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ABSTRACT

To ensure milk quality and detect cows with signs 
of mastitis, visual inspection of milk by prestripping 
quarters before milking is recommended in many coun-
tries. An objective method to find milk changed in 
homogeneity (i.e., with clots) is to use commercially 
available inline filters to inspect the milk. Due to the 
required manual labor, this method is not applicable in 
automatic milking systems (AMS). We investigated the 
possibility of detecting and predicting changes in milk 
homogeneity using data generated by AMS. In total, 
21,335 quarter-level milk inspections were performed 
on 5,424 milkings of 624 unique cows on 4 farms by ap-
plying visual inspection of inline filters that assembled 
clots from the separate quarters during milking. Images 
of the filters with clots were scored for density, result-
ing in 892 observations with signs of clots for analysis 
(77% traces or mild cases, 15% moderate cases, and 8% 
heavy cases). The quarter density scores were combined 
into 1 score indicating the presence of clots during a 
single cow milking and into 2 scores summarizing the 
density scores in cow milkings during a 30-h sampling 
period. Data generated from the AMS, such as milk 
yield, milk flow, conductivity, and online somatic cell 
counts, were used as input to 4 multilayer perceptron 
models to detect or predict single milkings with clots 
and to detect milking periods with clots. All models 
resulted in high specificity (98–100%), showing that 
the models correctly classified cow milkings or cow 
milking periods with no clots observed. The ability to 
successfully classify cow milkings or cow periods with 
observed clots had a low sensitivity. The highest sensi-
tivity (26%) was obtained by the model that detected 
clots in a single milking. The prevalence of clots in 
the data was low (2.4%), which was reflected in the 
results. The positive predictive value depends on the 

prevalence and was relatively high, with the highest 
positive predictive value (72%) reached in the model 
that detected clots during the 30-h sampling periods. 
The misclassification rate for cow milkings that includ-
ed higher-density scores was lower, indicating that the 
models that detected or predicted clots in a single milk-
ing could better distinguish the heavier cases of clots. 
Using data from AMS to detect and predict changes in 
milk homogeneity seems to be possible, although the 
prediction performance for the definitions of clots used 
in this study was poor.
Key words: dairy cow, clinical mastitis, clot, multilayer 
perceptron

INTRODUCTION

Milk intended for human consumption should be pro-
duced by healthy animals and be of acceptable quality, 
a condition that, under dairy conditions, is the respon-
sibility of the farmer. Milk that is deviant in terms of 
color, smell, or homogeneity (i.e., abnormal milk) is 
not suitable for sale (Food and Drug Administration, 
2017). To monitor the hygienic quality of the milk, 
prestripping before milking the cows and inspecting the 
foremilk for abnormalities is recommended (European 
Commission, 2004), in addition to monitoring the bulk 
tank SCC and bacterial count. Although not all ab-
normal milk necessarily originates from udders under-
going an inflammation (Rasmussen and Bach Larsen, 
2003), changes in milk homogeneity such as clots, thick 
milk, or watery milk are generally established signs of 
clinical mastitis (CM; Giesecke and van den Heever, 
1974; IDF, 2011). Therefore, milk inspection is a dual-
purpose task, not only to ensure milk quality but also 
to identify cows with signs of illness. In a conventional 
milking parlor, milk inspection is commonly done by 
the milker when preparing the udder for milking, al-
though implementation on farms is commonly less than 
100% (Rodrigues et al., 2005; Wenz et al., 2007; Nielsen 
and Emanuelson, 2013). As no milker is present dur-
ing milking in automatic milking systems (AMS), the 
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farmer needs to be supported by sensors that detect 
deviations and allow the system to issue alerts before 
milking potentially sick cows in order to prevent milk of 
unacceptable quality from ending up in the bulk tank.

Visual inspection for changes in milk homogeneity 
using commercially available inline filters has been sug-
gested as a universal and objective method to define 
CM (Rasmussen, 2005; Claycomb et al., 2009; Kam-
phuis et al., 2013). The outcome of such inspection may 
be useful in identifying CM, but not in preventing milk 
changed in homogeneity from ending up in the bulk 
tank, because the filters are inspected when a milking 
has ended. Furthermore, the method requires manual 
labor and is thus not suitable for use in AMS. Hence, 
accurate predictions of milk homogeneity, for instance, 
using data generated by AMS as input to predictive 
models, would benefit farmers. To the best of our 
knowledge, no attempts have been made to generate 
such predictions.

