
International Journal of Applied Earth Observations and Geoinformation 108 (2022) 102728

Available online 4 March 2022
0303-2434/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Evaluating the effect of DEM resolution on performance of cartographic 
depth-to-water maps, for planning logging operations 

Sima Mohtashami a,*, Lars Eliasson a, Linnea Hansson a, Erik Willén a, Tomas Thierfelder b, 
Tomas Nordfjell c 

a The Forestry Research Institute of Sweden, Skogforsk, Uppsala, Sweden 
b Department of Energy and Technology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden 
c Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden   

A R T I C L E  I N F O   

Keywords: 
Soil moisture maps 
DTW 
Digital Elevation Model 
Forestry 
Soil disturbance 

A B S T R A C T   

Reliable and accurate soil moisture maps are needed to minimise the risk of soil disturbance during logging 
operations. Depth-to-water (DTW) maps extracted from digital elevation models have shown potential for 
identifying water flow paths and associated wet and moist areas, based on surface topography. We have 
examined whether DEMs from airborne LiDAR data with varying point density can improve performance of DTW 
maps in planning logging operations. Soil moisture content was estimated on eight sites after logging operations 
and compared to DTW maps created from DEMs with resolutions of 2 m, 1 m, and 0.5 m. Different threshold 
values for wet soil (1 m and 1.5 m depth to water) were also tested. The map performances, measured by ac-
curacy (ACC) and Matthews Correlation Coefficient (MCC), changed slightly (79%, 81% and 82% and 0.33, 0.26 
and 0.30 respectively) when DEM resolutions varied from 2 m to 1 m, and 0.5 m. The corresponding values when 
the DTW threshold value for wet/dry soil changed from 1 m to 1.5 m were 70%, 72%, 71% and 0.38, 0.41 and 
0.39. LiDAR-based DEM resolutions of 1–2 m were found to be sufficient for extraction of DTW maps during 
planning of logging operations, when knowledge about soil hydrological features, associated wet and moist 
areas, and their connectivity is beneficial.   

1. Introduction 

Utilising forestry machines in combination with a warming climate 
requires extra efforts to avoid possible soil disturbances during logging 
operations in forests (Uusitalo et al., 2020). Reliable and accurate soil 
moisture maps, based on high resolution digital elevation models 
(DEM), are among tools that improve planning and execution of logging 
operations (Hoffmann et al., 2022). Capturing topographic details of 
ground surface from point clouds collected by airborne Light Detection 
and Ranging (LiDAR) has contributed to DEM extractions with improved 
resolution and information contents (Wehr & Lohr, 1999). Which point 
density LiDAR data and corresponding DEM resolution to use is an 
important question for practical forestry, as the DEMs are used for 
creating different kinds of trafficability maps. For example, soil moisture 
maps are used in most heavy forestry machines in Sweden today (Ring 
et al., 2020; Ågren et al., 2021;). 

Logging operations in Swedish forestry have developed considerably 
since the 1940s. Human and horse muscles were first replaced with 

chain-saws and modified farm tractors, which gradually developed to 
the current use of forest machines. Improved productivity, cost- 
efficiency, ergonomics and work safety of the operations and higher 
demands for wood-based-products from forests were the main drivers of 
this development (Nordfjell et al., 2019). Simultaneously, forest ma-
chines have become bigger and heavier, weighing approximately 15–40 
Mg, which implies a higher risk of soil disturbances, i.e. rutting, 
compaction, runoff, and erosion (Cambi et al., 2015). The risk for soil 
disturbances intensifies when forest soils are wet and moist (Toivio 
et al., 2017). In the boreal forest of Nordic regions, periods with frozen 
soils and improved bearing capacity are likely to diminish due to 
anticipated warmer climate conditions (Lehtonen et al., 2019), under-
lining the need for improved planning of logging operations in sensitive 
areas. Soil moisture content, together with soil texture, are important 
factors for determining soil bearing capacity (Susnjar et al., 2006; 
Wästerlund, 2020), i.e., the ability of soil to withstand external forces 
without undergoing detrimental changes. Deep ruts develop more easily 
on fine-grained soils (Eliasson & Wästerlund, 2007; Sirén et al., 2019) 
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and peatlands (Uusitalo & Ala-Ilomäki, 2013) with high moisture con-
tent. Ruts can cause water ponding on flat terrain due to compaction and 
reduced hydraulic conductivity in machine tracks, leading to increased 
runoff and sediment transport to nearby watercourses (Hansson et al., 
2018). Erosion rate may increase after machine passages in steep terrain 
(Labelle et al., 2021; Najafi et al., 2009), creating extra obstacles to the 
natural recovery of soils for decades after off-road transportations 
(DeArmond et al., 2021). 

The spatial variation of soil moisture content is influenced by soil 
texture, topography (measured as slope and elevation), and vegetation, 
and varies temporally according to meteorological condition, i.e., tem-
perature and precipitation (Huisman et al., 2002; Lunt et al., 2005). 
Knowledge about the location of sensitive soils with high moisture 
content is therefore necessary to minimise negative impact caused by 
off-road transportation (Campbell et al., 2013; Jones & Arp, 2019; 
Murphy et al., 2009). Measuring soil moisture content using in-situ 
techniques like time domain reflectometry (TDR) or ground pene-
trating radar (GPR) to measure soil moisture content over large areas 
(hectares) are time- and labour-intensive (Lekshmi et al., 2014), making 
these methods non-practical for operational forestry planning. Soil 
moisture prediction models, using digital elevation models (DEM) based 
on increasingly available LiDAR technology, or photogrammetry-based 
DEMs, have therefore been used to improve the mapping of soil hy-
drological features. 

