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Abstract 
Trace element concentrations in agricultural soil are important for crop production. 
Certain trace elements, e.g. copper (Cu) and zinc (Zn), are essential for crops to 
complete their life cycle. Other trace elements, e.g. cadmium (Cd), can be harmful 
to crops or the end-consumer. Hence, it is important to have maps of soil 
concentrations of trace elements or methods for determining concentrations in soil 
samples. This thesis investigated the possibility of predicting trace element 
concentrations (Zn, Cu, Cd) in soil samples using portable X-ray fluorescence 
(PXRF) measurements. It also examined usefulness of digital soil mapping (DSM) 
to create maps of Cu and Cd concentrations in agricultural topsoil in Sweden. 

Portable X-ray fluorescence models were validated at national and farm level. 
Predicted Zn concentrations were found to be comparable to those obtained in 
conventional laboratory analysis, while predicted Cd and Cu concentrations were 
less accurate. The most accurate PXRF models were created using non-linear 
machine learning algorithms, e.g. random forest. 

Digital soil mapping of Cd concentrations in Skåne County, combined with data 
from grain sampling, revealed that low Cd concentrations in winter wheat grain were 
associated with predicted low concentrations in soil. The map could thus be used to 
identify arable soils suitable for producing winter wheat for products with strict 
quality criteria, e.g. baby food. Digital soil mapping of Cu concentrations at national 
level revealed that 47% of arable soils are highly likely not at risk of Cu deficiency. 
Covariate importance analysis indicated importance of airborne gamma radiation 
measurement data in DSM of Cu and Cd concentrations. 
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Sammanfattning 
Vissa spårelement är nödvändiga för att en gröda ska kunna växa och fungera 
normalt, t.ex. koppar (Cu) och zink (Zn). Andra kan vara skadliga för grödan eller 
konsumenten, t.ex. kadmium (Cd). Därför är det viktigt att ha kartor över dessa 
spårelements halter i åkermark samt metoder för att bestämma halter i jordprover. 
Denna avhandling utforskade om mätningar med portabel röntgenflourescens 
(PXRF)-teknik kan användas för att prediktera halter av Zn, Cu och Cd i jordprover. 
Vidare genomfördes digital markkartering (digital soil mapping; DSM), för att skapa 
kartor över halter av Cu och Cd i matjord. 

Portabel röntgenfluorescens-modeller validerades på nationell nivå och 
gårdsnivå. Prediktioner av Zn-halter var jämförbara med konventionell 
laboratorieanalys, medan prediktioner av Cd- och Cu-halter var mindre träffsäkra. 
Resultat visade även att PXRF-modeller baserade på icke-linjära 
maskininlärningsalgoritmer, t.ex. random forest presterade bäst. 

Digital markkartering av Cd-halter i Skåne län tillsammans med data från 
grödprover visade att låga halter av Cd i höstvetekärna var associerade med låga 
predikterade halter av Cd i jord. Kartan kan därmed användas för att hitta områden 
som är särskilt lämpliga för produktion av höstvete med särskilda kvalitetskrav för 
t.ex. barnmat. Digital markkartering av Cu-halter på nationell nivå visade att 
åtminstone 47% av svensk åkermark sannolikt inte har risk för kopparbrist. 
Gammastrålningsdata från flygmätningar var mycket viktiga hjälpvariabler vid 
digital markkartering av Cu och Cd-halter. 

Nyckelord: Växtproduktion, maskininlärning, spårelement, höstvete, PXRF. 

Författarens adress: Karl Adler, Sveriges lantbruksuniversitet, inst. mark och miljö, 
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Soil, a vital resource, is a product of geology, time, topography/relief, 
climate, geographical location and biology (Jenny, 1941). Soil as a 
commodity is finite and its composition varies in geographical space. This 
variability provides different conditions for agricultural production. 
Acknowledging, managing and adapting to this variability is important in 
modern agriculture in order to maximise yields and minimise environmental 
impacts. One promising management framework is precision agriculture, 
which is, according to the International Society of Precision Agriculture 
(ISPA), defined as: 

 
Precision Agriculture is a management strategy that gathers, processes and 
analyzes temporal, spatial and individual data and combines it with other 
information to support management decisions according to estimated 
variability for improved resource use efficiency, productivity, quality, 
profitability and sustainability of agricultural production. (ISPA, 2020). 

 
In order to implement this management strategy, spatially explicit 

information about the soil is obviously needed. Conventionally, this 
information is obtained by soil sampling and subsequent chemical analyses 
performed in the laboratory to provide data on e.g. soil texture or organic 
matter content (Viscarra Rossel et al., 2011). However, this conventional 
method can be time-consuming and expensive, making it difficult to apply 
in extensive mapping of agricultural fields (Viscarra Rossel & McBratney, 
1998; Gholizadeh & Kopačová, 2019). When the intention is to perform soil 
mapping, it is preferable to utilise data from sources that are spatially 
extensive or less time-consuming and expensive than classical laboratory 
measurements. 

1. Introduction 
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Remote sensing and proximal sensing are becoming increasingly popular 
complements to conventional laboratory analysis (Mulder et al., 2011). 
Remote sensing involves measurements by various sensors mounted on e.g. 
satellites, airplanes or unmanned aerial vehicles. Proximal sensing involves 
measuring in close proximity (<2 m) to the object in question, using either a 
hand-held device or on-the-go using a field vehicle (Adamchuk & Viscarra 
Rossel, 2010). Both methods make it possible to gather spatially extensive 
information about soil, albeit at different geographical levels. 

Hand-held portable X-ray fluorescence (PXRF) devices are gaining 
increasing popularity as a proximal soil sensing method because they 
measure fast and non-destructively and are cheap to use (Lemière, 2018). 
These devices have been proven to be flexible, as they can be used to 
measure soil in situ or in a more controlled laboratory setting ex situ (Hu et 
al., 2014; Weindorf et al., 2014). 

The concentration of a trace element is one of the soil properties of 
interest in crop production. Certain trace elements, such as boron (B), zinc 
(Zn), manganese (Mn), copper (Cu) and molybdenum (Mo), are essential for 
plant growth and functioning (Fageria et al., 2002). Other trace elements, 
such as cadmium (Cd) and mercury (Hg), have no known positive effects 
and can be harmful for the plant or the consumer of the plant (Smolders & 
Mertens, 2013; Steinnes, 2013). Hence, knowledge about trace element 
concentrations in soil can be important in terms of sustainable crop 
production. 

Future crop production using precision agriculture will most likely 
require decision support in map format. Digital soil mapping (DSM), or 
predictive soil mapping, is a method that combines measurements on soil 
samples with environmental covariates gathered from proximal or remote 
sensing to make maps (McBratney et al., 2003; Scull et al., 2003). In the past, 
DSM was conducted by interpolating the space between soil samples using 
geostatistical methods, e.g. various kriging methods (Burgess & Webster, 
1980; Minasny & McBratney, 2016). Nowadays, DSM together with 
machine learning has become a more frequently used method, due to 
advances in machine learning algorithms and in the processing power of 
computers and greater availability of data (Arrouays et al., 2020a; Piikki et 
al., 2021; Wadoux et al., 2021a). 
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2.1 Overall aim 
The overall aim of this thesis was (i) to use and assess the applicability of 
PXRF measurements in predicting Zn, Cu and Cd concentrations in 
agricultural soil and (ii) to create, evaluate and interpret Cu and Cd maps at 
different geographical levels. 

2.2 Specific objectives 
Specific objectives were: 

1. To evaluate if and how PXRF measurements can be used to 
predict trace element concentrations (Papers I-III). 

2. To use PXRF measurements to predict trace element 
concentrations in soil samples not analysed by wet chemistry in 
the laboratory, to create a large DSM calibration dataset (Papers 
II & III). 

3. To create and evaluate DSM models of trace element 
concentrations in Swedish agricultural soil at national, regional 
and farm level, using various environmental covariates (Papers II 
& III). 

4. To identify environmental covariates that are important for DSM 
of trace elements (Papers II & III). 

5. To assess and discuss the applicability of DSM models and maps 
of trace element concentrations as decision support in crop 
production (Papers II & III). 

2. Aim and objectives 
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3.1 Trace elements in Swedish agriculture 

3.1.1 Trace elements and agriculture 
Trace elements are found in low concentrations in nature, e.g. in soil. Trace 
elements can be essential or non-essential to crops and humans, and can 
therefore be beneficial, non-essential or even harmful for crop development 
and for the end-consumer of the crop (Oorts, 2013; Smolders & Mertens, 
2013). Some essential trace elements in crop nutrition, e.g. Cu and Zn, are 
referred to as micronutrients. Non-essential trace elements in crop nutrition, 
e.g. Cd, are potentially toxic to both crops and humans (Smolders & Mertens, 
2013). Further, if the concentrations present in soil are sufficiently high, trace 
elements regarded as essential can also be toxic to plants, leading to 
malformations in roots, stem and leaves (Broadley et al., 2007; Alloway, 
2013; Adrees et al., 2015). For example, soil Cu concentrations above 100 
mg kg-1 can be regarded as potentially toxic to crops (Ballabio et al., 2018). 

Mapping and assessing every trace element in agricultural soil that may 
be important in crop nutrition would be a massive task. Countries often have 
a set of trace elements that need special attention in crop production, 
depending on crops grown, management practices and environmental 
factors. For example, in Mediterranean countries Cu can occur in toxic 
concentrations, mainly due to fungicide application in vineyards (Ballabio et 
al., 2018), while countries south of the Sahel can have Zn deficiency due to 
highly weathered soils (Alloway, 2009). Hence, the trace elements deemed 
important or not are site-dependent.  

In Sweden, critical trace elements for crop production are outlined in the 
annual report “Recommendations for fertilizing and liming” issued by the 

3. Background 
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Swedish Board of Agriculture. The trace elements covered are B, Cu, Mn 
and Zn, which at some sites in Sweden occur in sufficiently low soil 
concentrations to cause deficiency in crops. 

The plant-available concentration of a particular trace element is the most 
important parameter, but information on the total or pseudo-total 
concentration in soil is commonly more available and it is the next best 
parameter. In Sweden, soil is regarded as being at risk of Cu deficiency if the 
pseudo-total Cu concentration is below 7 mg kg-1 (Swedish Board of 
Agriculture, 2020). Pseudo-total concentrations refer to near-total 
concentrations.  