The objective of this study was to detect and predict 
visual changes in milk homogeneity (i.e., clots) using 
data regularly recorded by AMS. The multilayer per-
ceptron (MLP), a classic feed-forward artificial neural 
network (ANN), was used. Artificial neural networks 
have potential to capture nonlinear relationships and 
interactions between predictors in a flexible manner and 
have previously been suggested for CM detection (e.g., 
Nielen et al., 1995; Sun et al., 2010; Ankinakatte et al., 
2013), pathogen prediction (Heald et al., 2000; Hassan 
et al., 2009), and SCC prediction (Anglart et al., 2020). 
Similar to a milker, who uses faculties such as taste, 
smell, vision, and memory (Hillerton, 2000) to decide 
whether or not the milk should be discarded, ANN are 
designed to process information in a similar way, basing 
decisions on detected patterns and relationships in data 
and learning from them (e.g., Agatonovic-Kustrin and 
Beresford, 2000; Haykin, 2009).

MATERIALS AND METHODS

Data Collection

Data were collected at 4 commercial dairy farms 
located in Sweden (farms A and B) and in the Nether-
lands (farms C and D). The cows were milked using a 
total of 10 voluntary milking systems (DeLaval Inter-
national AB). Farms were selected based on the avail-
ability of sensor equipment in addition to that available 
in the AMS, and all farms were equipped with online 
cell counters (OCC; DeLaval International AB). Data 
were collected between March 2017 and April 2018.

The cows involved in the data collection were mainly 
Holstein-Friesian. Data were collected for 2 mo at farms 
A and B and 3 mo at farms C and D. Each farm was 
visited on 3 occasions. On each visit, visual milk in-
spections (MI) of all cow quarters milked during 30 
consecutive hours were performed. The 30 consecutive 
hours of MI are henceforth referred to as “periods.” All 
cows milked in the AMS during the periods participated 
in the MI. The number of MI per cow thus depended 
on the number of AMS visits made by each cow. Table 
1 summarizes details regarding data collection, number 
of AMS, number of cows and breed, parity, DIM, yearly 
milk production, and SCC at each farm.

The MI and subsequent scoring of the outcome was 
performed accordingly: a meshed filter, the mastitis de-
tector (Vision 16 MastitisDetector; Ambic Equipment 
Ltd.), was used to obtain a representative sample of 
clots from each quarter during milking. Each filter was 
visually inspected for clots, gently rinsed with water to 
remove milk and foam, and filters with signs of clots 
were photographed. The MI were performed by the first 
author, who collected samples at all 4 farms and was 
responsible for training 2 support persons, one at farms 
A and B and another at farms C and D.
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Table 1. Characteristics of each farm during data collection periods

Item Farm A Farm B Farm C Farm D

Start of data collection periods March 9, 2017 August 15, 2017 February 1, 2018 February 3, 2018
March 22, 2017 September 5, 2017 March 24, 2018 March 26, 2018
April 11, 2017 September 27, 2017 April 4, 2018 April 6, 2018

Number of automatic milking systems 2 3 2 3
Number of cows 145 175 113 191
Number of cows in parity
 1 43 61 31 57
 2 26 52 17 67
 ≥3 76 62 65 67
Milk production (kg/cow per year) 12,672 11,619 10,074 10,106
SCC (cells/mL) 285,0001 184,0002 236,0001 106,0001

Average number of milkings (cow/period) 3.0 3.2 3.8 3.3
1Arithmetic mean from monthly dairy herd improvement sampling.
2Bulk tank arithmetic mean.
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The images showing signs of clots were scored when 
data collection was completed at all farms. The scoring 
scale provided by the filter manufacturer was modified 
to accommodate clot scoring at the quarter level. The 
scale ranged between 0 and 5, with 0 being defined as 
no signs of clots, 1 as trace, 2 as mild, 3 as moderate, 
4 as heavy, and 5 as very heavy density of clots. An 
overview of the scores and definitions can be found in 
Table 2. Three assessors (2 veterinarians and an animal 
scientist) not involved in the data collection scored each 
image individually. A score was set as the quarter milk-
ing score (QMS) if at least 2 of the 3 assessors were 
in agreement; otherwise, the MI was removed from the 
data set. To assess scorer agreement, the Fleiss kappa 
(Fleiss, 1971) with 3 raters was computed using the 
“irr” package in R (Gamer et al., 2019).