The topographic wetness index (TWI) (Beven & Kirkby, 1979) was 
among pioneer wetness models that used topography to model water 
flow paths in landscape. The index is calculated by relating upslope 
catchment area at each DEM cell to a calculated slope in that cell. TWI 
was shown to be more sensitive to proper estimation of upslope areas 
than the calculated local slope at different resolutions (Hjerdt et al., 
2004). This property makes the index sensitive to underlying DEM res-
olution and reduces the accuracy of soil moisture estimation in less 
elevated areas, where local slope does not reflect the hydraulic gradient 
efficiently (Grabs et al., 2009). TWI was shown to function properly for 
large-scale landscape planning, but to lose its robustness at high DEM 
resolutions (Sørensen & Seibert, 2007; Ågren et al., 2014). 

Depth-to-water (DTW) index is another DEM-based soil wetness 
index that calculates least elevation difference between surface flow 
channels and nearby landscape areas (Murphy et al., 2007; Murphy 
et al., 2008). The surface flow channels, extracted from DEMs, are 
regarded as reference ground water level by DTW index. DTW values are 
defined as zero at surface flow channels. Moving upwards from flow 
channels in the landscape implies increased depth to water values, 
indicating reduced soil wetness away from surface waters. Soil moisture 
maps based on the DTW index therefore need assigning two thresholds: 
1) flow initiation area (FIA), i.e., a catchment area required to form flow 
channels, 2) a DTW threshold value for when soils are wet, i.e., a high 
soil moisture content on a time-averaged basis. Ågren et al. (2014) 
compared DTW maps of different FIA values, TWI, and seven other DEM- 
derived indexes (at resolutions ranging from 2 to 100 m) to measure soil 
moisture classes in the field in a Swedish boreal forest catchment area. 
They reported DTW as the most numerically robust index to predict soil 
moisture classes. Identification and connectivity of smaller wetlands 
areas (<1 ha) and riparian zones extracted from 10-m photogrammetry- 
based DEM were improved using the DTW index, compared to aerial 
photo interpretations (Murphy et al., 2007). Much longer stream flow 
channels could also be mapped in Sweden, both at watershed (Ågren 
et al., 2015) and national scales (Ågren & Lidberg, 2019), using the DTW 
index. The stream flow channels were extracted from 2-m DEMs and 
compared to aerial photo-based flow channels shown on topographic 
maps (scale of 1: 12 500) created by the Swedish Mapping, Cadastral 
and Land Registration Authority. 

DTW maps can help logging planners decide the proper time to 
perform logging operations on logging sites with large areas of moist and 
wet soils. Logging operations in these areas can be scheduled during 
winter periods when the soil is frozen and has greater strength for 

machine passages (Mattila & Tokola 2019; Susnjar et al., 2006). When 
DTW maps are used to identify moist and wet areas in logging sites, the 
risk for rutting may be reduced if machine operating trails do not cross 
such areas (Arp, 2009; White et al., 2013). Leaving logging residues on 
machine operating trails (Labelle et al., 2021) improves soil bearing 
capacity in these areas, prior to necessary machine passages. The plan-
ning measures become extra important when logging sites are in the 
vicinity of groundwater discharge hotspots with high ecological values 
(Kuglerová et al., 2014). DTW maps were found to be an effective tool 
for minimising severe rutting in areas close to surface waters (Friberg & 
Bergkvist, 2016), although they cannot predict rut locations in logging 
operations (Mohtashami et al., 2017; Schönauer et al., 2021a; Ågren 
et al., 2015). 

DTW maps can also be used to develop soil trafficability models. In a 
case study in Canada, Campbell et al. (2013) related cone penetration 
index to rut depth, DEM-derived elevation, slope, and DTW index (at 2- 
m resolution), creating projected rut-depth maps for an all-terrain 
vehicle navigation in forest. The model was further improved by 
including hydrologically predicted soil moisture content and meteoro-
logical data to adjust the model for actual weather conditions (Jones & 
Arp, 2019). Despite indicating promising applications in the study areas, 
the authors stated that further evaluation in different terrain conditions 
was required. 

Soil moisture maps are also important in forestry for identifying 
suitable locations for necessary stream crossings (Ring et al., 2020). Soil 
moisture maps could be used for designing optimal and functional forest 
buffers/riparian zones around permanent or temporal stream flow net-
works with important ecological values (Kuglerová et al., 2017; 
Kuglerová et al., 2014). They could also be used to improve planning of 
site preparation and fertilisation adjacent to surface waters (Ring et al., 
2020; Ågren et al., 2015). Reliable and accurate soil moisture maps 
could therefore lead to essential improvements in planning of logging 
operations. 

