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Simple Summary: Milk production is one of the most important economic traits in dairy cattle.
Therefore, determining the genomic regions influencing this trait can improve milk yield. In this
study, we collected data from 16 articles associated with milk yield genome-wide association studies
(GWAS) on different cattle breeds. Based on the information from the analysis and level of significance
(p-value < 2.5 × 10−6), we identified different genomic regions on chromosomes with the highest
marker density, markers with the highest effect, genes within or near these regions, chromosomes
with the greatest effects on milk yield.

Abstract: Milk yield (MY) is highly heritable and an economically important trait in dairy livestock
species. To increase power to detect candidate genomic regions for this trait, we carried out a meta-
analysis of genome-wide association studies (GWAS). In the present study, we identified 19 studies
in PubMed for the meta-analysis. After review of the studies, 16 studies passed the filters for
meta-analysis, and the number of chromosomes, detected markers and their positions, number of
animals, and p-values were extracted from these studies and recorded. The final data set based on
16 GWAS studies had 353,698 cows and 3950 markers and was analyzed using METAL software. Our
findings revealed 1712 significant (p-value < 2.5 × 10−6) genomic loci related to MY, with markers
associated with MY found on all autosomes and sex chromosomes and the majority of them found
on chromosome 14. Furthermore, gene ontology (GO) annotation was used to explore biological
functions of the genes associated with MY; therefore, different regions of this chromosome may be
suitable as genomic regions for further research into gene expression.

Keywords: candidate SNPs; dairy cattle; genome-wide association study; meta-analysis; milk yield

1. Introduction

Milk is an important natural source of nutrients for the growth of newborn mammals.
Different methods have been applied to detect genetic factors affecting milk production
in dairy cattle, the most recent of which is genome-wide association studies (GWAS).
The ultimate goal of GWAS is to identify the dependency between single nucleotide
polymorphisms (SNP) and a trait using high-density markers at the genome surface to
detect causative mutations that affect the phenotype of a trait [1]. During the last decade,
GWAS has become an important source for generating novel hypotheses in the field of

Animals 2022, 12, 582. https://doi.org/10.3390/ani12050582 https://www.mdpi.com/journal/animals

https://doi.org/10.3390/ani12050582
https://doi.org/10.3390/ani12050582
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/animals
https://www.mdpi.com
https://orcid.org/0000-0002-7873-8123
https://doi.org/10.3390/ani12050582
https://www.mdpi.com/journal/animals
https://www.mdpi.com/article/10.3390/ani12050582?type=check_update&version=1


Animals 2022, 12, 582 2 of 9

genetics. Therefore, GWASs tend to be suitable for detecting common variants associated
with specific phenotypes [2].

Using data from GWAS, the meta-analysis technique is used to detect common ge-
nomic regions affecting traits by pooling the results of many studies together. Meta-analysis
is an essential tool for synthesizing evidence needed to inform clinical decision making and
policy. Systematic reviews summarize available literature using specific search parameters
followed by critical appraisal and logical synthesis of multiple primary studies [3]. Nowa-
days, the meta-analysis technique is used in the agricultural and veterinary sciences in
order to resolve inconsistencies in the results of scientific sources. Using the meta-analysis
technique, which is a systematic and statistical study, data from different studies can be
combined to achieve a single conclusion and interpretation. The reason is that individual
studies have some limitations regarding the statistical power and reliability of the results.
A meta-analysis by combining data and results of different research improves statistical
power and accuracy of estimates [4,5]. Meta-analysis is becoming an increasingly important
tool in GWAS studies of complex genetic diseases and traits [6]. The aim of this study was
to detect the chromosomal regions related to milk yield using meta-analysis of different
cow breeds.

2. Material and Methods
2.1. Data and Literature Review

The review of GWAS studies on cow milk yield regarding the number of chromosomes
and SNP positions reveals details of chromosomal regions that affect the trait. In this study,
the data from GWAS tests on MY are from Google Scholar (https://scholar.google.ca/,
accessed on 12 December 2019) and the National Center for Biotechnology Information
site (www.ncbi.nlm.nih.gov, accessed on 27 December 2019) searched (Figure 1). Using
different filters including articles in journals with high impact factors (greater than 0.9) and
timespan 2010–2019 and also had the required factors for analysis with METAL software,
16 out of 19 studies were used for meta-analysis. The required information such as marker
name and the number of their chromosomes, their position on the chromosome, their
p-values, and also the number of tested animals of each study was stored in a file. It should
be noted that the number of autosomal and sexual SNPs associated with milk yield that
were extracted from these 16 articles was 3950.
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2.2. Meta-Analysis

The meta-analysis was based on the weighted Z-scores model as implemented in
the METAL software [7]. It considers the p-value, direction of effect, and the number of
individuals included in each within-population GWAS study [8].