Data Preparation

Predictor Variables. Data used in the analyses 
were extracted from the herd management system 
(DelPro, DeLaval International AB) of each farm dur-
ing the 3 periods and covered the 30 h of each period 
and the 48 h before each period. The data contained 
cow-level information comprising AMS number, cow 
number, breed, parity, DIM, OCC value (cells/mL), 
mastitis detection index (unitless), milking duration (s), 
and the date and time of milking. The milking interval 
was calculated as the number of minutes between AMS 
milking visits. Quarter-level data comprised milk yield 
(kg), average milk flow (g/min), peak milk flow (g/
min), electrical conductivity (mS/cm), expected milk 
production speed (kg/h), expected milk yield (kg), dif-
ference between expected and actual milk yield (kg), 
blood (mg/kg), attachment time (s), quarters set not 
to milk by farmer (yes or no), cups kicked off during 
milking (yes or no), and unmilked quarters reported by 
the system (yes or no). All variables except the AMS 
number and date and time of milking were used in 
model development.

Each cow received a farm-specific cow number, and 
the data sets from all farms were merged. Predictor 
variables corresponding to quarters set by the farmer as 
“not to be milked” in the AMS were considered faulty 

and removed. Numerical explanatory variables were 
normalized, with a mean value of 0 and a standard 
deviation of 1. Missing values were handled as follows: 
numerical variables with missing values were set to 0 
(i.e., mean value), as suggested by Chollet (2017). Cat-
egorical variables with missing values were assigned an 
additional level indicating the missing value. Because 
OCC was considered a main predictor, the 17% missing 
values of OCC were imputed using random forest impu-
tation (Stekhoven, 2013). The supportive variables for 
the imputation (i.e., AMS number, farm, cow number, 
parity, DIM, breed, composite udder milk yield, milk-
ing interval, and the date and time of the milking) were 
added to the imputation model. The OCC values were 
log-transformed. Factor explanatory variables such 
as cow number, parity, and breed were converted to 
dummy variables. Data from 3 milkings before the MI 
were used to create past-period variables (lags) for all 
predictor variables except cow number, DIM, parity, 
breed, and farm. Milking 0 was the milking of the MI, 
milking −1 was 1 milking before the MI, and so on.

Response Variables. To investigate the perfor-
mance of models that detected single milkings contain-
ing clots as well as milkings with clots during a longer 
period (i.e., the 30-h periods), QMS were combined into 
2 types of binary outcomes at the cow composite level 
as follows: cow milk class (CMC) and cow period class 
(CPC). The CMC was computed for each cow at each 
milking and was equal to 1 if any QMS ≥ 2; otherwise, 
it was equal to 0. The CPC was computed for each cow 
period by summing all QMS (1–5) for the cow, dividing 
the sum by number of quarters, and dichotomizing the 
resultant by setting a threshold such that periods when 
no quarter received a QMS ≥ 3 or periods when no 
quarter received a QMS ≥ 4, respectively, were set to 
0, and thus excluded from the positive category, and 
all others were set to 1; these were labeled CPC.3 and 
CPC.4, respectively. Thus, each cow obtained 1 CMC 
for each milking and 2 CPC for each period, with a 
value of 0 corresponding to a negative outcome and a 
value of 1 to a positive outcome. Models with CMC as 
the response variable are henceforth referred to as CMC 
models, whereas models with CPC as the response vari-
able are henceforth referred to as CPC models.

Anglart et al.: CHANGES IN MILK HOMOGENEITY

Table 2. Definitions of scores and corresponding proportions of area covered with clots

Score  Defined as  Aggregate area of deposits on the filter

0  No signs  None
1  Trace  Diameter <3 mm
2  Mild case  Diameter ≥3 mm
3  Moderate case  Diameter ≥5 mm or approximately 10% covered
4  Heavy case  Between 10 and 50% covered
5  Very heavy case  More than 50% covered
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Test and Training Data. The data were divided 
into 70% training and 30% testing data using random 
sampling. A seed was used to obtain comparable results 
(i.e., testing and training data were the same for all 
models).