Creating DTW maps that capture temporal and spatial variations of 
stream networks and associated wet areas at both small and large scales 
is challenging. To improve the map performance and customise them to 
local and temporal conditions, the FIA threshold can be adjusted to local 
physiographic properties (Murphy et al., 2009; Ågren & Lidberg, 2019) 
and seasonal changes (Schönauer et al., 2021b; Ågren et al., 2015). The 
DTW threshold value for separating wet/dry soil also needs to be 
adjusted to soil drainage properties, topography, and local weather 
conditions (Ågren et al., 2021). DTW values of 1 m (Ågren et al., 2014, 
Murphy et al., 2011) or 1.5–1.7 m (Murphy et al., 2009) have tradi-
tionally been used for this purpose in different studies. How the change 
of threshold may affect the performance of DTW maps in the same areas 
has not been specifically reported in previous studies. 

Resolution and information content of DEMs are important factors 
affecting extraction of hydrological features (MacMillan et al., 2014). A 
comparison between the performance of DTW index and soil wetness 
index (SWI) using LiDAR-based DEM (1-m resolution) and 
photogrammetry-based DEM (10-m resolution) indicated that a higher 
DEM resolution resulted in improved conformance for both moisture 
models (Murphy et al., 2009). Lidberg et al. (2017) evaluated different 
pre-processing methods on LiDAR DEMs with resolutions of 16 m, 8 m 4 
m and 2 m, and showed that higher DEM resolution leads to more ac-
curate stream network extractions. Stream-road crossings identified in 
DEMs were compared with field recorded culvert positions in this study. 
Previous studies have not addressed how an even higher resolution than 
1 or 2 m of DEMs created from higher point density LiDAR data can 
affect the performance of the DTW maps to identify wet and moist areas 
and the potential to improve the maps for planning forest operations. 

The objective of this study is therefore to evaluate the effect of high- 
resolution DEM (2 m, 1 m, 0.5 m), based on airborne LiDAR data, 
hereafter LiDAR data, with different point density (0.5–1-point m− 2, 
1–2-point m− 2, and 24-point m− 2), on soil moisture prediction using a 
cartographic depth-to-water (DTW) index, and an empirical approach. 
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This is done by point-to-point comparison of field estimated soil mois-
ture with DTW-based soil moisture predictions with resolutions of 2 m, 
1 m, and 0.5 m on eight logging sites in mid-eastern Sweden, after 
logging operations. Another objective was to test whether the results 
would change when the threshold value for wet soil was changed from 1 
m to 1.5 m DTW. 

2. Materials and methods 

2.1. Study areas 

The study included eight logging sites selected from 24 recent final 
fellings in the SCA forest company’s digital test site (17◦2′47′′E, 
62◦49′46′′N) in mid-eastern Sweden (Fig. 1). The sites were selected to 
ensure a variation of estimated soil texture and soil moisture according 
to available digital maps. The logging sites varied in size and topo-
graphic condition (elevation, slope), and were situated mainly on min-
eral till soils according to Quaternary Deposits maps (1: 25000–1:100 
000 Geological Survey of Sweden). The dominating tree species were 
Norway spruce (Picea abies (L.) Karst.) and Scot’s pine (Pinus sylvestris 
L.). The logging sites were clear-cut during spring-summer 2020, 
applying a cut-to length (CTL) mechanised system, using harvester 
models Komatsu 951 and JD 1470 G (27–30 Mg) and forwarders, 
Komatsu 895, and JD 1910 G models (50–52 Mg when fully loaded). A 
general description of the logging sites is provided in Table 1. 

Fig. 1. Left: Overview of the logging sites, in mid-eastern Sweden. Centre: Distribution of the logging sites within the SCA digital test. Right: One of the studied 
logging sites over the topographic map. Data about soil moisture points were collected in geopositioned sample points (green triangles) along pre-marked sampling 
paths (purple), selected on the basis of forwarder time logged operating trails (small orange dots). 

Table 1 
Description of surveyed logging sites with information on logging site area (ha), 
main soil type according to Quaternary Deposits maps, and number of collected 
sample points.  

Site No. Area (ha) Main soil type No. of collected sample points 

1  7.2 Till 36 
2  5.2 Till 26 
3  23.6 Till 70 
4  17.8 Till 44 
5  6.5 Peat 43 
6  17.8 Till, bedrock 66 
7  15.8 Till 59 
8  10.2 Bedrock, Peat 41  

Fig. 2. Digital elevation models (DEM) with resolutions of 2 m (left), 1 m (middle) and 0.5 m (right) presented by multiple hillshade effect. Illustration of surface 
detail improves when DEMs are illuminated with light from six different directions, i.e., multiple hillshading. A man-made ditch (black line) is captured more clearly 
by 0.5 m DEM. 
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2.2. Field data collection 

Soil moisture was estimated in the field during September-November 
2020. The sampling paths were pre-marked on digital topographic maps 
along the time-logged forwarder operating trails to make data inventory 
practical (Fig. 1). Soil moisture in the field was estimated and classified 
as: 1) wet, 2) moist, 3) mesic-moist, 4) mesic, and 5) dry according to 
National Swedish Forest Inventory Instructions (Anon, 2013). To facil-
itate soil moisture classification in the field, humus layer thickness was 
measured at sample points using a soil probe and a field ruler. Full 
definition and characteristics of moisture classes are provided in 
Table A1. Field data was collected in geopositioned sample points using 
ESRI application Survey123 (version 3.9) in an iPad Air 2 (8th genera-
tion). iPad Airs are equipped with Global Navigation Satellite-based 
System (GNSS) receivers which uses satellites from the American 
Global Positioning System (GPS) and the Russian Global Navigation 
Satellite System (GLONASS). Sample data were collected in the World 
Geodetic System (WGS-1984) in the field and were later projected with 
SWEREF99 Transverse Mercator when used in ArcMap. The positioning 
accuracy achieved by iPad Airs in forest with different tree densities is 
around 2.5–5 m and improves to 2.5–3 m in clear-cut sites (Hannrup 
et al., 2020). The first sampling points were randomly selected along the 
first 50 m of trail on the cut area. A uniform distance of 50 m was then 
assigned between sampling points, to prevent autocorrelation among 
observations. A total of 385 sample points were collected in the field. 

