
����������
�������

Citation: Zeng, A.; Yang, S.; Zhu, H.;

Tigabu, M.; Su, Z.; Wang, G.; Guo, F.

Spatiotemporal Dynamics and

Climate Influence of Forest Fires in

Fujian Province, China. Forests 2022,

13, 423. https://doi.org/10.3390/

f13030423

Academic Editors: Alfonso

Fernández-Manso and

Carmen Quintano

Received: 11 February 2022

Accepted: 3 March 2022

Published: 8 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Spatiotemporal Dynamics and Climate Influence of Forest Fires
in Fujian Province, China
Aicong Zeng 1, Song Yang 1, He Zhu 1, Mulualem Tigabu 1,2 , Zhangwen Su 3 ,
Guangyu Wang 4 and Futao Guo 1,*

1 College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
fjzac13655014632@126.com (A.Z.); m18398789433@163.com (S.Y.); zhuhe19990116@126.com (H.Z.);
mulualem.tigabu@slu.se (M.T.)

2 Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences,
P.O. Box 190, SE-234 22 Lomma, Sweden

3 Zhangzhou Institute of Technology, Zhangzhou 363000, China; fujianszw@126.com
4 Asia Forest Research Centre, Faculty of Forestry, University of British Columbia,

Vancouver, BC V6T 1Z4, Canada; guangyu.wang@ubc.ca
* Correspondence: guofutao@126.com; Tel.: +86-591-8378-0261

Abstract: Climate determines the spatiotemporal distribution pattern of forest fires by affecting
vegetation and the extent of drought. Thus, analyzing the dynamic change of the forest fire season
and its response to climate change will play an important role in targeted adjustments of forest
fire management policies and practices. In this study, we studied the spatiotemporal variations in
forest fire occurrence in Fujian Province, China using the Mann–Kendall trend test and correlation
analysis to analyze Moderate Resolution Imaging Spectroradiometer (MODIS) data from 2001 to 2016
and meteorological data. The results show that forest fire occurrence rose first and then declined
over the years, but the proportion of forest fires during the fire prevention period decreased. The
forest fires increased significantly in spring and summer, exceeding the forest fires occurring in the
fire prevention period in 2010. The spatial distribution of forest fires decreased from northwest to
southeast coastal areas, among which the number of forest fires in the northwest mountainous areas
was large in autumn and winter. The fire risk weather index was strongly and positively correlated
with forest fire occurrence across various sites in the province. The findings accentuate the need for
properly adjusting the fire prevention period and resource allocation, strengthening the monitoring
and early warning of high fire risk weather, and publicizing wildfire safety in spring and summer. As
the forest fire occurrence frequency is high in the western and northwest mountainous areas, more
observation towers and forest fire monitoring facilities should be installed.

Keywords: forest fire trends; forest fire occurrence; forest fire season; FWI; spatial and temporal
fire distribution

1. Introduction

Forest fires play an important role in terrestrial carbon circulation and are an integral
part of the global ecosystem [1]. They are not only a natural disturbance prevalent in
forests, but also a disturbance caused by humans, especially in agricultural–forest sys-
tems that consider fire a production tool [2,3]. Forest fires pose significant threats to
ecosystems, communities, and human life [4] as strongly evidenced by successive extreme
forest fires in the United States and Australia [5,6]. In the 21st century, the global fre-
quency and harm of forest fire activity have attracted wide attention from the international
community [7–9]. Thus, the application of Moderate Resolution Imaging Spectroradiometer
(MODIS) data [10] or high-precision image data [11] for forest fires has been gradually
enhanced to improve forest fire monitoring, modeling, and prediction [12,13] as well as to
improve forest fire prevention and control capacity.
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Geophysical parameters and dynamics of atmosphere and land data acquired by
satellites are useful in monitoring fire risk hazards and disasters [14]. Near real-time (NRT)
satellite data have been used to monitor and forecast fire risk. An NRT disturbance detection
method named the Jumps Upon Spectrum and Trend (JUST) and a remote sensing-based
model for forecasting forest fire danger conditions (FFFDC) have been proposed [15,16].
Both methods are part of the underlying enhanced algorithm of MODIS series products.
Further analysis showed that JUST is robust to fire detection of both simulated and real-
world datasets [17]. Ahmed et al. [14] proposed a method coupled with FFFDC to directly
generate a fire risk map. Hyunjin et al. [18] used a statistical model coupled with a future
climate model to assess climate change impacts on wildfire risk. In general, many studies
have employed a MODIS-derived variable or detective method for deriving a meaningful
research conclusion.