While this risk limit has been established for Cu, there is no Swedish risk 
limit for Zn. In addition, the fact that some essential trace elements can be 
toxic at high concentrations means that there are other limits to consider. For 
example, sewage sludge may not be applied to agricultural soil in Sweden if 
the topsoil has pseudo-total concentrations above 40 mg Cu kg-1, 100-150 
mg Zn kg-1 and 0.4 mg Cd kg-1 (Swedish Environmental Protection Agency, 
1998). Risk limits also change over time, based on research, observations or 
discussions. For example, the risk limit for Cu was set at 6-8 mg kg-1 for a 
long time, but then changed to 6-7 mg kg-1 in the 2022 rendition of the annual 
report (Swedish Board of Agriculture, 2021). 

Limits for Cd concentrations mainly relate to the concentrations in grain 
or the resulting food product. At European level, maximum permissible 
levels of Cd have been established for different food products, e.g. cereal-
based baby food may not contain more than 40 µg Cd kg-1 wet weight 
(European Commission, 2021). The Swedish Food Agency monitors Cd 
concentrations in foodstuffs available in Sweden and organises a yearly 
forum with participants from universities, industry and government agencies 
with the aim of reducing concentrations in foodstuffs. 

3.1.2 Soil concentrations in Sweden and in Europe 
Since the mid-1990s, Sweden has had an ongoing survey of agricultural 
topsoils organised by the Swedish University of Agricultural Sciences and 
funded by the Swedish Environmental Protection Agency (Eriksson, 2021). 
Results from this monitoring programme show that concentrations of the 
trace elements of interest in this thesis, i.e. Cu, Zn and Cd, have not changed 
significantly over the survey period. Hence, the concentrations of these trace 
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elements in Swedish agricultural soils can be regarded as quite stable at 
present.  

Descriptive statistics on concentrations in Swedish and European 
agricultural soil indicate that soil Cu concentrations are slightly lower in 
Sweden (Table 1). According to Eriksson et al. (2017), 22% of Swedish 
agricultural land is below the deficiency risk limit for Cu (7 mg kg-1). Hence, 
risk of Cu deficiency is not uncommon in Sweden. Concentrations of Zn are 
generally higher in Swedish agricultural soils (Table 1). Cadmium 
concentrations in agricultural soils are at more or less the same level in 
Sweden and Europe (Table 1). 
Table 1: Minimum, 25th percentile, median, 75th percentile and maximum concentration 
(mg kg-1) of copper (Cu), zinc (Zn) and cadmium (Cd) in agricultural soils in Europe and 
Sweden. European values obtained by Reimann et al. (2014a, 2014b) using aqua regia 
digestion (n = 2108). Swedish values obtained by Eriksson (2021) using nitric acid 
(HNO3) digestion (n = 2029 for Cu and Cd, = 2028 for Zn). 

Trace element Statistic Sweden Europe 
Copper Minimum 2.0 0.3 
 25th  7.8 8.3 
 Median 12 15 
 75th  20 24 
 Maximum 190 395 
    
Zinc Minimum 5.0 2.8 
 25th  37 27 
 Median 55 45 
 75th  77 65 
 Maximum 560 1396 
    
Cadmium Minimum 0.04 <0.01 
 25th  0.13 0.11 
 Median 0.18 0.18 
 75th  0.25 0.28 
 Maximum 4.1 7.5 
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3.2 Portable X-ray fluorescence 

3.2.1 History and fundamentals 
The PXRF device can trace its roots back to the stationary X-ray fluorescence 
(XRF) device first introduced in the 1900s (Glanzman & Closs, 2007). 
Stationary XRF devices still exist today, and the major difference between 
the two is that PXRF devices have less available power due to their 
portability. The introduction of PXRF devices in the late 1970s was made 
possible by battery, microprocessor and software innovations (Glanzman & 
Closs, 2007; Weindorf et al., 2014). The X-ray fluorescence method involves 
exciting an atom and its electrons with X-rays, often emitted from an X-ray 
tube in the case of modern PXRF devices (Kalnicky & Singhvi, 2001). This 
source produces specific wavelengths from the X-ray part of the 
electromagnetic spectrum (Figure 1) that eject an inner-shell electron from 
an atom (Figure 2). The vacant spot left by the ejected electron is then filled 
by an outer-shell electron, and this change releases fluorescent energy in the 
X-ray region of the electromagnetic spectrum in an amount corresponding to 
the energy difference of the electron shells (Kalnicky & Singhvi, 2001) 
(Figure 2). 

 
Figure 1: The electromagnetic spectrum and visible part (380 nm to 750nm). The X-ray 
part of the spectrum is of most interest for portable X-ray fluorescence (PXRF) devices. 
Creator: Philip Ronan, Gringer. Used under the creative commons licence 
(https://creativecommons.org/licenses/by-sa/3.0/). 

https://creativecommons.org/licenses/by-sa/3.0/
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Figure 2: Illustration on how X-ray fluorescence works, from initial excitation of the 
electron to the end-product of X-ray fluorescence (left to right). Note that this example 
atom is solely for illustration purposes. K, L and M refer to different electron shells. 

Hence, it is problematic to measure elements with few electron shells, e.g. 
elements lighter than magnesium (Mg) (Kalnicky & Singhvi, 2001; Lemière, 
2018). Fluorescence is characterised by having lower outgoing energy, i.e. 
longer wavelength, than the incoming energy from the radiation source 
(Weindorf et al., 2014). The range of elements that can be measured depends 
on the PXRF device in question and how it is used, e.g. using vacuum or 
helium to minimise the attenuation effect of air on X-ray energy (Lemière, 
2018). 

The fluorescence wavelength is dependent on (i) the X-ray source, (ii) the 
element in question and (iii) the shell from which the electron was ejected 
and the shell from which the replacing electron originated. For instance, if 
the ejected electron originated from the K-shell and was replaced by an 
electron from the M-shell, the fluorescence is termed Kβ, with an associated 
wavelength. If the replacement electron originated from the L-shell then the 
fluorescence is termed Kα, with its specific fluorescence wavelength. Hence, 
an element can have multiple fluorescence peaks across the X-ray region in 
the electromagnetic spectrum that need to be accounted for (Kalnicky & 
Singhvi, 2001; Glanzman & Closs, 2007). The fluorescence wavelengths and 
their intensity provide information about the element present and its 
concentration in the sample (Weindorf et al., 2014). 
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When using a PXRF device, a model is used to convert these wavelength 
peaks into concentrations of trace elements. What is returned by the PXRF 
device is a spectrum with counts in each wavelength, dependent on the 
spectral resolution of the device. The model can either be supplied by the 
manufacturer of the PXRF device or created by the user using the raw PXRF 
spectra, together with chemometric methods (O'Rourke et al., 2016; Shresta 
et al., 2022). 

3.2.2 Accuracy and limit of detection 
According to United States Environmental Protection Agency (US EPA) 
method 6200, PXRF measurements should be confirmed against 
measurements of trace element concentrations deriving from conventional 
wet chemistry (US EPA, 2007). Comparisons should be made against 
reference samples that have accredited and accurate data on total or pseudo-
total element concentrations from laboratory analyses, e.g. extraction with 
nitric acid (HNO3) and analysis using inductively coupled plasma mass 
spectrometry (ICP-MS). Hence, during measurement with a PXRF device, 
reference samples are used to determine the accuracy of the measurements. 
It is common practice to report the recovery rates for measured elements 
(Weindorf & Chakraborty, 2020). The recovery rate shows how close the 
measured PXRF concentration is to the known quantity in a reference 
sample. For example, if the reference sample concentration is 100 mg Cu 
kg-1 and the PXRF measurement is 110 mg Cu kg-1, this means that the 
corresponding recovery rate is 110% and that the PXRF concentration is an 
overestimate of the known concentration. 

The accuracy of PXRF measurements is also very dependent on soil 
composition, i.e. soil moisture, particle size and organic matter content 
(Rouillon & Taylor, 2016; Ravansari & Lemke, 2018; Padilla et al., 2019). 
Sample preparation steps such as sieving, homogenising and drying often 
produce more accurate PXRF measurements (Goff et al., 2020). 

The limit of detection (LOD) is an important concept in PXRF 
methodology. When using a PXRF device, measurements are commonly 
taken each second, e.g. for a total of 180 seconds. This results in a mean 
value for the 180 measurements and an associated standard deviation of the 
element concentration in question. This final reported concentration needs to 
be greater than three times the reported standard deviation to be above the 
LOD (Weindorf et al., 2012; Rouillon & Taylor, 2016). If the reported 
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measured concentration does not meet this criterion, then that measurement 
is below the LOD for the element and deemed too uncertain to be used.  
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3.3 Digital soil mapping and machine learning 

3.3.1 Digital soil mapping 
The underlying concept in DSM is to build mathematical models to predict 
soil observations using spatially extensive environmental covariates with the 
aid of computers (Minasny & McBratney, 2016). These covariates should be 
represented in the scorpan conceptual model (McBratney et al., 2003): 

 
𝑆𝑆 = 𝑓𝑓(𝑠𝑠, 𝑐𝑐, 𝑜𝑜, 𝑟𝑟,𝑝𝑝,𝑎𝑎,𝑛𝑛)    𝑒𝑒𝑒𝑒. 1 

 

where S is soil property or class, which in turn is a function of soil (s), climate 
(c), organisms (o), topography/relief (r), parent material (p), age (a) and 
spatial position (n).  

The conceptual model is a variant of the existing clorpt model developed 
by Jenny (1941), but used more as a framework for prediction rather than an 
explanation of the soil environment (Malone et al., 2018). Examples of 
variable designation of spatially extensive covariates in the scorpan model 
are presented in Table 2. 

Some types of covariates have a clear designation within the scorpan 
model, such as a digital elevation model (DEM) and the scorpan 
topographic/relief variable. It is difficult to find suitable covariates for some 
scorpan variables, such as age (Chen et al., 2022). However, a digital 
elevation model can provide information about the age of the soil, since the 
geomorphology of the environment is often a product of time (Grunwald, 
2010; Chen et al., 2022). Hence, covariates can contain information that can 
be allocated to more than one scorpan variable. 

 
Table 2: Common types of environmental covariates used in digital soil mapping (DSM) 
and the variable in the scorpan model that they represent. 