2.3. LiDAR data and DEM description 

Digital elevation models with resolutions of 2 m, 1 m and 0.5 m were 
created from airbirne LiDAR data with a point density of 0.5–1, 1–2 and 
24-point m− 2, Fig. 2. Elevation models with resolutions of 2 m and 0.5 m 
were provided as ready to use raster (TIFF) layers, by the Swedish 
Mapping, Cadastral and Land Registration Authority and the SCA forest 
company, respectively. The 1-m resolution DEM was extracted from 
LiDAR data with 1–2 point m− 2 (by authors) using Quick Terrain 

Modeler (INTL, x64), v8.0.4.1 software. Technical specifications of the 
LiDAR data and DEM extraction algorithms are described in Table 2. In 
this study, the analysis did not include the measurement errors inherent 
in each of the LiDAR acquisition techniques, filtering methods and DEM 
production algorithms, nor how they may affect the accuracy of 
generated DEMs. 

2.4. DTW map production 

DTW maps with resolutions corresponding to the DEMs used were 
created in ArcMap 10.8. Each DEM was first processed to create eleva-
tion models with no depressions using a fill function (Tarboton, 1997). 
The preferential water path from each cell was calculated using a flow 
direction tool. Flow channels were extracted from DEMs with a deter-
ministic 8 (D8) flow accumulation tool (O’Callaghan and Mark, 1984), 
using a FIA value of 1 ha. Selecting a 1-ha FIA value allowed us to keep 
the GIS processing of high-resolution DEMs practical and to produce 
DTW maps comparable to maps that have been available to the Swedish 
forestry sector since 2015. It also improved delineation of small tem-
poral flow channels which are mainly activated during high runoff pe-
riods, i.e., when snow starts to melt in early spring and/or when rain is 
the dominant form of precipitation in early autumn (Murphy et al., 
2011; Ågren et al., 2015). 

The least elevation differences between each surface cell and nearest 
flow channel, i.e., DTW indexes, were calculated using digital elevation 
models, slope, and flow channel data layers according to Eq. (1), 
(Murphy et al., 2007; Murphy et al., 2008): 

DTW(m) = [
∑

((dzi/dxi)a)]Xc (1)   

DTW(m) : Estimated depth to ground water table 
dzi/dxi: The least cumulative elevation difference from each cell to 
the nearest surface water (e.g., the flow channel, or other known 
watercourses). 
a: 1 when movement direction is parallel to the cell edge and 
1.414214 when cells are passed diagonally 
Xc: resolution of the elevation model, m 

2.5. Topographic and DTW index variations of logging sites 

The studied logging sites were located on relatively hilly areas, and 
varied in topographic conditions, i.e., elevation and slope. Mean 
elevation and slope values, extracted from 2-m DEM, varied between 
340.70–419.54 m and 6.68–12.25◦respectively among the logging sites, 
Table 3. 

Depth-to-water values <1 m are conventionally considered as po-
tential ‘moist’ and ‘wet’ areas for DTW soil moisture mapping in the 
Swedish landscape (Ågren et al, 2014). These areas were classed in 
ranges of 0–0.25, 0.26–0.50, 0.51–0.75 and 0.76–1 m and marked in 
shaded colours in all three variants of the DTW maps over the studied 

Table 2 
Technical description of airborne LiDAR data used in terms of point density, laser scanner model, manufacturer, and LiDAR accuracy. DEM extraction algorithm and 
provider of each data source are also specified.  

DEM resolution 
(m) 

LiDAR data point 
density (point m− 2) 

Laser scanner model, 
manufacturer 

LiDAR Accuracy DEM extraction algorithm Data Provider 

2 0.5–1 ALS 60, Leica XY accuracy < 0.3 
Vertical accuracy 
= 0.1 m 

Triangular Irregular Network 
(TIN) interpolation 

Swedish mapping, cadastral and land 
registration authority (Anon, 2020) 

1 1–2 LS1A, Leitech XY accuracy < 0.3 
Vertical accuracy 
< 0.1 m 

Gridding with adaptive 
triangulation 

Swedish mapping, cadastral and land 
registration authority (Anon, 2021) 

0.5 24 VQ-1560i DW, RIEGL XY accuracy =
0.02 m 
Vertical accuracy 
= 0.02 m 

Streaming Triangular Irregular 
Network interpolation 

SCA forest company (Anon, 2022)  

Table 3 
Mean value and standard deviation of elevation and slope within the studied 
logging sites, extracted from 2 m DEM.  