Creating the Model

Two CMC model variations were created as follows: 
CMC.D containing data from the same milking as the 
MI (i.e., a detection model) in addition to the past-
period variables, and CMC.P excluding data from the 
same milking as the MI (i.e., a prediction model). For 
the response variables CPC.3 and CPC.4, predictors 
from the first MI of the period and from the 3 milkings 
before were included in the models.

The algorithm used in this study was the MLP, a clas-
sic feed-forward ANN. The implementation in Keras for 
R (Chollet, 2017) was used with the model sequential 
option. The MLP was constructed with 1 hidden layer 
using the default activation function [i.e., the rectified 
linear activation function (relu)]. Because the task was 
to identify milk samples with clots, the model was 
customized for a binary classification problem. Thus, 
the output layer was constructed with 2 units using 
the activation function softmax, an activation function 
that normalized the model output into a probability 
distribution. Binary accuracy was chosen as the metric, 
calculating the frequency of how often the predicted 
values equaled the actual values.

For the configuration of the learning process, ADAM 
(Kingma and Ba, 2015) was chosen as optimizer be-
cause this stochastic optimization method works well 
with little tuning of the hyperparameters. To prevent 
overfitting of the model, the weight regularization ker-
nel regularizer l2 was used. Dropout between the layers 
was not used because it had a negative effect on detec-
tion performance and did not improve accuracy or loss.

Tuning the Hyperparameters

The number of units in the hidden layer was deter-
mined by running several CMC.D models, with 5 to 
500 layers, that evaluated the accuracy and loss of each 
model. The CMC models were fitted with 10 epochs 
(the default number of times for full-forward and back-
ward propagation) with a batch size of 32, and the 
validation split set to 0.2 (80% training, 20% testing), 
because these settings further lowered loss. Setting the 
regularizer option to 0.005 minimized the difference 
between validation loss and training loss. The param-
eters were again tuned for the CPC models, resulting 
in changing the number of epochs to 20 and setting the 

regularizer level to 0.05. Details regarding the settings 
of the models are summarized in Table 3.

Each model variation was run 10 times on the train-
ing data set. The performance of each of the 10 model 
runs was evaluated on the test data by comparing the 
predicted values of clots with the observed cases of clots 
(i.e., CMC and CPC) and by calculating the sensitivity 
(Se), specificity (Sp), positive predictive value (PPV), 
and negative predictive value (NPV). The results are 
presented for 1 representative run of each model in the 
evaluation (i.e., the result closest to the median Se and 
Sp over the 10 runs). To investigate the classification 
rate, a confusion matrix was created for each model. 
The predictions made by the CMC models were com-
pared with the highest observed QMS within the same 
cow milking to obtain the misclassification rate of the 
QMS included in the CMC. All statistical procedures 
were carried out using R (http: / / www .r -project .org).

RESULTS

Number of MI and Scoring

In total, 21,335 MI were performed on 5,424 milkings 
of 624 unique cows. The number of samples was 932 
from 303 unique cows (Table 4), distributed according 
to 156 out of 553 cows in period 1, 149 out of 557 cows 
in period 2, and 138 out of 546 cows in period 3 having 
QMS ≥ 1. Of the collected samples, 30 quarter milkings 
were discarded due to failed sampling, unknown cow 
number, or missing image; therefore, 902 images were 
available for scoring. The scorer agreement based on 
898 images (4 images received scores from only 2 scor-
ers) was 0.72, indicating substantial agreement between 
the scorers (Landis and Koch, 1977).

