Home About Browse Search
Svenska


Soil Carbon Modelling in Salix Biomass Plantations: Variety Determines Carbon Sequestration and Climate Impacts

Kalita, Saurav and Karlsson Potter, Hanna and Weih, Martin and Baum, Christel and Nordberg, Åke and Hansson, Per-Anders (2021). Soil Carbon Modelling in Salix Biomass Plantations: Variety Determines Carbon Sequestration and Climate Impacts. Forests. 12 , 1529
[Research article]

[img] PDF
2MB

Abstract

Short-rotation coppice (SRC) Salix plantations have the potential to provide fast-growing biomass feedstock with significant soil and climate mitigation benefits. Salix varieties exhibit significant variation in their physiological traits, growth patterns and soil ecology—but the effects of these variations have rarely been studied from a systems perspective. This study analyses the influence of variety on soil organic carbon (SOC) dynamics and climate impacts from Salix cultivation for heat production for a Swedish site with specific conditions. Soil carbon modelling was combined with a life cycle assessment (LCA) approach to quantify SOC sequestration and climate impacts over a 50-year period. The analysis used data from a Swedish field trial of six Salix varieties grown under fertilized and unfertilized treatments on Vertic Cambisols during 2001–2018. The Salix systems were compared with a reference case where heat is produced from natural gas and green fallow was the land use alternative. Climate impacts were determined using time-dependent LCA methodology—on a land-use (per hectare) and delivered energy unit (per MJheat) basis. All Salix varieties and treatments increased SOC, but the magnitude depended on the variety. Fertilization led to lower carbon sequestration than the equivalent unfertilized case. There was no clear relationship between biomass yield and SOC increase. In comparison with reference cases, all Salix varieties had significant potential for climate change mitigation. From a land-use perspective, high yield was the most important determining factor, followed by SOC sequestration, therefore high-yielding fertilized varieties such as ‘Tordis’, ‘Tora’ and ‘Björn’ performed best. On an energy-delivered basis, SOC sequestration potential was the determining factor for the climate change mitigation effect, with unfertilized ‘Jorr’ and ‘Loden’ outperforming the other varieties. These results show that Salix variety has a strong influence on SOC sequestration potential, biomass yield, growth pattern, response to fertilization and, ultimately, climate impact.

Authors/Creators:Kalita, Saurav and Karlsson Potter, Hanna and Weih, Martin and Baum, Christel and Nordberg, Åke and Hansson, Per-Anders
Title:Soil Carbon Modelling in Salix Biomass Plantations: Variety Determines Carbon Sequestration and Climate Impacts
Series Name/Journal:Forests
Year of publishing :2021
Volume:12
Article number:1529
Number of Pages:26
ISSN:1999-4907
Language:English
Publication Type:Research article
Article category:Scientific peer reviewed
Version:Published version
Copyright:Creative Commons: Attribution 4.0
Full Text Status:Public
Subjects:(A) Swedish standard research categories 2011 > 2 Engineering and Technology > 209 Industrial Biotechnology > Bioenergy
(A) Swedish standard research categories 2011 > 1 Natural sciences > 105 Earth and Related Environmental Sciences > Climate Research
(A) Swedish standard research categories 2011 > 4 Agricultural Sciences > 405 Other Agricultural Sciences > Environmental Sciences related to Agriculture and Land-use
Keywords:biomass production, life cycle assessment, climate impact, soil organic carbon, Salix, willow, short rotation coppice, genotypic difference
URN:NBN:urn:nbn:se:slu:epsilon-p-114677
Permanent URL:
http://urn.kb.se/resolve?urn=urn:nbn:se:slu:epsilon-p-114677
Additional ID:
Type of IDID
DOI10.3390/f12111529
ID Code:26614
Faculty:NJ - Fakulteten för naturresurser och jordbruksvetenskap
Department:(NL, NJ) > Dept. of Energy and Technology
(NL, NJ) > Dept. of Crop Production Ecology
Deposited By: SLUpub Connector
Deposited On:27 Dec 2021 08:26
Metadata Last Modified:27 Dec 2021 08:31

Repository Staff Only: item control page

Downloads

Downloads per year (since September 2012)

View more statistics

Downloads
Hits