Logging site No. Elevation (m) Slope (degrees) 

Mean Standard deviation Mean Standard deviation 

1  366.11  3.48  6.68  4.05 
2  364.50  4.06  8.90  7.35 
3  419.54  8.19  7.02  3.74 
4  340.70  6.63  9.77  6.70 
5  373.35  5.22  11.16  7.05 
6  367.03  9.56  12.25  8.05 
7  387.07  9.9  7.09  3.86 
8  341.14  12.98  11.54  6.63 
Average  369.93  7.50  9.30  5.93  
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logging sites (Table 2A). The averaged area of all logging sites, distrib-
uted over the DTW values (0–1, 1–1.5 m, 1.5–2, and > 2 m) on the three 
resolution maps, are illustrated in Fig. 3. Soils with a DTW index > 2 m 
made up the major fraction (57–60%) of the areas of all logging sites 
regardless of DTW map resolutions. Soil moisture condition is 

considered as ‘dry’ at these areas, when maps are consulted. 

2.6. Data analysis 

The average values of the depth-to-water indexes, with a 95% con-
fidence interval, over all the field estimated soil moisture classes were 
plotted, to evaluate any difference among DTW maps in separating field 
estimated moisture classes. 

In a general linear model, field estimated moisture classes were 
analysed against DTW index values (from the three map variants, i.e., 2 
m, 1 m, and 0.5 m) for all the sample points, to evaluate possible cor-
relations in the soil estimation methods, i.e., field- vs. DTW index esti-
mations. The statistical inferences were performed in Dell Statistica 
13.0. 

Fig. 3. Distribution of averaged area of logging sites over classes of DTW index. Error bars indicate standard deviation of each DTW index class.  

Table 4 
Reclassification of DTW maps and field estimated soil moisture classes to binary 
values, applying conventional DTW threshold value of 1 m to separate wet/dry 
soils on maps and corresponding soil moisture classes in the field.  

DTW reclassification Field soil moisture reclassification 

Old values New values Old values New values 

DTW ≤ 1 m Wet Wet, moist Wet 
DTW > 1 m Dry Mesic-moist, mesic, dry Dry  

Fig. 4. 95% interval of averaged DTW index values over field estimated soil moisture classes (Anon, 2013), in DTW maps of resolution 2 m, 1 m and 0.5 m.  
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2.7. DTW maps: Performance evaluation 

In a more general comparison, DTW values and field estimated 
moisture values were reclassified to binary values: Wet and Dry. A DTW 
threshold value of 1 m was used for map reclassification, i.e., all areas 
with DTW ≤ 1 m were reclassed to ‘Wet’ while areas with DTW > 1 m 
were reclassed to ‘Dry’. The field estimated moisture classes ‘wet’ and 
‘moist’ were merged to ‘Wet’ while ‘mesic’, ‘mesic-moist’ and ‘dry’ were 
merged to the ‘Dry’ class, Table 4. The averaged area of all logging sites 
classified as ‘Wet’ according to this limit in the DTW map reclassification 
is presented in Fig. 3. 

To evaluate the overall conformance of wet areas captured by DTW 
maps and field-identified wet areas in the new binary classification, 
accuracy (ACC), and Matthews correlation coefficient (MCC) (Mat-
thews, 1975) were calculated according to Eqs. (2) and (3): 

ACC =
TP + TN

TP + TN + FP + FN
(2)  

MCC =
TP × TN − FP × FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

√ (3)  

where TP, TN, FP, FN are components of a confusion matrix and are 
defined as: 

True Positive (TP): when both DTW maps and field estimated soil 
moisture classify the sample as ‘Wet’. 
True Negative (TN): when both DTW maps and field estimated soil 
moisture classify the sample as ‘Dry’. 
False Positive (FP) or type I error: when DTW map reclasses the 
sample as ‘Wet’, while soil moisture in field is estimated ‘Dry’, and 
False Negative (FN) or type II error: when DTW map reclasses the 
sample as ‘Dry’, while soil moisture in field is estimated ‘Wet’. 

Finally, the reclassification of soil moisture estimations was iterated 
with new limits in both DTW maps and field estimations to evaluate 
possible effects on calculated ACC and MCC in the new classification 
system. A threshold DTW value of 1.5 m, previously 1 m, was now used 
to separate ’Wet’ and ’Dry’ areas in DTW maps, while field estimated 
soil moisture classes, including ’wet’, ’moist’, ’mesic-moist’, and 
’mesic’, were reclassified to ’Wet’ areas this time. 

3. Results 

3.1. DTW index value ranges in field estimated soil moisture classes 

A comparison between the distribution of DTW indexes and soil 
moisture classes on each of the DTW maps indicated that all three var-
iants had equivalent performance on separating soil moisture classes 
estimated in the field. The averaged DTW values were approx. 1.2 m in 
field moisture class ‘wet’ and ‘moist’, approx. 2 m in field moisture class 
‘mesic-moist’ and ‘mesic’, and approx. 4 m in field moisture class ‘dry’, 
Fig. 4. The larger confidence interval for the 2-m resolution DTW index 
in soil moisture class ‘wet’ is an effect of one outlier observation being 
classified as ‘wet’ in the field while having a DTW value of 4.9 m on the 
2-m resolution DTW map. 

The averaged DTW index values in the classes ‘wet’ and ‘moist’ 
overlap the values in the classes ‘mesic-moist’ and ‘moist’, indicating 
that DTW maps do not distinguish these soil moisture classes in the field 
effectively. However, the DTW index in the moisture class ‘dry’ is effi-
ciently distinguished from other classes. 