Covariate type Scorpan designation 
Digital elevation model r, a 
Remote sensing data o, s, p 
Proximal sensing data o, s, p 
Climate data c, o 
Coordinates n 
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Digital soil mapping can be conducted at various geographical levels, 
depending on the geographical coverage of the covariates. The resulting map 
may cover a field, landscape, country, continent or the world. The spatial 
resolution of the covariates dictates the area of the pixels (raster) or the 
spacing between the grid points (vector) in the map. Some examples of 
geographical levels and their corresponding spatial resolution are presented 
in Table 3. As the examples in Table 3 show, DSM can be conducted on 
several geographical levels, with varying spatial resolutions. Generally, 
coarser spatial resolution is more common at larger geographical scales, with 
small geographical scales having finer spatial resolution (Minasny & 
McBratney, 2016; Piikki et al., 2021). 

 
Table 3: Examples from the literature of geographical level, spatial resolution and 
predicted soil properties used in digital soil mapping (DSM). 

Article Geographical 
level 

Spatial 
resolution 

Mapped property 

Ellili et al. (2019) Landscape 10 m × 10 m Soil organic carbon 
Piikki & Söderström (2019) Country 50 m × 50 m i.a. clay content 
Hengl et al. (2017) Continent 250 m × 250 m i.a. Cu, Mg and B 
Guevara et al. (2018) Continent 5 km × 5 km Soil organic carbon 
Poggio et al. (2021) Global 250 m × 250 m i.a. pH and nitrogen 
Stockmann et al. (2015) Global 1 km × 1 km Soil organic carbon 
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3.3.2 Machine learning in digital soil mapping 
In DSM, it is common to use machine learning techniques to map a variety 
of different soil properties at varying spatial resolution (Khaledian & Miller, 
2020; Padarian et al., 2020). Machine learning is an umbrella term for 
computer algorithms that utilise data to build, i.e. calibrate or train, a 
prediction model, rather than creating a mechanistic model or having a model 
“hard coded” by a programmer (El Naqa, 2015). Machine learning thus 
encompasses many different algorithms, from e.g. simple linear regression 
to the more complex support vector machine regression. A popular algorithm 
is random forest and its different forms, which have been used to map e.g. 
soil pH globally (Poggio et al., 2021), soil organic carbon in the USA (Kim 
& Grunwald, 2016) and soil particle size fractions in Nigeria (Akpa et al., 
2016).  

There are no specific algorithms that are more suited than others for 
predictions of certain soil properties (Khaledian & Miller, 2020). Different 
machine learning algorithms excel at different tasks, depending on the 
covariates used and what is to be predicted. For example, random forest can 
handle linear and non-linear relationships in the data, while linear regression 
struggles with non-linear relationships (Hastie et al., 2009). 

Recent advances in machine learning, increasing computing power and 
available covariates have had a positive effect in DSM, with e.g. more 
accurate maps (Minasny & McBratney, 2016; Wadoux et al., 2020). 
However, there has also been criticism about the use of machine learning in 
DSM. For example, Wadoux et al. (2021b) and Arrouays et al. (2020b) argue 
that pedological knowledge may be disregarded or lost with a machine 
learning framework. This can happen if a large number of covariates are used 
or can result from the low interpretability (‘black box’) of some machine 
learning models (Arrouays et al., 2020b; Khaledian & Miller, 2020). For 
instance, it can be problematic to identify factors that might influence soil 
pH if the resulting DSM model is a ‘black box’ calibrated with a large 
number of covariates. However, covariate importance methods and model 
interpretation can be used to hypothesise and unravel the ‘black box’ 
(Arrouays et al., 2020b; Wadoux & McBratney, 2021). 
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3.3.3 Digital soil mapping as decision support 
Decision support exists in many forms. It can take the form of a complex 
computer system for farmers or policy-makers aimed at improving the 
quality of decisions (Zhai et al., 2020). It can also be a DSM product, such 
as a soil property map. When DSM is performed with the aim of producing 
a decision-making aid, it can be categorised as operational or practical DSM 
(Kidd et al., 2020). An example of an operational DSM product is the clay 
content map for Sweden created by Söderström et al. (2016) and refined by 
Piikki and Söderström (2019), which can be used to guide variable seed rate 
within an agricultural field. Another example is the Soil and Landscape Grid 
of Australia (SLGA) developed by Grundy et al. (2015) with information on 
11 soil properties, such as bulk density at multiple depths. The Soil and 
Landscape Grid of Australia has been used by various stakeholders, and also 
by decision support system developers (Grundy et al., 2020; Kidd et al., 
2020). Hence, DSM can be aimed towards some predefined problem or act 
as a foundation for decision support development. 

3.3.4 Uncertainty in digital soil mapping 
Quantification of uncertainty is often necessary to determine whether a map 
is suitable for its intended use (Heuvelink, 2014). Without quantification of 
uncertainty at every point, the end-user might believe that the prediction is 
the truth (Arrouays et al., 2020b). However, communicating, understanding 
and putting uncertainty to practical use can be complicated (Arrouays et al., 
2017; Richer-de-Forges, 2019; Wadoux et al. 2021b). 

The prediction interval is commonly estimated along with the predicted 
value (Heuvelink & Webster, 2022). A prediction interval is a range of values 
that will encompass all future observations, given a certain probability. 
Access to a predicted value and an accompanying prediction interval gives 
the end-user the possibility to assess the predicted value and its uncertainty. 
For example, assume that a predicted Cu concentration in soil at a point 
location is 7 mg kg-1. At this location there is also an estimated 90% 
prediction interval, the lower bound of which is 4 mg Cu kg-1 and the upper 
bound of which is 10 mg Cu kg-1. This information tells the end-user that the 
actual value at the point location lies with 90% probability between 4 mg Cu 
kg-1 and 10 mg Cu kg-1 (7 mg ± 3 mg Cu kg-1). 

The prediction interval can be estimated in two different ways. With the 
geostatistical method of kriging, the 90% prediction interval can be 
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determined by adding and subtracting 1.64 times the kriging standard 
deviation to the prediction, assuming normal distribution of values at the 
point (Heuvelink, 2014). Otherwise, e.g. with machine learning, the 
prediction interval is often related to percentiles of the empirical distribution 
function. For example, prediction of the 5th and 95th percentiles results in the 
90% prediction interval, while calculating the 80% prediction interval would 
mean that the 10th and 90th percentiles have been predicted. The prediction 
interval needs to be validated (Szatmári & Pásztor, 2019). The prediction 
interval coverage probability (PICP) is often used to assess the validity of 
the prediction intervals in a map (Piikki et al., 2021). A PICP score shows 
how often true values are within the prediction interval (Shresta & 
Solomatine, 2006). The PICP score should be the same percentage as the 
prediction interval probability. A larger PICP score implies that the 
prediction interval is too wide, and a lower score implies that the interval is 
too narrow. 
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4.1 Soil samples and grain samples (Papers I-III) 

4.1.1 National soil samples 
Topsoil samples and laboratory analysis data from two national soil surveys 
were used in this thesis (Table 4). The first set of material, denoted NV, 
consisted of soil samples and data from the Swedish monitoring programme 
for arable soils funded by the Swedish Environmental Protection Agency 
(Eriksson et al., 2021). The sampling density in that programme is roughly 
one sample per 1300 ha of agricultural land and the dataset contains 
laboratory-analysed pseudo-total concentrations of Zn, Cd and Cu. These 
concentrations are determined using ICP-MS or inductively coupled plasma 
atomic emission spectroscopy (ICP-AES), after extraction using 7M HNO3 
in an autoclave at 120 °C for 30 minutes, according to Swedish standard SS 
28311 (Swedish Institute for Standards, 2017). The NV data were used in 
Papers I-III for calibration and validation of the PXRF and DSM models. 

The second set of material, denoted JV, consisted of soil samples from a 
sampling campaign of Swedish agricultural topsoil, funded by the Swedish 
Board of Agriculture (Swedish Board of Agriculture, 2015). Geographically, 
the JV set complement the NV set, with one sample taken roughly every 100 
ha of agricultural land (Figure 3). The JV soil samples are not analysed for 
pseudo-total concentrations of Zn, Cd and Cu. The JV data were used in 
Papers II and III for calibration of the DSM models. 

4. Materials and Methods 
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Table 4: Number of soil samples/data from the Swedish monitoring programme for 
arable soils (NV survey) and Swedish agricultural topsoil sampling (JV survey) used in 
each paper in this thesis. 

Paper NV JV 
I 1520 - 
II 304 2097 
III 1434 11 093 

 
All soil samples in this thesis were composite samples consisting of nine 

subsamples taken at 0-20 cm depth within a 3 m radius from the selected 
sampling point. All soil samples were air-dried, homogenised and sieved (<2 
mm). 

 

 
Figure 3: Overview map of (a) soil sampling locations in the Swedish monitoring 
programme for arable soils (NV) and Swedish agricultural topsoil sampling (JV), and 
location of the field soil samples Paper III, as well locations of the nine farms from Paper 
I. (b) Zoomed in map of the field soil samples from Bjertorp Farm used in Paper III, and 
(c) zoomed in map of Skåne County showing the NV and JV soil sample locations, and 
grain samples locations in Paper II. Legend applicable to panels (a-c). Large cities are 
marked as stars for spatial reference. Basemap in (b) courtesy of ESRI, Redlands, CA, 
USA. 
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The number of soil samples used differed between the papers, depending on 
the geographical extent of the investigation (Table 4). For example, the 
geographical spread of the NV soil sample sites extended across the whole 
of Sweden in Paper I, but only over the southern part in Paper III (Figure 3). 

4.1.2 Field samples 
Data on 179 soil samples from nine farms were used for validation of the 
PXRF models at farm scale (≈20 per farm) in Paper I (Figure 3a). Laboratory 
analysis was performed in the same way as for the NV dataset. 

Data on soil samples from Bjertorp Farm, located north-east of 
Gothenburg (Figure 3b), were used for within-field validation of the Cu map 
produced (Paper III). These soil samples were collected from five different 
fields (25-47 ha), with roughly four samples per ha. All these soil samples 
were measured for pseudo-total Cu concentration, determined using ICP-
AES after extraction with 2M HCl under heating in boiling water for two 
hours. 

4.1.3 Grain samples 
Data on grain samples were used to assess the relationship between soil Cd 
concentrations in the map produced and concentrations in winter wheat 
(Triticum aestivum L.) grain in the area covered by the map (Paper II). Data 
on 307 grain samples were used (Figure 3c). This set consisted of 196 
samples collected in 1992 and 111 samples collected 2001-2007. Both sets 
had data on pseudo-total Cd concentrations, analysed after digestion using 
HNO3. The samples from 1992 were digested at 135 °C for four hours and 
an additional hour at 100 °C. The samples from 2001-2007 were digested in 
a microwave oven at 120 °C for one hour. Determination was done with ICP-
MS. There was a negligible difference in extracted Cd between the digestion 
methods. The grain data can be regarded as representative of the current 
situation (2022), since the Cd concentration in winter wheat grain has been 
stable over the past 29 years (Eriksson, 2021). 