The GWAS meta-analysis showed the effective chromosomes (Figure 2). For the
Manhattan plot, a pre-determined genome-wide significance threshold of 2.5 × 10−6 was
calculated with formulae 1 and 2 (α = 0.01).

x =
α

NO. SNPs
(1)

− log x = threshold (2)
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Using the Ensembl site (http://ftp.ensembl.org/pub/release-103/gtf/bos_taurus/,
accessed on 20 August 2020), the calculated data were checked and the loci of the effective
markers and the genes were identified.

2.3. Downstream Analyses

The genes with variants that were significant in the meta-analysis and detected SNPs
located on them were used as input for the gene ontology (GO) test. The GO terms (the signifi-
cance level < 0.05) enrichment analysis with genes found within the top SNPs was performed.
Using GO Consortium (https://biit.cs.ut.ee/gprofiler/gost, accessed on 5 February 2021), to
investigate the biological processes of genes associated with MY investigated.

3. Results

The number of SNPs affecting the MY with a significance level lower than <2.5 × 10−6

were 1712 sites located on all chromosomes and mainly on chromosome 14. The GWAS
meta-analysis showed the effective chromosomes by the Manhattan plot (Figure 2). The
number of effective SNPs on chromosomes 14, 20, 6, and 5 were 950, 224, 87, and 65,
respectively (Table 1). The other 386 identified SNPs with significance levels lower than
2.5 × 10−6 were located on the other 26 sex and autosomal chromosomes. The results
showed that fifty-five percent of the effective SNPs related to milk yield were located on
chromosome 14.

http://ftp.ensembl.org/pub/release-103/gtf/bos_taurus/
https://biit.cs.ut.ee/gprofiler/gost
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Table 1. The length of each chromosome and number of effective SNPs on them.

CHR Number Length (bp) No. SNPs on CHR

1 158,337,067 15
2 137,060,424 10
3 121,430,405 41
4 120,829,699 6
5 121,191,424 65
6 119,458,736 87
7 112,638,659 12
8 113,384,836 9
9 105,708,250 35
10 104,305,016 6
11 107,310,763 23
12 91,163,125 9
13 84,2403,50 45
14 84,648,390 950
15 85,296,676 13
16 81,724,687 5
17 75,158,596 13
18 66,004,023 14
19 64,057,457 12
20 72,042,655 224
21 71,599,096 10
22 61,435,874 5
23 52,530,062 17
24 62,714,930 16
25 42,904,170 13
26 51,681,464 11
27 45,407,902 11
28 46,312,546 5
29 51,505,224 3
X 148,823,899 34

1712

Results for the top loci by p-value in the meta-analysis, with the most significant SNP
per locus, are presented in (Table 2). The significance level of 1712 identified SNPs in
the meta-analysis was compared and 5 SNPs of rs109421300, rs135549651, rs109146371,
rs109350371, and BovineHD4100003579 had the smallest p-values (Table 2).

Table 2. The detailed information of top 50 detected SNPs via meta-analysis in milk yield.

CHR Number SNP Name Position Overlapped Genes p-Value

14 rs109421300 1801116 DGAT1 2.93 × 10−771

14 rs135549651 1967325 ENSBTAG00000015040 1.12 × 10−710

14 rs109146371 1651311 1.82 × 10−653

14 rs109350371 2054457 1.90 × 10−637

5 BovineHD410000357 32784231 RPAP3 3.10 × 10−416

14 rs109558046 2909929 1.44 × 10−396

14 rs109752439 1489496 1.17 × 10−366

14 rs110199901 2524432 4.10 × 10−298

14 rs110706284 2398876 ZC3H3 6.76 × 10−295

14 rs41627764 2276443 5.13 × 10−289

14 rs41629750 2002873 6.61 × 10−284

14 rs137205809 1892559 MROH1 6.36 × 10−273

14 rs137787931 1880378 MROH1 1.44 × 10−272

14 rs133119726 1868636 MROH1 9.39 × 10−272
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Table 2. Cont.