3.2. Soil moisture prediction by DTW maps 

In the general regression models, DTW indexes from all three map 
variants were regressed against field estimated soil moisture classes. The 
model resulted in F-values ranging from 21.65 to 24.84 and 24.66 and 
adjusted R2-values ranging from 0.18 to 0.20 in the DTW maps with 0.5 
m, 1 m, and 2 m resolutions, indicating no improvement in performance 
of the maps when resolution was improved from 2 m to 1 m and 0.5 m, 
Table 5. 

3.3. Wet and dry soil classification by DTW maps 

The accuracy of the binary reclassified ACC of DTW maps in 
reclassifying the logging sites to ‘Wet’ and ‘Dry’ areas increased slightly, 
from 79% to 81% and 82% in DTW maps with resolutions of 2 m, 1 m, 
and 0.5 m. The MCC values, however, changed non-uniformly from 0.33 
to 0.26 and 0.30 over the studied resolutions respectively (Table 6). 

Using the 1.5-m DTW threshold value between wet and dry soil when 
binary reclassifying DTW maps and field estimated moisture classes, 
‘wet, moist, mesic-moist and mesic’ as the new ‘Wet’ class, resulted in 
slightly lower accuracy for all three DTW maps compared to maps with 
DTW ≤ 1 m as the limit between wet and dry areas. The accuracy varied 
from 70% to 72% and 71% when the resolution of DTW maps was 
changed from 2 m to 1 m and 0.5 m. Compared to DTW maps with a 1-m 
limit, the MCC values for these new reclassified DTW maps improved to 
0.38, 0.41, and 0.39 (Table 7). 

Table 5 
The results of general regression models, where DTW index values were 
regressed against field estimated soil moisture classes, reporting adjusted R2, 
sum of square (SS), degree of freedom (df), F-value and P-value for the models. 
All three DTW map variants were almost equally effective for distinguishing soil 
moisture classes in the field.  

Dependant 
variable 

Adjusted 
R2 

SS 
model 

df 
model 

MS 
model 

F p 

DTW (2 m)  0.20  492.92 4  123.23  24.66 <

0.001 
DTW (1 m)  0.20  466.56 4  116.64  24.84 <

0.001 
DTW (0.5 m)  0.18  426.19 4  106.55  21.65 <

0.001  

Table 6 
Distribution of True Positive (TP), True Negative (TN), False Positive (FP), False 
Negative (FN) of DTW maps and corresponding accuracy (ACC, %) and Mat-
thews correlation coefficient (MCC) in DTW maps of resolution 2 m, 1 m and 0.5 
m. A DTW threshold value (DTW ≤ 1 m) separates wet/dry soil in the maps. 
Field estimated soil moisture classes wet, and moist are considered as ‘Wet’. 
Number of sample points (n) = 385.   

TP TN FP FN ACC, % MCC 

DTW (2 m) 25 281 67 12 79  0.33 
DTW (1 m) 19 292 56 18 81  0.26 
DTW (0.5 m) 21 293 55 16 82  0.30  

Table 7 
Distribution of True Positive (TP), True Negative (TN), False Positive (FP), False 
Negative (FN) of DTW maps and corresponding accuracy (ACC, %) and Mat-
thews correlation coefficient (MCC) in DTW maps of resolution 2 m, 1 m and 0.5 
m. A new DTW threshold value (DTW ≤ 1.5 m) separates wet/dry soil in the 
maps. Field estimated soil moisture classes wet, moist, mesic-moist, and mesic 
are considered as ‘Wet’. Number of sample points (n) = 385.   

TP TN FP FN ACC, % MCC 

DTW (2 m) 92 178 71 74 70  0.38 
DTW (1 m) 88 188 31 78 72  0.41 
DTW (0.5 m) 87 186 33 79 71  0.39  
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4. Discussion 

In this study, we have evaluated how the spatial resolution of the 
digital elevation models based on different point densities of LiDAR data 
can affect soil moisture predictions using the DTW soil moisture index. 

The pattern and extent of wet and moist areas in maps changed 
marginally at the studied resolutions and logging sites. The 95% interval 
of DTW indexes from the spatial resolutions over the field estimated 
wetness classes showed equivalent distribution of DTW indexes in all 
three DTW maps. This implies that increased resolution of DEMs at the 
studied scale, 2 m, 1 m, and 0.5 m, did not affect the performance of the 
DTW maps in capturing the stream networks and associated wet areas. 
The higher point density of LiDAR data means more accurate DEMs, 
with detailed information about surface topography, thereby minimis-
ing the need for surface interpolation between the scanning points. This 
detailed image of the landscape includes small-scale surface features like 
boulders or stumps, which do not affect the overall pattern of where 
water would flow in the landscape. DTW maps are created by accounting 
for differences in gravitational potential energy derived from elevation 
difference between flow streams and adjacent parts of the landscape. 
The difference is less affected by changes in microtopography when 
DEM resolution is increased from 2 m down to 0.5 m, in elevated and 
hilly areas like the studied logging sites. Large-scale topography is the 
main controlling factor of water movements in these areas, while 
detailed surface topography has the main effect in near-surface areas in 
flat terrains, where DTW maps perform best (Murphy et al., 2009; 
Schönauer et al., 2021b). 