4.2 PXRF measurements (Papers I-III) 
All soil samples in the JV and NV sets were subjected to PXRF 
measurements in the period 2018-2020. The measurements were made ex 
situ, using a Niton XL3t GOLDD+ PXRF device with a geometrically 
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optimised large area drift detector and a silver (Ag) anode of 50 kV and 200 
µA (Thermo Scientific, Billerica, MA, USA). The PXRF device was 
mounted on a purpose-built static frame (Thermo Scientific, Billerica, MA, 
USA), and connected to a computer (Figure 4).  

Each soil sample was pre-dried, homogenised and sieved (<2 mm), in 
compliance with recommendations for ex situ PXRF measurements (US 
EPA, 2007; Weindorf & Chakraborty, 2020). Each soil sample was measured 
for 180 s. Double-ended XRF sample cups, 32 mm diameter, with a 4 µm 
thick transparent polypropylene XRF film were used to contain the soil 
samples during measurement, following US EPA standards (U.S. EPA, 
2007). The factory calibration “soil mode” was used to obtain concentrations 
in mg kg-1 from the fluorescence peaks.  

The LOD was set at three times the standard deviation of the 
measurement, and trace element concentrations below this were set as Not a 
Number (NaN). Measured trace elements with <10% NaN values were used 
in Paper I as covariates in the PXRF models. This ensured that the trace 
elements used were commonly present above the LOD in Swedish soil. The 
resulting 13 trace elements were also used as covariates in the PXRF models 
in Papers II and III (Table 5). 

 

 
Figure 4: Image of the portable X-ray fluorescence (PXRF) device used, shown mounted 
on its purpose-built frame with the lid closed. 
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During the measurement period, the reference standard 2709a from the 
National Institute of Standards and Technology (NIST) was subjected to 
PXRF measurements four times, to obtain the mean recovery rate and the 
standard deviation of the recovery rate, in order to check the measurement 
stability of the PXRF device (Table 5). As Table 5 shows, the concentrations 
measured by the PXRF device were relatively accurate, although some trace 
elements, such as caesium (Cs) and lead (Pb), were not accurately measured. 
However, the intention was not to measure concentrations of these trace 
elements with great accuracy, but rather to use the trace elements as 
covariates and their measured concentrations to predict concentrations of Cu, 
Zn and Cd. For this, the stability of the measurements was more important. 
For example, measured concentrations of Cs were suitable for modelling as 
they were consistently overestimated. 

 
Table 5: The mean recovery rate from four measurements, and the standard deviation in 
recovery rate for each element used in the thesis. 

Element Recovery rate (%) Recovery rate standard deviation (%) 

Lead, Pb 63 10.8 
Zirconium, Zr 65 0.9 
Rubidium, Rb 83 0.8 
Iron, Fe 84 0.6 
Barium, Ba 87 2.4 
Zinc, Zn 92 2.1 
Strontium, Sr 92 0.8 
Potassium, K 96 1.3 
Manganese, Mn 97 2.7 
Calcium, Ca 105 1.5 
Titanium, Ti 114 1.8 
Vanadium, V 123 18.6 
Caesium, Cs 970 33.1 
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4.3 Machine learning algorithms (Papers I-III) 
There are many machine learning algorithms to choose from, in several 
programming languages. In this thesis, the machine learning library Scikit-
learn in the Python programming language was used (Pedregosa et al., 2018). 

In Paper I, three different machine learning algorithms were chosen to 
create PXRF models. These were random forest regression (RF), multiple 
linear regression (MLR) and multivariate adaptive regression splines 
(MARS). These were selected because the aim was to use distinctly different 
models and MLR is linear, RF is non-linear and discrete, and MARS is non-
linear and continuous. A discrete model cannot be used to extrapolate beyond 
the calibration data, while continuous model can be used extrapolate. The 
prediction made by an RF model is the mean of an ensemble of regression 
trees with bagging/bootstrapping, i.e. each regression tree is calibrated on a 
subset of the data (Breiman, 2001). A MARS model consists of several basis 
functions (piecewise linear regression models), that are created in a forward 
pass and later pruned to minimise overfitting in a backward pass (Hastie et 
al., 2009). 

In Papers II and III, an ensemble of machine learning models was used, 
with the aim of combining their strengths. Therefore, a PXRF model 
consisted of several sub-models in an ensemble and the output of the PXRF 
model was the ensemble average, i.e. model averaging was applied. In model 
averaging, the output of several models is used e.g. to obtain a mean 
prediction (Hastie et al., 2009). In Paper II, the PXRF model consisted of a 
MARS model and an RF model. In Paper III, the PXRF model consisted of 
three extremely randomised tree (ERT) models and three gradient boosting 
regression (GBR) models, each with different hyperparameter values. An 
ERT model is similar to an RF model, but introduces a randomly chosen 
splitting threshold for each covariate and chooses the best one, while also 
omitting bagging/bootstrapping (Geurts et al., 2006). Gradient boosting 
regression works by fitting several shallow regression trees (stumps) in 
sequence in order to minimise a given loss function, such as least squares or 
quantile loss (Friedman, 2001). Providing full explanations and detailed 
descriptions of the algorithms was beyond of the scope of this thesis. I refer 
to Hastie et al. (2009) for more in-depth information. 
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4.4 Digital soil mapping (Papers II & III) 

4.4.1 Calibration, algorithm, hyperparameter settings and application 
The DSM models in Paper II and Paper III were calibrated using the NV 
dataset with laboratory measured concentrations and the JV dataset with 
concentrations predicted by a PXRF model. The JV and NV data also 
contained the environmental covariates used in each respective paper. The 
data on concentrations of Cu and Cd in the JV and NV datasets were thus the 
response variable, while the environmental covariates were the explanatory 
variables. The calibrated DSM models were then used to create maps of 
concentrations of Cu and Cd, as well as of the prediction interval. 

Digital soil mapping was performed using the GBR algorithm for two 
reasons. First, using GBR makes it possible to predict specific percentiles, to 
create prediction intervals. Second, GBR can handle non-normally 
distributed data and non-linear dependencies as it is tree-based, just like RF. 

Hyperparameters are the settings of a machine learning algorithm that are 
predefined by the user. In Paper II, testing showed improved performance 
with hyperparameter tuning. The hyperparameter values for tuning were 
chosen based on recommendations in Prettenhofer and Louppe (2014) and 
Elith et al. (2008). The hyperparameters and chosen values are presented in 
Table 6. 

The prediction interval was created using GBR models calibrated based 
on quantile loss, where one GBR model was used to predict the 5th percentile 
and another GBR model to predict the 95th percentile. The 5th percentile was 
the lower bound of the prediction interval, while the 95th was the upper 
bound. The actual prediction was computed using a GBR model calibrated 
based on least squares loss. 
Table 6: Description of hyperparameters frequently tuned for the Gradient Boosting 
Regression (GBR) algorithm in Paper II and values used after tuning. 

Hyperparameter Description Settings used 
Max depth Maximum depth allowed in each tree 6 
Max features Fraction of covariates considered at each split 1.0 
Learning rate Shrinkage factor of each tree 0.011 
Minimum samples Samples needed for creating a leaf node 3 
Subsampling Fraction of samples used to construct each tree 0.6 
Estimators Number of trees 1000 
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In Paper III, hyperparameter tuning was omitted due to it being too 

computationally demanding, because of the large geographical extent of the 
study area. Instead, model averaging was done using three GBR models, but 
with different values of the most important hyperparameter for each sub-
model. Initial testing revealed subsampling to be the most suitable 
hyperparameter to use, as the max features hyperparameter would tamper 
with the covariate importance. A total of three GBR models were calibrated, 
each with different settings of the hyperparameter subsampling (0.3, 0.6, 
1.0). The mean of the output from the three GBR models was used as the 
prediction. This was done for the 5th percentile, mean and 95th percentile. A 
total of nine GBR models were thus calibrated. Lastly, the number of trees 
used in each GBR model was set to 500 instead of 1000, as testing revealed 
low performance improvement with increased number of trees. 

4.4.2 Covariates 
The foundation used for the DSM in Papers II and III was the covariate grid 
created by Piikki and Söderström (2019). The spatial resolution of this grid 
is 50 m × 50 m, it covers around 90% of Swedish agricultural land and it is 
restricted to non-organic soils (<20% organic matter), i.e. it has the same 
geographical coverage as the JV soil samples (see Figure 3). Covariates 
present in this grid are listed in Table 7. 

Unique covariates used in Paper II were cokriged concentrations of Cd 
from biogeochemical data on Cd and Zn concentrations in the roots of sedges 
(Carex L.), meadowsweet (Filipendula ulmaria L.) and water moss 
(Fontinalis Hedw.) from small streams (Lax, 2009). Convergence index and 
topographic wetness index were computed from the DEM to obtain more 
topographic derivatives. 

In Paper III, some covariates, such as cokriged biogeochemical data, 
convergence index and topographic wetness index, were omitted based on 
findings in Paper II or due to poor data availability. A 50 m × 50 m raster of 
soil moisture based on data originally reported by Ågren et al. (2021), 
resampled from 2 m × 2 m, was used. This raster provides nationwide soil 
moisture predictions, although mainly calibrated and validated on forest 
soils. A 4 km × 4 km grid of annual and seasonal climate data was obtained 
from the Swedish Meteorological and Hydrological Institute (SMHI, 2015). 
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The means for two reference periods provided in the dataset (1961-1990 and 
1991-2013) were used. 
Table 7: Environmental covariates, their type and source used for digital soil mapping in 
Papers II and III. Suffixes II and III indicate the paper in which each covariate was used. 
Original data source: * Geological Survey of Sweden, ** Lantmäteriet (Swedish Land 
Survery). DEM = digital elevation model, TPI = topographic position index. 