CHR Number SNP Name Position Overlapped Genes p-Value

14 rs109742607 2217163 4.47 × 10−259

14 rs41256919 1923292 MAF1 3.28 × 10−257

14 rs110323635 2239085 MAPK15 9.29 × 10−257

14 rs109529219 2468020 RHPN1 5.37 × 10−254

14 rs110060785 2553525 6.91 × 10−249

14 rs17870736 1696470 VPS28 1.86 × 10−230

14 rs110892754 2117455 2.82 × 10−226

14 rs109086264 4414829 TRAPPC9 7.94 × 10−226

14 rs110174651 2754909 3.71 × 10−224

14 rs136891853 2764862 2.95 × 10−221

14 rs110749653 2138926 ENSBTAT00000065585 3.89 × 10−221

14 rs110411273 3640788 1.20 × 10−219

14 rs110626984 2674264 8.13 × 10−219

14 rs29024688 3297177 2.57 × 10−213

14 rs55617160 4468478 TRAPPC9 3.02 × 10−209

14 rs134974438 2150825 2.63 × 10−206

6 rs110527224 88592295 3.23 × 10−196

14 rs110143087 4767039 1.51 × 10−194

14 rs109530164 4456595 TRAPPC9 2.40 × 10−194

14 rs137757978 2164419 6.16 × 10−194

14 rs109225594 4848750 1.00 × 10−193

14 rs109545018 3006509 ADGRB1 6.81 × 10−192

14 rs109968515 1675278 CYHR1 5.37 × 10−185

14 rs110251237 4068825 1.70 × 10−184

14 rs110185345 4043743 PTK2 4.90 × 10−184

14 rs111018678 4336714 TRAPPC9 7.76 × 10−178

14 rs137309662 3371507 2.57 × 10−176

14 rs135270011 2084067 PLEC 2.82 × 10−175

14 rs108992746 2951045 ADGRB1 7.76 × 10−174

6 rs137147462 88887995 2.63 × 10−173

6 rs110694875 89139865 2.75 × 10−173

14 rs110017379 4364952 TRAPPC9 4.07 × 10−172

14 rs41602530 2194228 SCRIB 1.66 × 10−168

6 rs42766480 88891318 2.82 × 10−164

14 rs719209105 2741434 GML 8.32 × 10−160

14 rs110501942 5494654 FAM135B 1.74 × 10−159

The identified SNPs were distributed on 18 genes (regardless of duplicate genes) with
the names: DGAT1, ENSBTAG00000015040, RPAP3, ZC3H3, MROH1, MAF1, MAPK15,
RHPN1, VPS28, TRAPPC9, ENSBTAT00000065585, ADGRB1, CYHR1, PTK2, PLEC, SCRIB,
GML, and FAM135B.

The GO annotation based on biological processes (BP) showed 32 genes involved
in biological functions associated with MY. According to the GO term, these candidate
genes were found to be enriched in 15 biological processes. All of GO terms for MY-
related biological pathways were related to “wound healing”, “metaphase/anaphase
transition of meiosis I”, “meiotic chromosome separation”, “cell migration”, “cell motility
and locomotion” (Table 3).

The 18 candidate genes for MY resulting from GWAS were associated with the GO
terms of PTK2 (wound healing) also in (response to wounding), ENSBTAT00000065585
(wound healing, response to wounding, negative regulation of cellular component move-
ment, intermediate filament cytoskeleton organization, intermediate filament-based pro-
cess, negative regulation of locomotion, negative regulation of cell migration, negative
regulation of cell motility), SCRIB (wound healing, response to wounding, vesicle targeting,
neurotransmitter receptor transport postsynaptic membrane to endosome), MAPK15 (vesi-
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cle targeting, positive regulation of metaphase/anaphase transition of meiosis I, regulation
of metaphase/anaphase transition of meiosis I, positive regulation of meiotic chromosome
separation, positive regulation of metaphase/anaphase transition of meiotic cell cycle,
negative regulation of cellular component movement, negative regulation of locomotion,
negative regulation of cell migration, metaphase/anaphase transition of meiosis I, negative
regulation of cell motility), ADGRB1 (negative regulation of cellular component movement,
negative regulation of locomotion, negative regulation of cell migration, negative regulation
of cell motility), and PLEC (wound healing, response to wounding, intermediate filament
cytoskeleton organization, intermediate filament-based process).

Table 3. Significant biological process associated with genes affecting milk yield.