The result of the scoring was that 379 images received 
a score of 1, 303 received a score of 2, 135 received a 
score of 3, 67 received a score of 4, and 8 received a 
score of 5 (Table 5). Seven images received a score of 
0 (i.e., the corresponding quarters were considered to 
not have traces or clots) and were further considered 
quarters without clots. Three images were discarded 
due to scorer disagreement. Thus, 892 quarters with 
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Table 3. Model settings for models with the response variable setup 
cow milk class (CMC) and cow period class (CPC)

Item CMC model CPC model

Layer 1 1
Units 50 50
Regularizer 0.005 0.05
Epochs 10 20
Batch size 32 32
Validation split 0.2 0.2

http://www.r-project.org
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scores > 0 were available for analysis. Traces (QMS = 
1) constituted 43%, mild cases constituted 34%, moder-
ate cases constituted 15%, and heavy cases (QMS ≥ 4) 
constituted 8% of the 892 quarters. The prevalence of 
clots (QMS ≥ 2) in the total data set from all periods, 
including quarters without traces or clots, was 2.4%. 
The prevalence of CMC was 7%, CPC.3 was 16%, and 
CPC.4 was 7%.

Cow Milk Class

The results of all models are summarized in Table 6. 
The results of the 2 CMC models (i.e., for the detection 
and prediction of clots in a single milking) were very 
similar. The Se was 0.25 for the CMC.P model and 
0.26 for the CMC.D model. The Sp was equally high 
for both models (Sp = 0.98). The PPV results were also 
similar (i.e., 0.53 for the CMC.D model and 0.47 for the 
CMC.P model), and the NPV was 0.95 for both model 
variations. Details on the 10 model runs that form the 
basis of the median values can be found in Supplemen-
tal Tables S1 and S2 (https: / / urn .kb .se/ resolve ?urn = 
urn: nbn: se: slu: epsilon -p -112047).

The test data set consisted of 1,610 cow milkings. 
The number of CMC classified as positive in the test 
data set was 112. The detection model, CMC.D, cor-
rectly classified 29 out of 112 positive cow milkings in 
the test data (i.e., as cow milkings when clots were 
observed in milk from at least 1 quarter). Most of the 
negative cow milkings in the test data (i.e., 1,472 out 
of 1,498) were correctly classified as milkings when no 
clots were observed in any quarter. The results of the 
prediction model, CMC.P, were similar (i.e., 28 out of 
112 cow milkings in the test data were correctly pre-
dicted as cow milkings) when clots in at least 1 quarter 
were observed, and 1,467 out of 1,498 cow milkings in 
the test data were correctly predicted as cow milkings 
when no clots were observed in any quarter.

An analysis of the results of the CMC.D model in 
relation to the highest observed score within a cow 
milking contained in the CMC showed that the mis-
classification rate was lower for the CMC containing 
QMS ≥ 3 as the highest score, of which 43% (23 out of 
54) of cases were correctly classified. The proportion of 
correctly classified CMC values was even higher for the 
CMC containing QMS ≥ 4 or QMS = 5, respectively, 
as the highest score, and 63% (8 out of 14) and 100% 
(2 out of 2) of these were correctly classified. The trend 
was similar for the CMC.P model (Table 7).

Cow Period Class

The CPC.3 model achieved a higher Se (0.23) than 
did the CPC.4 model (Se = 0.14). The Sp was extremely 
high for both models, but slightly higher for the CPC.4 
model than the CPC.3 model (i.e., Sp of 1.00 and 0.98, 
respectively). Also, the PPV values for the CPC models 
were almost the same: 0.72 and 0.71 for CPC.3 and 
CPC.4, respectively. However, the NPV was 0.87 for 
the CPC.3 and 0.94 for the CPC.4 model (Table 6). 
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Table 4. Number of milk inspections at the cow and quarter levels, 
images scored, and occurrence of clots or traces on the filter after each 
cow milking during all periods at all farms

Item Total

Cow level
 Milk inspections 5,424
 Unique cows inspected 624
 Unique cows with clots or traces 321
 Unique cows without clots or traces 303
Quarter level
 Milk inspections 21,335
 Filters with clots or traces 932
 Filters without clots or traces 20,403
 Removed1 30
Images of filters with clots or traces
 Scorer disagreement 3
 Scored as no clots or traces 7
 Used in analysis 892
1Due to failed sample, unknown cow number, or missing image.