Covariate Type Source 

Uranium (238U) (mg kg-1) II, III Gamma Piikki & Söderström 
(2019)* 

Thorium (232Th) (mg kg-1) II, III Gamma Piikki & Söderström 
(2019)* 

Potassium (40K) (%) II, III Gamma Piikki & Söderström 
(2019)* 

Dose rate (nGy hr-1) III Gamma Computed from U, Th 
and K 

Topographic wetness index II DEM Computed from 
elevation 

Convergence index II DEM Computed from 
elevation 

TPI 5, 50 and 500 ha  II, III DEM Piikki & Söderström 
(2019)* 

Soil moisture III DEM Ågren et al. (2021) 

Elevation ( 10 m × 10 m) (m) II, III DEM Piikki & Söderström 
(2019)** 

Precipitation, annual (mm) III Climate SMHI (2015) 

Precipitation, seasonal (MAM, JJA, SOM 
and DJF) (mm) III 

Climate SMHI (2015) 

Temperature, annual (°C) III Climate SMHI (2015) 

Temperature, seasonal (MAM, JJA, SOM 
and DJF) (°C) III 

Climate SMHI (2015) 

Soil texture classes (Clay, Clay till, Till, Silt, 
Sand and Other) II, III 

Soil texture Piikki & Söderström 
(2019)* 

Cokriged biogeochemical data II Biogeochemical Lax (2009) 
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Seasonal climate data were divided into spring (MAM; March, April and 
May), summer (JJA; June, July and August), autumn (SON; September, 
October and November) and winter (DJF; December, January and February). 
Lastly, dose rate was computed from airborne gamma radiation 
measurements, using the equation (Duval et al., 2005): 

  
𝐷𝐷𝑜𝑜𝑠𝑠𝑒𝑒 𝑟𝑟𝑎𝑎𝑟𝑟𝑒𝑒 = 13.2𝐾𝐾 + 5.48𝑈𝑈 + 2.72𝑇𝑇ℎ    𝑒𝑒𝑒𝑒. 2 

 
where Dose rate is in nGy hr-1, K is measured potassium (40K)concentration 
in %, U is measured uranium (238U) concentration in mg kg-1 and Th is 
measured thorium (232Th) concentration in mg kg-1. 

4.5 Validation 
The validation metrics used were Nash-Sutcliffe model efficiency coefficient 
(Nash & Sutcliffe, 1970), denoted R2 in Paper I and E in Paper II and III, and 
mean absolute error (MAE). An E value of 1 means that the model predicts 
perfectly, while an E value smaller than 0 means that using the prediction is 
less correct than using the mean value of the observations. An E value below 
0 is possible. These metrics were mainly used to assess the performance in 
cross-validation and independent validation. Mean absolute error was chosen 
since it is less sensitive to outliers than the frequently used root mean squared 
error (RMSE). Squared Pearson correlation coefficient (r2) from linear 
regression between predicted and measured concentrations was used in Paper 
III to assess whether the map could explain the variation within fields. 

Precision and recall were used in Paper III to assess how accurately the 
DSM model predicted Cu concentrations in soil samples at or below the risk 
limit for Cu deficiency. Recall and precision was also calculated for other 
limits (1-60 mg kg-1) to see the change in classifying performance with 
increasing concentration. A sample with a concentration at or below a set 
limit, e.g. 7 mg kg-1, was a positive, and a sample with a concentration above 
the set limit was a negative. Recall shows the fraction of actual positives 
predicted as positives, precision shows the fraction of predicted positives that 
are actual positives. 

In Paper I the classifying performance of the PXRF models were assessed 
using accuracy. Accuracy is the number of correctly predicted positives and 
negatives divided by the total number of predictions. This was done to see 
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how well the PXRF models could be used to correctly classify concentrations 
in soil samples below and above limits for sewage sludge application and Cu 
deficiency. In Paper I, the risk limit for Cu deficiency was set at 8 mg kg-1, 
which was the upper bound of the risk limit range (6-8 mg kg-1). 

Cross-validation of the DSM models were done using five folds, and they 
were always validated against laboratory-analysed concentrations of Cu and 
Cd. Thus the DSM models were never validated against the PXRF-predicted 
concentrations in the JV dataset. For example, the calibration dataset of a 
cross-validation fold consisted of 80% of the NV dataset and the whole JV 
dataset. The remaining 20% of the NV dataset was then used for validation. 

Cross-validation of the PXRF models were done using five folds in Paper 
II and III. Cross-validation of the PXRF models were done using leave-one-
out in Paper I. 

4.6 Covariate importance (Papers II & III) 
Mean decrease in impurity (MDI) and permutation importance (PI) were 
used to assess the importance of covariates in the DSM models, since using 
two different methods minimises the risk of obtaining misleading results. 
Using covariate importance makes it possible to interpret the machine 
learning models and hypothesize, but it does not prove any causal 
relationship between covariates and a particular soil property. 

Mean decrease in impurity is specific for tree-based algorithms and is 
included in the GBR algorithm provided by Scikit-learn. Mean decrease in 
impurity measures how many times a covariate is used for a split in the nodes 
of the regression trees and its hierarchy within the regression tree (Breiman, 
2001). For example, a covariate used early for a split in the regression tree 
hierarchy is likely to be more important, as it impacts all subsequent splits.  

Permutation importance is ‘model agnostic’ and thus applicable on any 
model type, provided that the model has been calibrated. It works by 
establishing a reference performance score for the calibrated model against 
the calibration or independent validation data (the performance score used in 
this thesis was E). Next, a covariate is permuted, i.e. randomly shuffled, in 
the dataset, this dataset with a permuted covariate is used for prediction and 
the deviation between the reference score and the new score is noted 
(Breiman, 2001; Strobl et al., 2008). This is done a number of times for each 
covariate, in order to obtain a mean deviation from the reference score. An 



44 

important covariate will result in large deviation from the reference score, 
resulting in a high PI score. In this thesis, the number of times each covariate 
was permuted was 10. The permutation importance was calculated based on 
the calibration data. 

Since the DSM model in Paper III was an ensemble of three GBR models, 
the results obtained for MDI and PI were thus a mean of three values. The 
scores obtained in Paper II were not means, since that DSM model consisted 
of one GBR model. 
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5.1 PXRF modelling 
The cross-validation results in Paper I confirmed that PXRF measurements 
can be used for accurate prediction of Zn concentrations, producing values 
very similar to those obtained in laboratory analysis. However, Cu and Cd 
concentrations were predicted less accurately (Figure 5). The performance 
of the PXRF models in predicting Cu and Cd concentrations in Papers II and 
III was similar to that in Paper I (Table 8; Table 9). The non-linear models 
performed better than MLR in predicting Cu and Cd concentrations, 
especially at farm level. However, MLR was as accurate as the non-linear 
models in predicting Zn concentrations. Predictions of Zn were considered 
accurate enough to be used when assessing whether soils can receive sewage 
sludge. The predictions from the PXRF model were more accurate than the 
PXRF-measured Zn concentrations (Paper I). 
Table 8: Nash-Sutcliffe model efficiency coefficient (E) from cross-validation of each 
portable X-ray fluorescence (PXRF) model and trace element reported in Papers I-III. E 
values in brackets are from validation at the farm level. Model types: MLR = multiple 
linear regression, RF = random forest, MARS = multivariate regression splines, Paper II 
ensemble = MARS and RF, Paper III ensemble = extremely randomized trees and 
gradient boosting regression. 

Paper and model Copper, Cu Cadmium, Cd Zinc, Zn 
Paper I, MLR 0.58 (0.90) 0.49 (0.74) 0.92 (0.96) 
Paper I, RF 0.63 (0.84) 0.48 (0.74) 0.86 (0.94) 
Paper I, MARS 0.59 (0.94) 0.70 (0.80) 0.92 (0.97) 
Paper II, Ensemble - 0.82 - 
Paper III, Ensemble 0.66 - - 

 

5. Results and Discussion 
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Accuracy scores when classifying samples with concentrations below and 
above limits for sewage sludge application and Cu deficiency were high 
(>80%). However, accuracy can give misleading results with imbalanced 
datasets. This was the case as there were, e.g., were very few samples with 
concentrations above 40 mg Cu kg-1. This made the PXRF models appear 
overly optimistic of its overall classifying performance. For example, the 
PXRF model was very good at classifying samples with concentrations 
below the sewage sludge limit for Zn, and most of the samples had 
concentrations below this limit. However, the few samples with 
concentrations above the limit were not accurately classified. Accuracy 
scores less impacted by imbalanced datasets would probably have been more 
suitable for communicating the overall classifying performance of the PXRF 
models, e.g. using balanced accuracy. 

Conditional bias was especially present when predicting Cu and Cd 
concentrations in Paper II and Paper III, as it was problematic to predict very 
low and very high concentrations. In Paper III, this bias permeated into the 
subsequent DSM model, which had problems predicting concentrations 
lower than 5 mg Cu kg-1. The tree-based PXRF models had problems 
predicting concentrations below 5 mg Cu kg-1 (Papers I & III). However, 
predicting Cu concentrations using PXRF measurements made it possible to 
predict below the LOD of Cu of the device, which was ≈ 20 mg kg-1 (Paper 
I). 
Table 9: Mean absolute error (MAE) from cross-validation of each portable X-ray 
fluorescence (PXRF) model and trace element reported in Papers I-III (mg kg-1). MAE 
values in brackets are from validation at the farm level. Model types: MLR = multiple 
linear regression, RF = random forest, MARS = multivariate regression splines, Paper II 
ensemble = MARS and RF, Paper III ensemble = extremely randomized trees and 
gradient boosting regression 

Paper and model Copper, Cu Cadmium, Cd Zinc, Zn 
Paper I, MLR 3.9 (4.4) 0.07 (0.12) 5.6 (4.4) 
Paper I, RF 3.5 (4.5) 0.05 (0.11) 5.9 (5.4) 
Paper I, MARS 3.7 (3.2) 0.05 (0.09) 5.6 (4.0) 
Paper II, Ensemble - 0.08 - 
Paper III, Ensemble 3.3 - - 
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Figure 5: Cross-validation of the portable X-ray fluorescence (PXRF) models used in 
Paper I (n = 1520). 