Term ID Term Name p-Value (Adj) Gene Name Number

GO:0042060 Wound healing 0.033647963 ENSBTAT00000065585, PTK2,
PLEC, SCRIB 4

GO:0009611 Response to wounding 0.039101239 ENSBTAT00000065585, PTK2,
PLEC, SCRIB 4

GO:0006903 Vesicle targeting 0.048695181 MAPK15, SCRIB 2

GO:1905188 Positive regulation of metaphase/anaphase
transition of meiosis I 0.048695181 MAPK15 1

GO:1905186 Regulation of metaphase/anaphase
transition of meiosis I 0.048695181 MAPK15 1

GO:1905134 Positive regulation of meiotic chromosome separation 0.048695181 MAPK15 1

GO:1902104 Positive regulation of metaphase/anaphase
transition of meiotic cell cycle 0.048695181 MAPK15 1

GO:0098968 Neurotransmitter receptor transport postsynaptic
membrane to endosome 0.048695181 SCRIB 1

GO:0051271 Negative regulation of cellular component movement 0.048695181 MAPK15, ENSBTAT00000065585,
ADGRB1 3

GO:0045104 Intermediate filament cytoskeleton organization 0.048695181 ENSBTAT00000065585, PLEC 2
GO:0045103 Intermediate filament-based process 0.048695181 ENSBTAT00000065585, PLEC 2

GO:0040013 Negative regulation of locomotion 0.048695181 MAPK15, ENSBTAT00000065585,
ADGRB1 3

GO:0030336 Negative regulation of cell migration 0.048695181 MAPK15, ENSBTAT00000065585,
ADGRB1 3

GO:1990949 Metaphase/anaphase transition of meiosis I 0.048695181 MAPK15 1

GO:2000146 Negative regulation of cell motility 0.048695181 MAPK15, ENSBTAT00000065585,
ADGRB1 3

Note: GO enrichment analysis was performed in candidate genes associated with milk yield (p-value < 2.5× 10−6).

4. Discussion

A genome-wide meta-analysis and enrichment analysis for milk yield was conducted
according to the results of 16 studies (on 353,698 cows and 3950 SNPs) from all over
the world (Table 4). We confirmed substantial contribution of different chromosomal
loci associated with MY in cows. Three of the most important SNPs, i.e., rs109421300,
rs135549651, and rs109146371, were located on chromosome 14.

Table 4. Identified SNPs on each continent. Data extracted from scientific literature published from
2010 to 2019.

Continent Studies N 1 No. SNPs 2 Refs.

Africa 1 250 20 [9]
Asia 5 13,188 74 [10–14]

Europe 5 22,384 1542 [15–19]
North America 4 299,951 2309 [20–23]

Australia 1 17,925 5 [24]

Global 16 353,698 3950
1 N, number of animals tested; 2 no. SNPs, number of detected SNPs on cows in each continent.

These observations support the notion that the suggestive loci identified in this study,
have an outstanding effect on MY. Moreover, fifty-five percent or 995 identified SNPs with a
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significance level lower than the specified level, were located on chromosome 14. Therefore,
it can be concluded that chromosome 14 is the most effective chromosome on MY. The
description of its different regions adds to the accuracy of this issue.

The study showed that regions 1,489,496 to 5,494,654 of chromosome 14 had the most
effective SNPs compared to other regions of this chromosome. This means that all of the
top 45 SNPs on chromosome 14 were located in this region. Only 24 SNPs in this region
were located on the genes. Given that, the density of markers in some regions, including
1,675,278 to 1,967,325 and 4,336,714 to 4,468,478, was higher than in other regions, so that
13 SNPs from 45 of them were located on these regions and the most influential SNP
(p-value: 2.93 × 10−771) in this region was on DGAT1 (Diacylglycerol O-Acyltransferase 1),
a protein-coding gene. DGAT1 is an enzyme that catalyzes the synthesis of triglycerides
from diglycerides and acyl-coenzyme A [25]. The DGAT1 K232A polymorphism was
previously shown to have a significant effect on bovine milk production characteristics
(milk yield, protein content, fat content, and fatty acid composition) [25]. The next SNP
(p-value: 1.12 × 10−710) was located on the LOC100141215 gene. Therefore, because these
regions have the highest density and the greatest effect, it can be said, the regions with the
most impact.