With changes in forest fire frequency, the impact of climate change on sporadic and
long-term trends has received increasing attention in recent years [19–21]. The analysis
of trends in hydro-meteorological data is a significant problem in environmental science.
JUST provides a seasonal trend fitting tool based on least-squares spectral analysis (LSSA),
which can decompose real-world time series into three components—the trend, seasonal,
and remainder components [15]. However, the NRT method requires that the time series
have at least a two-year stable history period (SHP); that is, for an enhanced vegetation
index (EVI) time series, the time span is at least 2 years [17]. If the research purpose focuses
on forest fire dynamics, even in coarse spatiotemporal resolution scenarios, the SHP of
a fire point time series will be very long. For instance, Abatzoglou and Williams used
a 50-y low-pass filter to capture anthropogenic signals [22]. As one of the widely used
non-parametric trend tests, the Mann–Kendall (MK) trend test has been well used in many
fields [23,24]. Jain et al. used the MK trend test to examine changes in the length of fire
seasons and extreme fire weather indices (FWIs) in North America [25].

Fuel flammability and ignition are necessary factors of forest fire activity [22,26] that
are limited in space and time [27,28]. Human activities can inhibit or promote forest fire oc-
currence by affecting fire sources, fire extinguishing, forestry policies, and so forth [7,29–31].
This leads to a more complex forest fire occurrence mechanism and difficulty determining
the influence of pure biophysical drivers [32,33]. Climate and weather mainly affect fuel
types and their combustion, and compared to other factors, atmospheric processes are the
macro driver of the temporal changes of forest fires [34]. It has been suggested that the
current increase in forest fires and changes in forest fire seasons and regions are affected by
climate change [35]. However, such analysis is limited by geographical regions, and how
climate change affects forest fire variation needs further study.

Forest fire season is a summary of the long-term forest fire occurrence, and it is a
period of the year when forest fires easily occur and spread. It is of great significance to
regional forest fire management [36,37]. Climate change influences the forest fire season [38],
leading to the uncoordinated distribution of the original fire prevention resources and the
spatial and temporal distribution of forest fires, and promoting the growth of forest fire
hazards [39]. To gain a better understanding of the impact of climate on forest fire frequency,
the strength and direction of its relationship with climate change, and the temporal trend
of seasonal fire, this study used MODIS satellite forest fire data and meteorological data
from 2001–2016. The study analyzed the distribution and change trend of forest fires for
the whole year, the fire prevention period, different seasons, and various sites in Fujian
Province, southern China. The rest of the paper is organized as follows. In Section 2, the
study region, datasets, and methodology are described. Section 3 deals with the major
findings, and Section 4 discusses the results and the limitations. Finally, Section 5 presents
concluding remarks.



Forests 2022, 13, 423 3 of 13

2. Materials and Methods
2.1. The Study Area

The study was conducted at nine sites in Fujian Province, which is located on the
southeast coast of China (23◦33′–28◦20′ N, 115◦50′–120◦40′ E; Figure 1), with a forest area of
9267 ha and a coverage rate of 66.80%, ranking first in China. The region has a subtropical
monsoon climate, with annual temperatures of 17~21 ◦C and an average annual rainfall of
1400~2000 mm. The province is mainly mountainous, where the northeast mountainous
areas are dominated by forests and farmlands, and the coastal areas have a high population
density. The main plantation tree species are horsetail pine (Pinus massoniana Lamb), and
Chinese fir (Cunninghamialanceolata (Lamb.)) accounts for about 75.25% of the total forest
area. These species are coniferous species with relatively high lateral branches, and surface
fires occur in mature forests [40]. From 2001 to 2016, there were 6167 forest fires in the region
alone, burning an area of 117 300 ha. The legal fire prevention period is from 15 September
to 30 April of the next year (http://www.slfh.gov.cn/Item/21398.aspx/, last accessed date:
28 November 2020).

Figure 1. Study area showing the forest cover, the fire points, and climate stations.