  
The PXRF model was used to predict Cu and Cd concentrations in a large 
proportion of the DSM calibration samples (Papers II & III). Thus, the biases 
present in the predictions of the PXRF models manifested to a certain degree 
in the DSM model predictions. This makes it tempting to create more range-
specific models in the future or perhaps to implement bias correction. 
Accurately predicting the tails of the distribution, low and high 



48 

concentrations, is often more important in environmental applications (Belitz 
& Stackelberg, 2021). This was the case in this thesis, where models and 
maps were intended for identifying the risk of deficiency or the risk of 
exceeding limits. Future PXRF models and DSM models should perhaps be 
specifically aimed towards accurately predicting lower concentrations. This 
could perhaps be achieved by duplicating calibration samples with low 
concentrations, adding extra samples with low concentrations, i.e. spiking, 
only using calibration samples with low concentrations or using bias 
correction techniques as proposed by Song (2015), Sylvain et al. (2021) and 
Belitz and Stackelberg (2021). Another option for potentially improving 
performance of the PXRF model could be to utilise and calibrate it using the 
‘raw’ spectrum, instead of the factory calibration measurements of trace 
elements. For example, an approach by Shresta et al. (2022) using PXRF 
spectra together with partial least squares support vector machine (PLS-
SVM) produced more accurate predictions of Cd and Cu concentrations than 
was achieved in this thesis. 

The conditional bias and overall weaker performance of PXRF models 
for Cu and Cd restricts their applicability as decision support for crop 
production. For example, the MAE reported in Paper III for predicted Cu 
concentrations was 3.3 mg kg-1, a value that can be quite large when trying 
to determine whether a soil has a value below the risk limit of 7 mg kg-1. 
Therefore, PXRF model predictions cannot be regarded as a direct 
replacement for conventional wet chemistry analysis, especially when 
certain limits are of interest. However, the speed and ease of PXRF 
measurements coupled with machine learning makes this an interesting 
complement to wet chemistry analysis. 

5.2 PXRF predictions in DSM 
One of the objectives in this thesis was to use PXRF models to predict 
concentrations of Cu and Cd in the JV soil samples, with the intention of 
using JV and NV data together as a calibration dataset. This substantially 
increased the size of the calibration dataset used for the DSM model in 
Papers II and III (see Table 4). The assumption was that a geographically 
denser calibration dataset with less accurate measurements was more 
important than a geographically sparser one with more accurate 
measurements. Some studies, such as those by Somarathna et al. (2017) and 
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Lai et al. (2021), have shown that increasing the number of samples for 
calibration can increase the accuracy and reduce the uncertainty of DSM 
models. However, increasing the number of samples will provide 
diminishing returns in terms of accuracy gains after a certain point. It should 
be noted that the two studies cited were on soil organic carbon and it cannot 
be assumed that this is also the case for DSM of trace elements.  

In Paper III, it was revealed that the DSM model using both NV and JV 
as calibration data was more accurate (E = 0.58, MAE = 4.1 mg kg-1) than 
the DSM model only using NV as calibration data (E = 0.40, MAE = 4.6 mg 
kg-1). The reason for the better accuracy could be that more geographical 
variation was captured with the geographically denser calibration dataset. 
The use of predictions from PXRF measurements as calibration data for 
DSM is promising. The method is fast and provides measurements that can 
be used in a variety of ways to predict different soil properties. However, 
further investigation is needed to confirm whether a geographically denser 
calibration dataset is better than a more accurate, but sparser, dataset. 

5.3 DSM modelling 
Cross-validation revealed that the DSM models were less accurate than the 
corresponding PXRF models (Papers II & III) (Table 10, see also Table 8 
and Table 9). This is probably because PXRF measurements were made 
directly on the soil, while the covariates used in the DSM model are indirect 
measurements. The accuracy of the DSM models, when compared against 
results from laboratory analyses, indicated that the maps produced should be 
regarded more as exploratory tools. For example, in Paper III the recall score 
for correctly predicting if a soil concentration was at or below the risk limit 
for Cu deficiency was around 0.08, i.e. 8% correctly classified. 
Table 10: Cross-validation results of the digital soil mapping (DSM) models used in 
Papers II and III to predict cadmium (Cd) and copper (Cu) concentrations, respectively. 
E = Nash-Sutcliffe model efficiency coefficient, MAE = mean absolute error. 

Paper and element E MAE (mg kg-1) 
Paper II, Cd 0.69 0.11 
Paper III, Cu 0.58 4.1 
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This means that the resulting map of Cu concentrations cannot be used alone 
to delineate agricultural land at risk. However, the precision was much 
higher, around 0.6. This precision score indicates that when the DSM model 
actually predicts a soil concentration to be at or below the risk limit, it is 
correct with 60% probability (Paper III). Increasing the risk limit to 8 mg 
kg-1 or higher made the recall and precision increase rapidly (Figure 6). For 
example, if the risk limit were to be reformulated to 10 mg kg-1, the recall 
and precision score would be around 0.6 and 0.8, respectively (Figure 6). 
This means that the DSM model would correctly predict soil concentrations 
of Cu to be at or below 10 mg kg-1 in 60% of cases, and that a predicted 
concentration at or below 10 mg kg-1 would be correct with 80% probability 
(Figure 6). However, correctly predicting the concentration below the actual 
risk limit, 7 mg kg-1, was problematic in this case as shown earlier. 

 
Figure 6: Recall and precision scores when predicting at or below concentrations in soil 
samples during cross-validation of the digital soil mapping (DSM) model for copper (Cu) 
(Paper III). 
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Figure 7 shows predicted Cu concentrations in agricultural soil, together 
with the prediction interval width. The spatial pattern of Cu concentrations 
generally followed the spatial variation in soil texture reported in Piikki and 
Söderström (2019) and in earlier Cu mapping by Eriksson et al. (2017). High 
predicted concentrations of Cu were mostly found on clayey soils, while 
lower concentrations were found on sandy soils. As indicated in Figure 7b, 
a wide prediction interval was often found on soils with a high predicted 
concentration of Cu. Only 3% of Swedish agricultural soil was predicted to 
have values at or below the risk limit of 7 mg kg-1. This was very different 
from the value of 22% established by Eriksson et al. (2017). The low recall 
score of the DSM model at 7 mg kg-1 reflected the underestimation of soils 
below the risk limit in the Cu concentration map produced (see Figure 6). 

 
 

 
Figure 7: Maps of (a) predicted copper (Cu) concentrations in Swedish agricultural soil 
and (b) width of the 90% prediction intervals. The highest concentration presented in the 
colour bar of (a) and (b) corresponds to the 90th percentile (Paper III). 
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The underestimation of agricultural land at risk reveal that future work 
should perhaps focus on implementing procedures that will increase the 
accuracy of predictions at or below the risk limit. This could perhaps be 
achieved by using methods previously mentioned (see section 5.1, page 47-
48), such as bias correction or calibration of DSM models specifically 
focused on predicting lower concentrations. 

Zooming in on the validation farm of Bjertorp revealed that the prediction 
error was generally small (Figure 8). However, validation on this farm gave 
E and MAE of 0.56 and 2.0 mg kg-1, respectively (Figure A1). This was a 
similar E value to that obtained for cross-validation, but almost half the MAE 
value. The PICP was 86% across all fields. This means that the prediction 
interval created was slightly too narrow for this farm. Some laboratory-
analysed values were outside the lower prediction interval bound, and some 
were outside the upper prediction interval bound. This shows that the 
prediction interval is probably usable, although validated here only on one 
farm. A nationally derived PICP would be more representative of the validity 
of the prediction interval, and should be computed in the future. For example, 
the result from this farm might give an optimistic or pessimistic impression 
of the validity of the national prediction interval map. 
 

 
Figure 8: Maps of predicted copper (Cu) concentrations (a-e) zoomed in on the fields in 
Bjertorp and (f-j) the prediction error (Paper III). 
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As shown in Table 11, the field means were rather accurately predicted. The 
spatial resolution of the Cu map made it possible to map within-field, but the 
predicted within-field variation was not accurate (Table 11). A potential 
explanation for the problems with replicating within-field variation is that 
many of the covariates used have coarser spatial resolution than 50 m × 50 
m, e.g. airborne gamma radiation measurements can have a footprint 
substantially larger than 50 m × 50 m. 
Table 11: Field means of measured and predicted concentrations of copper (Cu) in the 
five fields at Bjertorp. Squared Pearson coefficient of a linear regression model (r2) was 
used to assess how well the within-field variation was reproduced by the model (Paper 
III). 

Field Measured field mean (mg Cu 
kg-1) 

Predicted field mean (mg Cu 
kg-1) 

r2 

1 12.9 13.0 0.1 
2 5.5 6.9 0.19 
3 8.6 7.8 0.03 
4 13.0 11.0 0.37 
5 14.3 13.2 < 0.01 
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Figure 9 shows the map of Cd concentrations and the 90% prediction 
interval produced for the study area in Paper II. The spatial patterns obtained 
supported findings from previous work of high concentrations in Cd-rich 
parent material such as Cambrian sandstone or alum shale bedrock in the 
south-east part of the study area and in tills and glaciofluvial deposits 
influenced by this Cd-rich parent material (Söderström & Eriksson, 2013).   

The prediction interval was generally wider on agricultural soils with high 
predicted concentrations of Cd, as was also the case in the Cu modelling in 
Paper III. A study by Poggio et al. (2021) found that wider prediction 
intervals often occurred in more sparsely sampled areas and in areas with 
high predicted values. In this thesis, areas with fewer samples, i.e. areas with 
less agricultural land, were not necessarily linked to a wide prediction 
interval. It would be interesting to compare the uncertainty produced by other 
methods, such as quantile regression forest, with that of GBR. This could 
reveal whether the prediction interval produced by the GBR model is subject 
to specific biases, as different mapping methods can yield different 
uncertainties (Heuvelink & Webster, 2022). 
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Figure 9: Maps of (a) predicted cadmium (Cd) concentrations in agricultural soil in Skåne 
County and (b) width of the 90% prediction intervals (Paper II). 

5.4 DSM and its role as decision support 
An attempt was made to explore if the Cd concentration map could be used 
as decision support in wheat production. First, areas that had Cd values at or 
below 0.196, 0.215 and 0.240 mg kg-1, corresponding to the 30th, 40th and 
50th percentile, respectively, of the analysed soil Cd concentrations in the NV 
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dataset, were selected. The overall aim was to assess whether Cd 
concentrations in grain could be kept low by selecting grains from areas with 
low predicted soil Cd concentrations. The results showed that the lower the 
predicted soil Cd concentration, the lower the median concentration in winter 
wheat grain (Figure 10).   