In our study, a gene-set enrichment analysis and a group of GO enriched for MY
were related to several traits. More accurate results showed the GO_BP: 0,042,060 (wound
healing), GO_BP: 0,009,611 (response to wounding), GO_BP: 0,006,903 (vesicle targeting),
GO_BP: 1,905,188 (positive regulation of metaphase/anaphase transition of meiosis I), GO_BP:
1,905,186 (regulation of metaphase/anaphase transition of meiosis I), GO_BP: 1,905,134 (pos-
itive regulation of meiotic chromosome separation), GO_BP: 1,902,104 (positive regulation
of metaphase/anaphase transition of meiotic cell cycle), GO_BP: 0,098,968 (neurotransmit-
ter receptor transport postsynaptic membrane to endosome), GO_BP: 0,051,271 (negative
regulation of cellular component movement), GO_BP: 0,045,104 (intermediate filament cy-
toskeleton organization), GO_BP: 0,045,103 (intermediate filament-based process), GO_BP:
0,040,013 (negative regulation of locomotion), GO_BP: 0,030,336 (negative regulation of
cell migration), GO_BP: 1,990,949 (metaphase/anaphase transition of meiosis I), GO_BP:
2,000,146 (negative regulation of cell motility).

In the continuation of this study, for a better understanding of the mechanisms of
MY and the genomic regions involved, it was necessary to analyze the candidate regions
obtained from the results of this study. After performing downstream analyses and finding
the relation between the identified genes and these terms, we investigated the relation
between some of them and MY using studies that have been previously conducted.

Wound healing is a localized process that involves inflammation, wound cell migration
and mitosis, neovascularization, and regeneration of the extracellular matrix [26]. Milk of
the cow, especially low-fat milk, is a rich source of calcium which can play a significant role
in the acceleration of wound healing and increment of healing quality [27]. Calcium has
an essential role in wound healing; therefore, healing is known as a calcium-dependent
process [27].

The metaphase to anaphase transition is a point of no return; the duplicated sister
chromatids segregate to the future daughter cells, and any mistake in this process may
be deleterious to progeny [28]. The metaphase to anaphase transition is controlled by a
ubiquitin-mediated degradation process [28].

Cell migration is a complex process requiring the coordination of numerous inter-
and intracellular events, such as cytoskeleton reorganization, matrix remodeling, cell–cell
adhesion modulation, and induction of chemoattractants [29]. Cell migration plays an
important role in a variety of normal physiological processes. These include embryogene-
sis, angiogenesis, wound healing, repairing of intestinal mucosal damage, and immune
defense [30]. However, in some pathological conditions, such as atherosclerosis or gastroin-
testinal ulcers, a large area of denudation is commonly found, and an immediate repair by
the reestablishment of the intact monolayer of cells is required [31].
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Cell motility is the capacity of cells to translocate onto a solid substratum. This
behavior is often a hallmark of fibroblastic cells. In epithelial cells, cell motility occurs
after the dissociation of a cell from its neighboring cell(s) and after the modification of its
position relative to other cells or a solid substrate [32]. Cell motility plays an integral role
in many physiologic and pathologic processes, notably organized wound contraction and
fibroblast and vascular endothelial cell migration during wound healing, metastatic tumor
cell migration, stem cell mobilization and homing, and tissue remodeling [33]. Sufficient
information is not available about other terms and their relation to MY and this requires
further investigation.

For a better understanding of the mechanisms of milk production, it is suggested
that more downstream analysis on the proposed region affecting MY including pathway
analysis is carried out. Furthermore, it may be needed to review the contribution of
the genes located in that region on the MY variance. For example, DGAT1, which is a
major gene for MY, had the highest significant level in this study. Banabazi et al. (2016)
have identified SNPs located on the transcribed regions and their 100 K proposed panel
performed 2% better than the 700 K panel [34]. It is suggested to check the SNPs located
on the candidate region among 1019 loci that they discovered on the transcriptome of
chromosome 14 and 24,842 SNPs located on a high-density commercial SNP array (700 K)
on the same chromosome. In addition, the comparison between Bos-taurus and Bos-indicus
cattle may highlight the importance of the candidate region.

5. Conclusions

The most effective SNPs and genes which affect milk yield are located on chromosome
14, and the regions between 1,489,496 to 5,494,654 have the most effective SNPs in terms of
the significance level. Emphasis on the use of these SNPs could justify a large part of the
genetic variance in MY. Downstream analyses in these regions also partially demonstrated
the mechanism of the effect of genes associated with MY in these regions. Additional
analysis can help better understand the mechanism of MY in these regions.
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