable conditions for crop 
production and modeling outbreak risks for forest insect pests.
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