Table 5. Results of scoring of images with clots on filters for each 
farm

Score

Number of cases per 
score on each farm

TotalA B C D

1 118 75 89 97 379
2 89 48 78 88 303
3 40 28 36 31 135
4 15 13 28 11 67
5 0 3 2 3 8

Table 6. Sensitivity (Se), specificity (Sp), positive predictive value 
(PPV), and negative predictive value (NPV), from runs of models 
representing the median of 10 runs for the cow milk class (CMC) 
detection model using data from all milkings (CMC.D) and for the 
CMC prediction model excluding data from the milking of the current 
milk inspection (CMC.P), as well as for the cow period class (CPC) 
model with 2 different cow period class thresholds (CPS.3 and CPC.4)

Item Se Sp PPV NPV

CMC.D1 0.26 0.98 0.53 0.95
CMC.P2 0.25 0.98 0.47 0.95
CPC.33 0.23 0.98 0.72 0.87
CPC.44 0.14 1.0 0.71 0.94
1Seventh model run. 
2Second model run. 
3Sixth model run.
4Fourth model run.

https://urn.kb.se/resolve?urn=urn:nbn:se:slu:epsilon-p-112047
https://urn.kb.se/resolve?urn=urn:nbn:se:slu:epsilon-p-112047
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Details on the 10 model runs forming the basis for the 
presented median values can be found in Supplemental 
Tables S3 and S4 (https: / / urn .kb .se/ resolve ?urn = urn: 
nbn: se: slu: epsilon -p -112047).

The test data set consisted of 486 cow periods. For 
CPC.3, 80 cow periods corresponded to the positive 
class, and for CPC.4, 35 cow periods corresponded to 
the positive class. The CPC.3 model correctly classi-
fied 25 out of 80 positive cow periods in the test data, 
whereas the CPC.4 model correctly classified 5 out of 
35 positive cow periods in the test data. Both models 
were successful in classifying cow periods of a negative 
category. The CPC.3 model correctly classified 399 of 
406 negative cow periods, whereas the CPC.4 model 
correctly classified 449 out of 451 negative cow periods.

DISCUSSION

In overall performance, the models displayed a high 
ability to distinguish cow milkings and cow milking 
periods without clots (i.e., high Sp), whereas their abil-
ity to detect cow milkings or cow milking periods with 
clots was lower (i.e., low Se). Thus, both CMC models 
correctly classified most of the cow milkings without 
observed clots (i.e., 98 out of 100 milkings were cor-
rectly classified or predicted). The performance of the 
CPC models in correctly classifying cow milking peri-
ods without observed clots was equally good, as only 4 
out of 1,000 periods free from clots were wrongly clas-
sified as negative. A small number of false alerts (i.e., 
high Sp) is an important functionality for the farmer to 
trust the system (Mollenhorst et al., 2012). As the Sp 
of all model variations ranged between 98 and 100%, 
the results are promising.

It has been suggested that CM detection systems 
should have an Se of ≥80% if they are to identify an 
acceptable share of true cases (e.g., Hillerton, 2000; Ho-
geveen et al., 2010); this level is higher than the ≥70% 
Se recommended by the International Organization for 
Standardization (ISO, 2007). None of the 4 model vari-
ations reached the recommended performance in terms 

of Se. As the data was very unbalanced, down sampling 
(setting the 2 outcome classes to equal frequency), was 
evaluated using the CMC.D model. However, this did 
not improve the performance of the model.

The statistical measures Se and Sp are independent 
of the prevalence of observations of an event. Due to the 
low occurrence of clots in the data set, another way to 
evaluate the performance of the models is to calculate 
PPV and NPV because they also depend on the preva-
lence and are, from the user’s perspective, more practi-
cal indicators. The PPV was overall moderate to high 
(50–70%), which, in practice, implies low false positive 
rates for the farmer when checking the cows classified 
as positive by the models. Low false positive rates have 
been shown to be important for farmers (Steeneveld 
et al., 2010; Mollenhorst et al., 2012), in fact, more 
important than actually finding all cases (Mollenhorst 
et al., 2012). For both CMC models, the PPV shows 
that clots will be found in approximately every second 
cow milking among cow milkings classified with a posi-
tive outcome (i.e., as having clots). As the PPV of the 
CPC models were even higher, farmers would find cows 
having periods of clots in 7 out of 10 cases classified as 
cow periods with a positive outcome, but the number 
of cases found at each milking would be lower because 
clots did not occur at every milking during a period.