2.2. Datasets

Forest fire data were obtained from the MODIS with a 1 km resolution of daily forest
fire products, MOD14A1 [41]. The Terra and Aqua satellites were used, capable of 12 h
flight cycles and enabling effective fire observations but unable to distinguish forest fires
from other fire types, as well as forest fire hotspots recorded multiple times in a fire. Using
this data, the Collection 6 algorithm can effectively distinguish cloud-covered areas, while
forest fires cannot be assessed in thick cloud-covered areas. Therefore, in this study, we
assumed that there were no fires in cloud-covered areas. This method has almost no effect
on regional-scale forest fire dynamic analysis and was verified with high-precision ASTER
satellite images. The overall forest fire error rate is about 1.2% [42]. In this study, the satellite
hotspots in Fujian Province from 2001 to 2016 were selected to eliminate the hotspots of
1 km, using the map of land-use types of 1 km and less than 1 km within 24 h, and the
earliest forest hotspots were selected as representative [43]. The forest fire season concept
of reference [44], combined with China’s forest fire policy, further defined the forest fire
season as the minimum continuous period containing more than 90% of the number of
forest fires.

http://www.slfh.gov.cn/Item/21398.aspx/
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We recorded the forest fire data according to the occurrence dates from 1 January to 31
December across all years, and according to seasons—spring (March to May), summer (June
to August), autumn (September to November), winter (December to February), and the fire
prevention period from 15 September to 30 April. Meteorological data came from the China
Meteorological Data Sharing Network (https://data.cma.cn/data/detail/dataCode/A.00
12.0001.html, last accessed date: 28 October 2021), including 21 national meteorological
stations in Fujian Province. The daily meteorological data include the surface temperature
(◦C), wind speed (m/s), relative humidity (%), and precipitation (mm).

The FWI is a composite index of the Canadian Forest Fire Danger Rating System (CFF-
DRS) [45]. The FWI uses daily observations of temperature, relative humidity, wind speed,
and 24-h accumulated precipitation to estimate the fuel moisture content and associated fire
behavior potential. The corresponding meteorological data of each meteorological station
from 2001 to 2016 were extracted to calculate the FWI, and the FWI of each site within the
province were calculated according to the year, fire prevention period, and fire seasons.

2.3. Methods

As the Mann–Kendall trend test does not require samples to follow a certain distribu-
tion, is not disturbed by a few outliers, has high quantification, and performs well for the
analysis of temporal order variables, it was used to analyze the forest fire data time series
of 16 samples to construct an order column Sk, as follows:

sk =
k

∑
i=1

ri, k = 2, 3, . . . , n, where ri = f(x) =

{
+1, xi > xj
+0, xi ≤ xj

, j = 1, 2, . . . , i

It can be seen that the order column Sk is the cumulative number of hot spots at time i,
which is greater than the number of hot spots at time j. The statistics were defined under
the assumption of random independence of the time series, as follows:

UFk ≡
|sk| − E(sk)√

var(sk)
k = 1, 2, . . . , n

where UF1 = 0, E(sk) and var(sk) are the mean and variance of sk.
When X1, X2, . . . , Xn are independent of each other and have the same continuous

distribution, they can be calculated by the following equation:{
E(sk) = k(k−1)

4
var(sk) = k(k−1)(2k+5)

72

, k = 2, 3, . . . , n

UFk has a standard normal distribution, according to the calculated statistical sequence
of forest fire hotspot data time series X1, X2, . . . , Xn, and then in reverse order by time
series Xn, Xn−1, . . . , X1; UBk = −UFk (k = n, n−1, . . . ,1), UB1 = 0. The given significance of
p < 0.05, the critical value of u0.05 = ±1.96, the sequence curves of UFk and UBk, and the
two straight lines p = 0.05 (u0.05 = ±1.96) were plotted on the same graph.

If the UFk line changes within the critical line p = 0.05 (u0.05 = ±1.96), the change is not
obvious; a value of UBk greater than 0 indicates that the frequency of forest fires is rising,
and when it exceeds the critical line, the rise or downward trend is significant. If the UFk
curve and UBk curve have an intersection between the critical line, the year corresponding
to the intersection is the time of the mutation. If multiple intersections appear outside the
critical line, we applied the sliding t-test to further determine the existence of mutation
based on the results of the two test methods.

The sliding t-test has no strict requirements on the data, which can be used to de-
termine whether two samples were mutated, mainly by comparing whether there is a
significant difference between the average of the two samples [46]. If the difference between
the means of the two-subsequence forest fire hotspots exceeds the specified significance

https://data.cma.cn/data/detail/dataCode/A.0012.0001.html
https://data.cma.cn/data/detail/dataCode/A.0012.0001.html
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level, the mutation between the two subsequences is considered, and the reference point
indicates the existence of mutation.