The differences in our DTW maps are not of the same magnitude as 
that found when 10-m photogrammetry-based DEM were compared to 
1-metre LiDAR-based DEMs (Murphy et al., 2008; Murphy et al., 2009). 
They were not improved in the same way as when (Lidberg et al., 2017) 
compared resolutions of 2 m, 4 m, 8 m, and 16 m when mapping flow 
stream networks from hydrologically-corrected LiDAR-based DEMs. 
Sørensen and Seibert (2007) also reported that higher resolution and 
information content in 5-m LiDAR-based DEM affected the pattern and 
distribution of soil moisture estimations by TWI index, compared to 10 
m, 25 m, and 50 m LiDAR DEMs. At high resolution DEMs, upslope areas 
became smaller, contributing to formation of more irregular water flow 
paths. However, the authors recommended choosing optimum resolu-
tion based on the importance of studying topographic features and the 
soil moisture modelling application. 

At higher resolution DEMs, anthropogenic features of landscapes like 
road banks, railways and ditches may have greater impact on the ac-
curacy of DEMs, so the need to pre-process these models and hydro-
logical modification is more pronounced (Lindsay & Dhun, 2015). 
Breaching was found to be an optimum algorithm for performing hy-
drological corrections in DEMs prior to soil moisture modelling (Lidberg 
et al., 2017). However, we applied “filling” in our DTW map pro-
ductions, to keep their conformance to DTW-maps available for the 
whole of Sweden. Slight variations in captured patterns of flow channels 
and associated wet areas at studied resolutions might therefore be 
explained by different sensitivity of these DEMs to artefacts like road 
banks close to the logging sites (Table A2, logging sites 1, 2, 4, 6 and 7). 
However, the differences were quite minimal and did not result in 
considerable variation in the soil moisture maps created here at the 
studied scales. 

The comparison of DTW indexes and field estimated soil moisture 
classes also indicated that DTW maps were more effective in dis-
tinguishing dry areas, with DTW ≥ 4 m from the other moisture classes 
(Fig. 4). DTW values in the wet and moist soil moisture classes (0.02 m 
< DTW < 2 m) and mesic-moist and mesic (1.5 m < DTW < 2.5 m) 

overlap to a great extent, making the index ineffective in separating 
these soil moisture classes. This was also confirmed by results from the 
general linear model, where DTW index values regressed by field esti-
mated soil moisture classes produced low adjusted R2 values for all 
resolutions. However, this might partly be an effect of the resolution of 
the field classification of soil moisture, where many of the recognition 
signs are related to an area surrounding the sample point and not just the 
sample point itself. Furthermore, as soil moisture is a continuous vari-
able, the transitions between classes will be gradual and not well defined 
at specific boundaries. 

The accuracy (ACC) of DTW maps slightly improved, from 79% to 
80% and 81% respectively, regarding reclassifying the soil moisture to 
the binary values of ‘Wet’ and ‘Dry’ in maps and the field, when reso-
lution was increased from 2 m to 1 m and 0.5 m. This was mainly due to 
the increased number of observations in the True Negative and True 
Positive classes, i.e., correctly classified field sample points in moisture 
classes ‘Dry’ and ‘Wet’ by the DTW maps. However, the MCC value did 
not improve. When the resolution was changed from 2 m to 1 m and 0.5 
m, MCC was reduced from 0.33 to 0.26 and increased to 0.30, con-
trasting with the marginal improvement of accuracy (ACC). The records 
are not far from values reported in two areas with similar soil deposits, i. 
e., till and peat studied by Ågren et al. (2014), with ACC = 83.9% and 
77.5% and MCC = 0.39 and 0.34. 

Modifying the applied threshold for reclassification of DTW index 
and field estimated soil moisture classes, i.e., DTW ≤ 0 1.5 and field 
classes as wet, moist, moist-mesic, and mesic, resulted in reduced ACC 
but improved MCC for all resolutions of DTW maps, compared with the 
previous classification trial. The best MCC improvement was found for 
DTW (1 m), from 0.26 to 0.41. This would indicate that applying a DTW 
threshold value ≤ 1 m is not always the best practice to identify sensitive 
areas around flow channels, and the limit needs to be adjusted to local 
topographic conditions (Ågren et al., 2021). 

Mesic-moist and mesic soil moisture classes indicate more temporal 
variations during a year, having least bearing capacity (more wet and 
moist areas) during early spring and late autumn. Soils of these moisture 
classes may have higher bearing capacity when the soil is drier during 
summer. Therefore, including actual meteorological data, like field 
measured or hydrologically modelled soil temperature and moisture 
content, could be a possible approach to generate more dynamic DTW 
maps (Jones & Arp, 2019). Real time data about actual soil strength by 
automatic indirect measuring methods, such as harvesters’ CAN-BUS 
measurements of rolling resistance (Ala-Ilomäki et al., 2020) prior to 
forwarding operations, can also be used as a complement to static soil 
moisture models. Real time measurement of soil strength, together with 
spatial data and hydrological modelling, can also provide dynamic soil 
trafficability maps (Salmivaara et al., 2020). These types of maps are 
increasingly demanded by forestry to minimise the negative impacts of 
machinery operations on soils in more fluctuating weather conditions. 

Identifying optimal FIA values for different scales of application has 
been recognised as challenging, due to spatial and temporal variations in 
soil moisture content (Lidberg et al., 2020). In a study by Schönauer 
et al. (2021b), field-measured soil moisture content and soil strength in 
time series under different weather conditions in boreal and temperate 
forest sites in Germany, Poland, and Finland were compared to DTW 
maps with varying FIA values. DTW performance in predicting soil 
moisture condition was best at FIA = 4 ha. The map performance, 
however, did not improve overall with site- and condition-adjusted FIA 
values. 