Wheat grain grown on soils with Cd concentrations below the lowest 
limit, 0.196 mg kg-1, generally had concentrations below 50 µg kg-1 (Figure 
10). However, it is difficult to assess how these concentrations in grain would 
impact the final concentration in the potential end-product, e.g. baby food. 
Nevertheless, these soils could be suitable for production of winter wheat 
when Cd concentration in grain is needed to be kept as low as possible, to be 
used e.g. for baby food. The map could perhaps also be used as a planning 
tool, e.g. in sourcing winter wheat when specific requirements on Cd content 
in grain need to be met. Note that soils with low concentrations of Cd are 
rather uncommon in Scania County and there may be better scope for finding 
suitable areas in other regions of Sweden. Analysis of data on the Swedish 
winter wheat production area in 2020 revealed that only 4.4% of the area was 
within the lowest limit for soil Cd (Paper II). 

The prediction interval is useful information, but not necessarily to the 
end user in its “raw” form (Wadoux et al., 2021b). Lark et al. (2022) argue 
that uncertainty values are best used in relation to some set value or limit, 
e.g. the probability of exceeding a certain concentration or risk limit. In 
Sweden, there are no guidelines or recommendations on Cd concentrations 
in agricultural soil, other than for sewage sludge application. Therefore, 
following on from Lark et al. (2022), the prediction uncertainties in some 
DSM products, including the Cd map in its current form in Paper II, can be 
purely decorative and not serve a clear purpose as decision support. Hence, 
it is not clear from Paper II how the prediction interval or its bounds could 
be used effectively as decision support, as no usable limit exists to relate the 
results to. One option could be to locate soils with low predicted Cd 
concentrations that also had a narrow prediction interval. However, this 
raises questions concerning how narrow the prediction interval should be and 
how low the predicted Cd concentration should be – which is difficult to 
answer. 
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Figure 10: Maps showing (a-c) predicted soil cadmium (Cd) concentrations at or below 
defined limits  and (d) the corresponding analysed grain Cd concentrations in winter 
wheat within and outside the delineated areas presented as boxplots (the orange line 
shows the median) (Paper II). The limits were 0.196, 0.215 and 0.240 mg kg-1, 
corresponding to the 30th, 40th and 50th percentile of analysed Cd concentrations in the 
NV dataset, respectively. 

 
The prediction interval bounds produced in Paper III could be used to 

answer questions about the risk limit of Cu deficiency in soil (7 mg kg-1). 
Figure 11 shows agricultural land in Sweden where the lower bound of the 
prediction interval (5th percentile) was above the risk limit for Cu deficiency, 
i.e. where Cu concentrations in agricultural soils are highly likely not to be 
below the risk limit (95% probability). This equated to 47% of Swedish 
agricultural land (Figure 11). 
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Figure 11: Map showing Swedish agricultural soils with copper (Cu) concentrations 
highly likely (95% probability) to be above the deficiency risk limit, and soils potentially 
below the risk limit. Based on mapping the lower bound of the prediction interval (5th 
percentile) (Paper III). 

 
The remaining 53% of land cannot be excluded from a risk of being Cu-
deficient, and more information, e.g. from laboratory analyses of soil 
samples, is needed. The map produced makes it possible to divert and 
redirect focus to these soils. It can also act as a guide for farmers and advisors 
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in discussions and decisions on whether laboratory analysis of Cu 
concentrations are needed and if so, where to take the soil samples. 

The width of the prediction interval made it unsuitable for locating soils 
with concentrations highly likely to be below the risk limit. The upper bound 
was only below 7 mg kg-1 in two cells in the map. Therefore, it is obvious 
that more information is needed on the prediction uncertainty. It would 
probably be more correct to predict many percentiles (1, 2, 3 … 99), and not 
just the 95th and 5th as done in this thesis. This would have been particularly 
useful when assessing the varying probabilities of risk in the grey areas in 
Figure 11. For example, doing this would have made it possible to query a 
point in the map and see the predicted percentile at which the risk limit of 
Cu deficiency was reached. A predicted 30th percentile of e.g. 7 mg kg-1 could 
imply a 30% probability of being at or below the risk limit at that point in 
the map. However, this would be more computationally demanding, as every 
percentile from the 1st to the 99th would have to be predicted when using 
GBR. It would also be important to assess the validity of these percentiles 
and the resulting prediction intervals, e.g. using PICP. The 0 and 100th 
percentiles should not be predicted, as they are the minimum and maximum, 
and predicting these would mean that it would be impossible to find future 
observations outside the prediction interval. 

5.5 Covariate importance in DSM 
In Paper III, airborne gamma radiation measurement data ranked high for 
both methods used for assessing covariate importance (Table 12, Figure A2). 
Airborne gamma radiation measurements can indicate the degree of 
weathering and mineralogy (International Atomic Energy Agency, 2003). 
They are thus a good predictor of soil texture, which in turn is a good 
predictor of Cu concentrations. This probably explains why the soil texture 
classes ranked low in the assessment in Paper III, as the airborne gamma 
radiation data already contained sufficient information. Therefore, the 
covariates of soil texture classes may be redundant. 
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Table 12: Covariate importance ranking of the digital soil mapping (DSM) model for 
cadmium (Cd) (Paper II) and the DSM model for copper (Cu) (Paper III). MDI = mean 
decrease in impurity, PI = permutation importance, BioGeo = cokriged biogeochemical 
data, TWI = topographic wetness index, ConvInd = convergance index, TPI = 
topographic position index, U = Uranium (238U), Th = Thorium (232Th), K = Potassium 
(40K). Each covariate type is colour-coded: Green = airborne gamma radiation 
measurement data, red = topographic data, blue = biogeochemical data, yellow = soil 
texture classes, grey = climate data.  

Rank Cd, MDI Cd, PI Cu, MDI Cu, PI 
1 U U Th Th 
2 BioGeo Th Dose rate Prec MAM 
3 Th BioGeo U U 
4 Elevation K Prec MAM Dose rate 
5 K TPI 500 Elevation Temp SON 
6 TPI 5 Elevation Temp DJF Temp DJF 
7 TPI 500 TPI 5 Prec DJF Temp annual 
8 TPI 50 TPI 50 Prec SON Temp MAM 
9 ConvInd ConvInd TPI 5 Elevation 
10 TWI TWI Prec JJA Prec DJF 
11 Sand Silt K K 
12 Till Till Temp SON Temp JJA 
13 Silt Sand Temp JJA Prec JJA 
14 Clay till Clay till Temp annual TPI 5 
15 Clay Other TPI 50 Prec annual 
16 Other Clay Temp MAM Prec SON 
17 - - TPI 500 TPI 50 
18 - - Clay TPI 500 
19 - - Soil moisture Clay 
20 - - Prec annual Soil moisture 
21 - - Clay till Clay till 
22 - - Sand Sand 
23 - - Silt Silt 
24 - - Other Other  
25 - - Till Till 

 
However, this highlights one of the problems with MDI, whereby covariates 
with many unique values, e.g. dose rate, provide more opportunities for 
finding splitting thresholds in the regression tree nodes than the binary 
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classes of soil texture (Strobl et al., 2007). It could be the case that airborne 
gamma radiation measurement data contain better information about soil 
texture, or that they simply provide more opportunities for splitting 
thresholds. 

In Paper III, climate covariates, and especially seasonally subdivided 
climate covariates, were identified as being important in the DSM model. 
Hengl et al. (2017) also found that climate covariates were important when 
mapping soil Cu in sub-Saharan Africa. Concentrations of Cu in soil are a 
product of environmental factors, including climate (Oorts, 2013), and there 
may be causal relationships between climate variables and soil properties. 
However, it is also possible that climate covariates simply act as spatial 
partitioning covariates, which was probably the case in Paper III. For 
example, higher amounts of precipitation fall in western Sweden and this 
region also has more coarse-textured soils, which are often linked to low Cu 
concentrations. Lastly, elevation ranked highest of all the DEM covariates in 
Paper III. Chen et al. (2012) found that topography could explain the spatial 
variation structure in soil Cu concentrations, with higher concentrations in 
lower parts of watersheds, and such relationships may also occur in Sweden. 
The DEM derivatives, such as topographic position index (TPI) and soil 
moisture, perhaps contained redundant information compared with elevation 
above sea level and precipitation data. However, it should be mentioned that 
the soil moisture map is not calibrated for agricultural soils. 

In Paper II, the results were fairly similar to those in Paper III, with 
airborne gamma radiation covariates ranking highest (Table 12, Figure A3). 
Uranium was important in the DSM model for Cd, which was expected 
considering the strong correlations between gamma radiation-measured U 
and soil Cd concentrations identified by Söderström and Eriksson (2013), 
with soils influenced by Cd-rich alum shale often having elevated U 
concentrations. Cokriged biogeochemical data, i.e. a rough delineation of Cd 
concentrations in the landscape, were also highlighted as important in the 
DSM model in Paper II. Elevation was identified as the most important DEM 
covariate. Qiu et al. (2020) showed that Cd concentrations in soil are related 
to elevation gradients, and this may be the case in Skåne County as well. 
Hence, DEM covariates might be an important factor when conducting DSM 
of Cd. Nevertheless, based on the results from Papers II and III, it could be 
argued that elevation above sea level provides most of the necessary 
topographical information needed. 
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The performance of the DSM models for Cd and Cu in Papers II and III, 

respectively, indicated that more covariates are probably needed or that some 
critical covariate may be missing. Some previous DSM studies, e.g. those by 
Hengl et al. (2017) and Poggio et al. (2021), concluded that more covariates 
were needed, as this could improve model performance. In contrast, the 
results in this thesis indicate that many covariates may be redundant and 
could perhaps be omitted to increase model parsimony. However, it is 
important that the natural system is well represented by the covariates. 
Covariates on management practices, or proxies of these, could be beneficial, 
especially as management practices can influence Cu concentrations in 
agricultural soil (Vavoulidou et al., 2011; Oorts, 2013). How management 
practices can be represented as a covariate remains unclear, as to my 
knowledge there is no national dataset of this kind. An option could be to use 
indirect information on management practices for each agricultural field, e.g. 
the most commonly grown crop in each field. It would also be interesting to 
implement spatial covariates such as the oblique geographical coordinates 
(OGCs) proposed by Møller et al. (2020) in future DSM. Oblique 
geographical coordinates could perhaps be more suitable as spatial 
partitioning covariates than the climate covariates used in this thesis. 
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In this thesis, DSM was conducted to create maps of Cu and Cd in 
agricultural soils Sweden. Prediction uncertainty, as the 90% prediction 
interval, was also mapped. The overall aim was to create maps that could 
serve as decision support for crop production. The results demonstrated that 
the Cd map created could be used to source winter wheat grain with low 
concentrations of Cd. This mapping framework can be scaled up to cover the 
whole of Sweden, providing opportunities to identify other suitable areas for 
production of winter wheat with low Cd concentrations in grain. Digital soil 
mapping of Cu revealed that the prediction interval bounds could be used to 
exclude agricultural soils from the risk of being Cu deficient. 