For the time series X with a sample size of 16, a certain year was artificially set as the
reference point. The two subsequences before and after the reference points are X1 and X2,
respectively, whose sample sizes are n1 and n2, respectively. The average values of the two
sequences are X1 and X2, respectively and the variances are S2

1 and S2
2. The sliding t-test

was computed using the following formula:

t =
X1 − X2

S
√

1
n1

+ 1
n2

; where S =

√
n1S2

1 + n2S2
2

n1 + n2 − 2
, degree of freedom, v = n1 + n2 − 2

The significance level was set at p ≤ 0.05, and the critical value of t 0.05 was obtained
from the t-distribution table. If the calculated t is greater than t 0.05, the reference point
year is considered mutated; otherwise, the two subsequences before and after the base
point are not mutated.

The correlations between the FWIs and forest fires in each region of the study sites
were analyzed by non-parametric correlation analysis. In order to prevent the contingency
of a single test, Spearman’s and Kendall rank correlation tests were used in this study.

3. Results
3.1. Temporal Dynamics of Forest Fire Characteristics

From 2001 to 2016, there were 27,839 forest fires in Fujian Province, of which 24,542
forest fires occurred in the fire prevention period, all showing a rising trend first and then
decreasing. The trend of forest fires from 2001 to 2010 was the same as the annual change in
forest fires, but the forest fire mutation in 2011 (Figures 2 and A1) changed to a downward
trend exceeding the annual forest fires. The proportion of forest fires increased from 9.1%
before 2011 to 21.16%, and the annual forest fires had a downward trend in 2013 (Figure 2).

Figure 2. Forest fire distribution and change trend in the whole year and fire prevention period.

Seasonally, the numbers of forest fires were 6056, 2104, 5487, and 14,192 in the spring,
summer, autumn, and winter, respectively, from 2001 to 2016, with a rising trend in the
spring and summer, and a decreasing trend in the autumn and winter (Figure 3). According
to the numbers and trends of forest fires, the main fire seasons could be divided into autumn
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and winter from 2001–2008 and spring and winter from 2009–2016 (Figure 3). Spring and
summer fires mutated in 2002 and 2007, respectively, and increased significantly in 2004,
2008, 2009, and 2011 in the spring, maintaining significantly high levels in 2008–2016.
Autumn forest fires had a downward trend in 2008 and mutated in 2011 with winter forest
fires (Appendix A Figure A2), which had a significant downward trend (Figure 3).

Figure 3. Distribution and variation trend of forest fires in four seasons.

3.2. Spatial Dynamic of Forest Fire Characteristics

The spatial distribution of forest fires in Fujian Province decreased from the northeast
to the southwest, mainly in Sanming City and Nanping City, accounting for about 54.81%
of the provincial forest fires, followed by Ningde City, Longyan City, and Zhangzhou City,
while other cities had relatively few forest fire events. The distribution of forest fires in
the fire prevention period was consistent with that in the whole year (Figure 4a). There
was an increasing trend of forest fires in Ningde City and Sanming City, while the other
cities had a decreasing trend from an increasing trend in 2011 (Figure 4b). Most cities had
significantly high forest fire events in 2004, while Longyan City and Sanming City had
significantly higher forest fire events in 2008 and 2009 (Figure 4b).

Forest fires in Longyan City, Sanming City, and Nanping City in western Fujian
Province mainly occurred in the autumn and winter and were significantly more frequent
than in the spring and summer, and maintained a growing trend after 2010 (Figure 5a).
Forest fires in other eastern coastal cities mainly occurred in the spring and winter, rising in
the spring and winter, with relatively few in summer and most significantly decreasing in
autumn (Figure 5b).

3.3. Dynamic Characteristics of Forest Fire Season

The 2001–2016 forest fire season in Fujian Province could be divided into two stages;
the first stage was the 2001–2008 forest fire season, which fell within the legal fire season
limit, and the overflow fire period was 2009–2016 (Figure 6). During the period from 2001
to 2008, the fire season was within the legal limits of fire season. The forest fire season
started to extend in spring 2009 and autumn 2010, highly exceeding the spring fire season
period boundary in 2012 and the autumn fire period boundary in 2013. The forest fire
season in spring increased by about 3.5 days per year to about 40 to 50 days. There was no
obvious trend in the summer season, which was about 30 to 40 days.
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3.4. Correlation between Forest Fire and Fire Risk Weather Index