In AMS, it is important that the detection system 
should send alerts of events in need of farmer action 
before a cow milking (Mollenhorst et al., 2012). The 
performance of the 2 CMC models indicated that pre-
diction and detection performance were equally good, 
already giving information regarding an event of clots 
in milk at the previous milking. The presence of clots 
in 2 out of 3 consecutive milkings has been suggested 
to be included in the “gold-standard” definition of CM 
(Mein and Rasmussen, 2008; Kamphuis et al., 2013, 
2016). The likelihood of a cow having a milking with 
clots decreases with shorter milking intervals and in-
creases with longer milking intervals (Hallén Sandgren 
et al., 2021). Thus, the standard of considering clot 
presence in 2 out of 3 consecutive milkings as indicating 
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Table 7. The highest observed score within a cow milking versus the detected cow milk class (CMC.D) and the highest observed score within 
a cow milking versus the predicted cow milk class (CMC.P)

Detected or predicted

CMC.D1

 

CMC.P2

Highest observed score Highest observed score

0 1 2 3 4 5 0 1 2 3 4 5

No clots 1,377 95 52 25 6 0 1,371 96 50 25 9 0
Clots 21 5 6 13 8 2 27 4 8 13 5 2
1Seventh run. 
2Second run.

https://urn.kb.se/resolve?urn=urn:nbn:se:slu:epsilon-p-112047
https://urn.kb.se/resolve?urn=urn:nbn:se:slu:epsilon-p-112047
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abnormal milk might be somewhat misleading for AMS 
with large variations in milking intervals. Possibly, the 
type of event that the CPC model captures (i.e., the 
weighted presence of clots during a certain period) 
could be a valuable tool in AMS when the milking in-
terval differs.

The prevalence of clots (i.e., QMS ≥ 2) was higher 
than that found previously (Claycomb et al., 2009; 
Kamphuis et al., 2016). The results are hard to com-
pare because clots were collected at the quarter level in 
this study, which likely resulted in more observations 
of clots than if samples had been collected at the cow 
composite level. A different clot density from that in 
samples collected at the cow composite level could also 
be expected.

Collecting samples at the quarter level and through-
out the milking might have had an effect on the propor-
tion of very small deposits (e.g., traces), which were 
found in 42% of all milk samples with a score. Although 
the farmer would not likely detect or take notice of 
these cases, the traces might give extra information 
to the algorithm because observations with QMS = 1 
seemed to accumulate to a larger extent among cows 
having clots in the milk (i.e. QMS ≥ 2) than in cows 
without clots (Hallén Sandgren et al., 2021) and they 
were therefore included in the CPC models. However, 
the size of a flake is hard to judge (Rasmussen, 2005), 
and many observations of traces might have been of 
single flakes. Furthermore, small deposits would also 
likely be captured by the milk filter before the milk is 
delivered to the bulk tank. Thus, individual milkings 
with single traces in quarters were considered a non-
concern for the farmer and were consequently excluded 
from the CMC models. The presence of small flakes 
has earlier been reported to be a poor indication of 
bacteriological infection (Giesecke and van den Heever, 
1974), which might imply that QMS = 1 should also 
have been excluded from the CPC models to improve 
performance.

The scoring system used (i.e., the definition of what 
are considered as clots) could also affect results. The 
test of detection systems for changes in milk homoge-
neity (ISO, 2007) states that clots larger than 2 mm 
should be considered abnormal in both quarter and 
composite testing, whereas the density of clots in the 
filter, which might be a more appropriate way of judg-
ing the severity of the change in milk homogeneity, 
is not mentioned. Possibly, QMS < 3 should also be 
considered “non-cases,” also strengthened by the low 
repeatability of QMS 1 and 2 within period described 
in Hallén Sandgren et al. (2021). In one of the potential 
gold standard definitions investigated by Claycomb 
et al. (2009), low-density scores at the cow composite 
level were excluded, which increased the Se. Kamphuis 