The somewhat low conformance of the maps to field estimated 
moisture classes found in this study may also be because we applied a 
constant flow initiation threshold of 1 ha for extraction of the flow 
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channels over all studied logging sites, without making any modifica-
tions based on local topographic and temporal condition. This FIA may 
result in DTW maps overestimating wet areas in steep terrain conditions 
or in soils with high drainage properties (Lidberg et al., 2020; Murphy 
et al., 2009). This effect is more pronounced in DTW maps with 2-m 
resolution, with higher False Positive values (FP = 67) compared to 
FP = 56 and FP = 55 at 1 m and 0.5 m resolutions (with DTW ≤ 1 m as 
threshold value for wet/dry soils). When mapping small stream net-
works (<6 m wide) at a national scale in Sweden, a FIA value of 2 ha is 
recommended (Ågren & Lidberg, 2019). However, much smaller, 
seasonally activated, water flow paths at logging site scales may not be 
captured at this FIA value. 

New techniques, such as machine learning, enable inclusion of more 
site- and time-specific information like hydrological measurements or 
multiple topographic wetness index. This improves the development of 
regionally adjusted wet area maps at local and national scales (Lidberg 
et al., 2020; Ågren et al., 2021). 

A higher spatial resolution of the DEMs did not effectively change the 
accuracy of DTW maps in identifying wet and moist areas in forest soil in 
elevated and hilly topography. However, DTW maps based on extracted 
flow channels from LiDAR-based DEMs have greatly improved mapping 
of flow-channels and associated wet areas compared to conventional 
methods using aerial photography. Capturing integrated flow channels 
based on detailed DEMs can improve planning of logging operations, by 
identifying possible wet areas near surface waters and applying modi-
fied log extraction methods in these areas. Developing dynamic DTW 
maps through inclusion of hydrological and weather data may also 
improve scheduling of logging operations in these areas to periods with 
improved soil strength. 

5. Conclusion 

The results of our study confirm that higher resolution of digital 
elevation models (considering 2-m, 1-m, and 0.5-m resolutions) based 
on high-density airborne LiDAR data does not imply improvement in 
identifying wet and moist areas in forest soils in relatively elevated and 
hilly terrain using the DTW soil moisture index. The overall pattern of 
subsurface water movement is mainly influenced by large-scale topog-
raphy over these types of terrains, and not by detailed surface 

topography, as on flat areas. DEM resolution of 1–2 m can therefore be 
considered as sufficient for application in planning of logging or other 
forestry operations in terrains with similar properties, where knowledge 
about soil hydrological features, and associated wet and moist areas and 
their connectivity, is beneficial. 
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Appendix A 

See Tables A1 and A2. 

Table A1 
Definition of soil moisture classes with recognition signs in forest, according to National Swedish Forest Inventory Instructions (Anon, 2013).  

Soil moisture 
classes 

Groundwater Level 
(GWL) 

Recognition signs in forest 

Wet soils GWL at soil surface  (1) Organic soils (often fens).  
(2) Conifers occur only occasionally.  
(3) Frequent permanent water pools.  
(4) One cannot walk dry footed in low shoes. 

Moist soils GWL < 1 m depth  (1) Soils range from organic (generally fens) to mineral (generally humus-podsol).  
(2) Wetland mosses dominate local depressions (pits), and trees often show a coarse root system above ground.  
(3) One can walk dry footed in low shoes, provided one can step on tussocks in the wetter parts.  
(4) Ditches are common. 

Mesic-moist soils GWL < 1 m depth  (1) Soils are podzolic (humo-ferric to humic podsols)  
(2) The mineral soil is covered by a thick peaty mor (thicker than mesic soils)  
(3) Wetland mosses are common  
(4) Trees show a coarse root system above ground (germination point above soil)  
(5) One can walk dry footed in low shoes over the entire vegetation area, expect after heavy rain or snowmelt. 

Mesic soils 1 m < GWL < 2 m  (1) Ferric podsols with a thin humus layer (mor) are common.  
(2) The bleached horizon is grey-white and well delineated against the rust yellow, rust-red or brownish rust-red B-horizon (the 

darker the colour, the wetter the soil).  
(3) The bottom layer consists mainly of dryland mosses.  
(4) One can walk dry-footed in low shoes over the area even after heavy rains/snowmelt. 

Dry soils GWL > 2 m  (1) Usually found on eskers, hills, marked crowns and ridge crests  
(2) Soils tend to be coarse in texture and include lithosol, boulder soil and iron podsol formations, generally covered with a thin 

humus blanket on a thin bleached horizon.  
(3) Significant bedrock exposure.  
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Anon., 2013. Riksinventering av skog, Fältinstruktion 2013. Department of Forest 
Resource Management and Department of Soil and Environment, Umeå, Uppsala. 
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Schönauer, M., Väätäinen, K., Prinz, R., Lindeman, H., Pszenny, D., Jansen, M., 
Maack, J., Talbot, B., Astrup, R., Jaeger, D., 2021b. Spatio-temporal prediction of 
soil moisture and soil strength by depth-to-water maps. Int. J. Appl. Earth Obs. 
Geoinf. 105, 102614. https://doi.org/10.1016/j.jag.2021.102614. 
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