Kendall and Spearman’s rank correlation analyses gave similar results, although
the correlation coefficients were relatively lower in the former than the latter (Table 1).
Significant correlations were observed between the FWI and forest fires in the spring,
autumn, winter, the fire prevention period, and the whole year in Fujian, among which
the correlations with autumn forest fires were the strongest, and the correlations with the
fire prevention period were relatively weak. There was no significant correlation between
summer forest fires and the climate. Region-wise, the correlation between spring forest
fires and the FWI in southwest regions, such as Zhangzhou City, Xiamen City, Quanzhou
City, and Longyan City, was weak, while the correlations between spring and winter forest
fires and the FWI in Northeast regions, such as Ningde City, Sanming City, and Nanping
City, were strong.

Figure 4. Number of forest fires during fire prevention period and year (a) and change trend (b).

Figure 5. Number of forest fires in four seasons (a) and change trend (b).
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Figure 6. Dynamic change of forest fire season.

Table 1. Correlations between forest fires and fire weather index (FWI) in different regions and scales
in Fujian Province.

Test
Method Regions Spring Summer Autumn Winter Fire Prevention

Period Entire Year

Kendall

Fujian Province 0.52 ** 0.12 0.57 ** 0.58 ** 0.48 ** 0.48 **
Ningde City 0.60 ** 0.25 0.55 ** 0.57 ** 0.45 * 0.50 **

Longyan City 0.43 * 0.15 0.50 ** 0.53 ** 0.43 * 0.50 **
Zhangzhou City 0.37 * 0.07 0.43 * 0.45 * 0.45 * 0.53 **

Sanming City 0.62 ** 0.07 0.67 ** 0.67 ** 0.47 * 0.53 **
Xiamen City 0.23 0.18 0.40 * 0.47 * 0.32 0.40 *

Quanzhou City 0.35 0.30 0.62 ** 0.50 ** 0.50 ** 0.47 *
Putian City 0.58 ** 0.02 0.53 ** 0.50 ** 0.45 * 0.50 **
Fuzhou City 0.55 ** 0.05 0.53 ** 0.60 ** 0.47 * 0.55 **

Nanping City 0.52 ** 0.12 0.52 ** 0.58 ** 0.33 0.42 *

Spearman

Fujian Province 0.66 ** 0.15 0.74 ** 0.71 ** 0.69 ** 0.68 **
Ningde City 0.80 ** 0.33 0.72 ** 0.71 ** 0.62 ** 0.69 **

Longyan City 0.53 * 0.21 0.64 ** 0.68 ** 0.59 * 0.69 **
Zhangzhou City 0.51 * 0.15 0.59 * 0.60 * 0.62 * 0.71 **

Sanming City 0.74 ** 0.13 0.82 ** 0.85 ** 0.64 ** 0.73 **
Xiamen City 0.35 0.31 0.56 * 0.63 ** 0.52 * 0.58 *

Quanzhou City 0.46 0.44 0.82 ** 0.62 ** 0.68 ** 0.62 *
Putian City 0.71 ** 0.01 0.72 ** 0.67 ** 0.62 * 0.68 **
Fuzhou City 0.70 ** 0.05 0.72 ** 0.69 ** 0.64 ** 0.75 **

Nanping City 0.74 ** 0.22 0.68 ** 0.73 ** 0.44 0.59 *

Note: * and ** indicate that FWI are significantly correlated with forest fire at p < 0.05 and p < 0.01 level, respectively.

4. Discussion

Most forest fire studies show that human activities [22], vegetation [47] and
climate [48,49] are the main factors determining the temporal and spatial pattern of forest
fires. Human activities, vegetation cover, and climate are different in different time scales, as
are their impacts on forest fires and their temporal trends. The forest fires in Fujian Province
increased first and then decreased in the whole year and fire prevention period. This is
mainly attributed to an increase in rainfall in Fujian Province over the study period [50],
which resulted in the increase in the moisture content of combustibles. In addition, the
strict implementation of the forest fire policy during the fire prevention period resulted in
the reduction of fire sources, which restrained the occurrence of forest fires [10]. Forest fires
mainly occur in the spring, autumn, and winter in Fujian Province. In spring, forest fires
had an overall upward trend, but after 2011, affected by increasing precipitation [51], forest
fires had a decreasing trend. Due to more frequent human activities, such as farming, pic-
nics, and ancestor worship in the spring [40], the impact of climate was small, but the trend
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remained at a high level, which is consistent with the findings of Xiong et al. in Southwest
China [31]. The overall trend of summer forest fires is on the rise, which may be due to the
fact that summer forest fires mostly occur with extreme weather [1]. With the increase in
extreme weather frequency due to climate change [51], summer forest fires reach and main-
tain a significant increase. In autumn and winter, due to the increase in precipitation [50]
and the policy of the fire prevention period (http://www.slfh.gov.cn/Item/21398.aspx,
last accessed date: 2 November 2020), the forest fires changed into a downward trend. The
trend change in this study is basically consistent with that of a previous study in China [52],
except for a certain difference in spring, which may be caused by the obvious decline of
agricultural fires in spring and the elimination of farmland fires in the data of this study.