et al. (2016) suggested presenting the prevalence of 
clots for all density scores, but also with the low-
density scores excluded. Both CMC model variations 
showed a decreased misclassification rate for the CMC 
that incorporated the moderate and high scores and, 
subsequently, the high scores only (QMS ≥ 4), which 
indicated that the model would be able to distinguish 
severe from mild cases. Furthermore, the prevalence of 
high QMS (QMS ≥ 4) in the overall data set was very 
low (0.4%). Thus, both model training and testing were 
performed on data capturing of a very limited number 
of more severe cases, which might have affected the 
outcome. Single milkings with clots are not included in 
the definition of abnormal milk suggested by the ISO 
(2007). However, alerting of severe cases is one of farm-
ers’ top preferences in detection systems (Mollenhorst 
et al., 2012). Predicting single incidents of cow milk-
ings with QMS ≥ 4, independently of their recurrence, 
would be an important first step in the development of 
algorithms that could predict clots. Watery milk can-
not be detected using inline filters, and such cases may 
interfere with our results in terms of the misclassifica-
tion of negative categories as positive.

The SCC is generally accepted as an important milk 
quality parameter (Politis and Ng-Kwai-Hang, 1988; 
Barbano et al., 2006; IDF, 2013) and reflects possible 
inflammation (Pyörälä, 2003). Consequently, SCC, or 
rather the California Mastitis Test, has been included 
in the testing of detection systems for changes in milk 
homogeneity (ISO, 2007). Kamphuis et al. (2008) 
demonstrated that inclusion of inline SCC improved 
the prediction performance of a CM model. In this 
study, the OCC was included as a predictor variable; 
therefore, information regarding SCC was included in 
all models. The downside of the MLP being a “black 
box” algorithm is that an estimate of each independent 
predictor variable cannot be obtained. This makes it 
hard to determine whether the performance would im-
prove or worsen with the addition or removal of some 
of the predictor variables. It remains to be proven how 
applications including SCC data from OCC can best 
serve their intended purpose. For instance, combin-
ing clot occurrence with OCC values could result in 
a combined parameter that better reflects the milk 
quality and udder health status of the cow. Alternative 
methods for prediction that include parameter estima-
tion, for example, generalized additive mixed models, 
and thus the possibility of evaluating the contribution 
of the different predictor variables, were considered. 
However, because the aim of the study was prediction 
performance rather than inference, and based on previ-
ous experiences with both generalized additive mixed 
models and MLP (Anglart et al., 2020), the MLP was 
chosen for this study.

Anglart et al.: CHANGES IN MILK HOMOGENEITY
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Tuning the hyperparameters (i.e., creating the neural 
network structure and configuration) has a large effect 
on model performance (Larochelle et al., 2007; Smith, 
2018). The hyperparameters were tuned manually to 
construct the MLP for each model. Manual tuning is 
one of the most common approaches for optimizing 
hyperparameters in neural networks (Bergstra and 
Bengio, 2012). In our manual tuning, we varied default 
settings in the Keras R package, keeping track of vali-
dation loss (i.e., minimizing the sum of errors). Each 
run through the network gave slightly different results. 
This was overcome by running each model several times 
during tuning as well as during the final model predic-
tions. Grid search could also be an option for tuning 
the hyperparameters, although the method is more 
time consuming and not always the most effective in 
finding optimal settings (Bergstra and Bengio, 2012).

Because ANN learn through recognizing patterns in 
data, a very unbalanced data set could potentially cause 
the model to learn one class better than another. Fur-
thermore, this is more likely when the data are noisy, 
as demonstrated by Murphey et al. (2004). In the cur-
rent study, noise could be a consequence of clots with 
lower density scores not having a biological explana-
tion that could be derived from the sensor information. 
This might explain the poor prediction performance 
for positive categories. The prediction and detection of 
clots collected by inline filters have not previously been 
investigated. Hence, the prediction target, based solely 
on the suggested clot size, might have been miscon-
ceived, incorporating density scores that were too low 
to be distinguished. These clot cases are probably not 
meaningful to detect from either a milk quality or CM 
detection point of view.

In conclusion, using data generated by AMS to de-
tect and predict changes in milk homogeneity seems 
to be possible. Cow milkings without changes in milk 
homogeneity could be properly distinguished; however, 
the performance was poor at detecting cow milkings 
and cow milking periods with clots according to the 
definitions of clots used.
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