Forest fire events decreased from the northwest to the southeast and were mainly
distributed in Sanming City and Nanping City and closely related to human factors, climate
factors, and vegetation [53]. Most of the other cities are coastal cities with high precipitation,
large population densities, developed industry, and low forest coverage; thus, combustibles
are not as continuous as the vegetation of remote forests. More concentrated firefighting
and preventive measures [54,55] are implemented in these regions. In addition, the cities
of Sanming and Longyan are relatively less economically developed, mainly relying on
agricultural production [40], and most fields are interactively distributed among mountains
and forests, resulting in more human fire sources in autumn and winter [56] and a high
frequency of forest fires. Forest fires in coastal cities mainly occur in spring and winter,
which are jointly determined by frequent human activities in spring and a drier climate
in winter [57]. Zhangzhou City, Longyan City, Sanming City, and Nanping City had the
most significant forest fire changes in spring, summer, and autumn. Compared to other
cities, the agricultural and forest economy is more developed and the land is vast and
sparsely populated [58]. The large accumulation of combustibles and climate change
during the fire prevention period promote a significant increase in forest fires in spring
and summer. Autumn forest fires are just the opposite. The main season of forest fire
occurrence changed from autumn and winter to spring and winter, and continued to extend
and deviate into spring and summer. As a whole, forest fires are affected by biophysical
and human interference, which is consistent with previous studies [43,57], although these
studies did not carry out detailed analyses according to seasons.

There were significant correlations between forest fires and the FWI in Fujian Province
in the whole year, the fire prevention period, and in different seasons, indicating that
climate has a significant impact on forest fires in Fujian Province [57]. However, there
was no significant correlation between summer forest fires and the FWI, which might be
because the FWI is a quarterly average. Summer forest fires occur in extreme weather or
are influenced by human factors [22], resulting in a weak correlation between the two, but
the frequent occurrence of extreme weather is closely related to climate change [9,38].

In this study, there were some limitations in using MODIS data and the MK trend
test for analysis. Overall, the latest MODIS data have a global commission error of about
1.2%, and the observed variability in the probability of detection was strongly driven by
regional differences in fire size. We also did not consider the intensity and severity of forest
fires; that is, the burned area of forest fires. At the same time, the occurrence of forest
fires in the area masked by clouds during the study period was not considered in this
study. The uncertainty of all these data sources may have an effect on the analysis results.
Furthermore, the MK trend test cannot effectively distinguish the periodic component and
trend component of forest fire sequences, and the short sequence length may have a certain
impact on the determination of trend change.

http://www.slfh.gov.cn/Item/21398.aspx
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5. Conclusions

Against the background of global climate change, forest fire prevention and control
have become increasingly important. Thus, accurate information about temporal and
spatial variations in forest fire occurrence is imperative. In this regard, our study revealed
both temporal and spatial variations in forest fire occurrence and the extension of the fire
season in Fujian Province, which is related to the fire risk weather index. This, in turn,
accentuates the need for appropriately adjusting the fire prevention period, strengthening
the monitoring and early warning of high fire risk weather, publicizing wildfire safety, and
allocating fire prevention resources in spring and summer. At the same time, more obser-
vation towers and other forest fire monitoring facilities should be built in the northwest
mountainous areas, where forest fires occur frequently and fighting is difficult. By doing
so, it would be possible to improve forest fire prevention and control efficiency and reduce
the devastating impact of forest fires. Our results provide valuable insights to similar areas,
where fire occurrence shows spatiotemporal variability.
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Appendix A

Figure A1. Mutation test for forest fire occurrence of fire season.
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Figure A2. Mutation test for forest fire occurrence of the winter.
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