Prediction interval mapping proved to be an important part of DSM, but 
needs to be improved in order to answer probabilistic questions with regard 
to crop production, e.g. the probability of the risk limit being exceeded at a 
certain point. The lower concentration range of Cu and Cd is of most interest 
for applications in crop production, so future DSM modelling should perhaps 
focus more on specific ranges of concentrations or on using classification 
models rather than regression models. In the future, it would also be 
interesting to improve the maps at local level, either by recalibrating the 
DSM model using local soil samples, i.e. spiking, or by using residual or 
regression kriging, as done by Söderström et al. (2016) and Nijbroek et al. 
(2018). 

Predicting trace elements using PXRF measurements is promising, and 
can produce very accurate estimates of e.g. Zn concentration. However, 
prediction biases at lower concentrations of Cu and Cd reveal that there is 
still room for improvement. The future of PXRF models may lie in using bias 
correction or by using the raw spectra and data from other sensors, as tested 
by Shresta et al. (2022). In this thesis, using the concentrations of Cu 

6. Conclusions and future prospects 
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predicted by a PXRF model, and thus increasing the calibration dataset size, 
made the subsequent DSM model more accurate. Hence, the speed and ease 
of PXRF measurements makes it a powerful tool in DSM when more 
calibration data are needed. 

The soil samples in the JV and NV datasets make it possible to conduct 
future DSM on many more trace elements or soil properties. For example, 
the NV dataset also contains measured pH and Mn concentrations. All these 
soil samples have been analysed with the PXRF device. Hence, Swedish soil 
mapping is promising and can be expanded to include many more variables 
in the future. 

Covariate importance analysis revealed high importance of airborne 
gamma radiation measurement data in DSM of Cu and Cd concentrations. It 
would be interesting to improve the spatial resolution of airborne gamma 
radiation data so that within-field variation can potentially be predicted more 
accurately. Covariate redundancy of e.g. soil texture classes and DEM 
derivatives should be avoided in future Swedish DSM of Cu and Cd. Ideally, 
new covariates should contain novel information from new sources.  

Lastly, I argue that future DSM in Sweden should be performed in close 
collaboration with stakeholders, so that the products developed are useful 
and desirable to the individual farmer, advisor, authority or industry. 
Significant efforts should be made to produce educational maps that suit the 
intended purpose. These maps should perhaps also be interactive, e.g. 
making it possible to zoom in at individual fields, obtain meaningful 
statistics or query probabilities of exceeding user-set limits. However, issues 
relating to handling sensitive information that these DSM products might 
contain, such as Cd concentrations in agricultural soils, need to be further 
assessed in future Swedish DSM. 
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Marken har många egenskaper som är viktiga för grödors tillväxt, och i vissa 
fall även för vår egen hälsa när vi konsumerar skördeprodukterna. En av 
dessa egenskaper är innehållet av spårelement. Spårelement är grundämnen 
som förekommer i relativt låg halt i naturen. Grödor tar upp spårelement ur 
jorden. Vissa spårelement är mikronäringsämnen, till exempel koppar och 
zink. Mikronäringsämnen är nödvändiga för att växten ska kunna växa och 
utvecklas normalt. Underskott av koppar eller zink i växt kan leda till 
symptom såsom dåligt utvecklade organ eller hämmad rottillväxt. I ett 
jordbrukssammanhang kan detta leda till minskad skörd av grödor. Vissa 
spårelement, t.ex. kadmium, är dock inte nyttiga för oss slutkonsumenter. 
Ökat intag av kadmium via maten har kopplats till benskörhet och cancer hos 
människor. Detta innebär att det är bra om halter av dessa spårelement i 
matjord kan kartläggas, för att få ett bättre beslutsstöd i växtproduktionen. 
Till exempel, för att veta var det kan behövas koppargödsling om halten i 
matjorden bedöms vara för låg. Information om kadmium i matjord skulle 
kunna hjälpa oss att hitta områden där låga halter i gröda är sannolika.  

När intentionen är att skapa bra kartor behövs oftast många 
jordprovsanalyser, vilket kan vara dyrt och tidskrävande. Ett möjligt 
alternativ är att använda handburen röntgenflourescens (PXRF)-teknik, 
vilket är en snabb, enkel och relativt billig metod att mäta total halt av 
spårelement i jord. Metoden fungerar genom att “skjuta” röntgenstrålning på 
ett prov, för att sedan registrera våglängderna på energin som kommer 
tillbaka. Dessa våglängder ger information om vilka spårelement som finns 
i provet och i vilka halter. 

Digital markkartering, digital soil mapping (DSM) på engelska, är en 
metod att för kartera jordegenskaper, t.ex. halter av spårelement. Det man 
gör är att etablera statistiska sammanband mellan geografiskt täckande 

Populärvetenskaplig sammanfattning 



76 

hjälpvariabler och uppmätta halter av spårelement i jordprover för att skapa 
en modell. Hjälpvariabler kan vara t.ex. information om höjd över havet, 
årlig nederbörd eller marktexturklasser. Modellen kan användas för att 
kartera spårelement. 

Den här avhandlingen undersökte om PXRF-mätningar kan användas för 
att bestämma halter av zink, koppar och kadmium i jordprover. 
Avhandlingen handlade även om digital markkartering av koppar och 
kadmium, och hur dessa kartor kan användas. 

Resultat från PXRF-modellering visade att det var möjligt att bestämma 
halter av zink, koppar och kadmium med modeller som kombinerar 
maskininlärning och PXRF-mätningar. Zinkhalter framtagna på detta sätt var 
jämförbara med dem från konventionell laboratorieanalys, medan 
skattningar av halter av kadmium och koppar var mindre träffsäkra men 
fortfarande användbara. Denna metod är ett intressant alternativ eller 
komplement till konventionell laboratorieanalys. Metoden användes för att 
utöka mängden jordprover med kadmium- och kopparhalt för den digitala 
markkarteringen. 

Digital markkartering av kadmium resulterade i en karta med skattad halt 
i olika delar av Skåne och beräkningar av hur säkra de framtagna värdena 
var. Jämförelse med data på halter i höstvetekärna visade ett samband mellan 
låg halt i kärna och låg halt i matjord. Det innebär att kadmiumkartan kan 
användas för att lokalisera områden lämpliga för produktion av höstvete med 
särskilt låg halt kadmium i kärna, till exempel för produktion av barnmat. 
Digital markkartering av koppar resulterade i en nationell karta med skattade 
halter och hur säkra de var. Utifrån detta kunde risk för kopparbrist med stor 
sannolikhet uteslutas i 47% av svensk matjord. De resterande 53% av svensk 
matjord har däremot medelstor till stor risk för kopparbrist och 
laboratorieanalys av jordprover krävs för säker bedömning. 
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The chemical properties of soils are important for crop growth and to ensure 
food safety of crop-based products to end-consumers. One such chemical 
property is the concentration of trace elements in the soil. Trace elements are 
elements that occur in relatively small amounts in nature and are taken up by 
plants from the soil. Some trace elements, such as copper and zinc, are useful 
micronutrients in crop nutrition, and are needed by plants in order to function 
properly. Deficiency of copper or zinc in plants can lead to symptoms such 
as malformation of organs or limited root growth. In an agricultural context, 
this can lead to reduced crop yield. Some other trace elements in soil, such 
as cadmium, are especially undesirable for the end-consumer of plant 
products. Accumulation of these harmful trace elements can be toxic to the 
end-consumer. For example, elevated human intake of cadmium with food 
has been linked to bone brittleness and cancer. Therefore, the concentrations 
present in grain sold for food uses are strictly regulated by legislation. At 
both farm level and national level, it would be beneficial to have information 
about the concentrations of copper, zinc and cadmium in agricultural soils. 
For example, if copper concentrations in certain fields were known to be too 
low for crop health, copper could be added in trace amounts in fertiliser. 
Alternatively, spatially explicit information on cadmium concentrations in 
soil could help identify suitable soils for production of grains with 
particularly high quality requirements, e.g. for baby food production. 

For the purposes of accurate and detailed soil mapping, many soil samples 
would need to be collected and analysed, which can be time-consuming and 
expensive. An alternative is to use portable X-ray fluorescence (PXRF) 
sensing, which is a quick, easy and relatively inexpensive method for direct 
measurement of total concentrations of trace elements in soil. This method 
works by ‘shooting’ X-rays at soil samples and recording the wavelengths of 
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the energy returned from different elements. The returning energy provide 
information on elements present in the sample and their concentrations.  

Digital soil mapping (DSM) is a popular method for spatial estimation of 
soil properties, such as concentrations of trace elements. Digital soil mapping 
involves establishing statistical relationships between spatially extensive 
covariates (environmental information) and known concentrations of trace 
elements at point locations, to create a model. Examples of covariates are 
elevation, soil texture classes and annual rainfall. The model can then be used 
to predict concentrations of trace elements spatially, in order to produce a 
map. 

This thesis explored the use of PXRF measurements to predict 
concentrations of zinc, copper and cadmium in soil samples. The thesis also 
explored the application and use of digital soil mapping of copper and 
cadmium in Swedish agricultural soil. 

Results of PXRF modelling showed that it was possible to predict 
concentrations of zinc, cadmium and copper using PXRF measurements with 
machine learning models. Predicted concentrations of zinc were comparable 
to the values obtained in conventional laboratory analysis, while predictions 
of cadmium and copper were less accurate, but still usable. This 
methodology could be an interesting alternative or complement to 
conventional laboratory analysis. It was used in this thesis to predict 
concentrations of cadmium and copper in soil samples, in order to increase 
the number of soil samples for digital soil mapping.  

Digital soil mapping of cadmium in Skåne County resulted in a map of 
Cd concentrations and of the uncertainty associated with those predicted 
concentrations. Comparisons with data on grain samples revealed that low 
cadmium concentrations in winter wheat grain were associated with low 
predicted concentrations in soil. Hence, the map could be used to identify 
agricultural soils especially suitable for growing winter wheat with low 
cadmium concentrations.  

Digital soil mapping of copper resulted in a national map of 
concentrations and of the uncertainty associated with those predicted 
concentrations. This national map indicated that for 47% of agricultural soil 
in Sweden the risk of copper deficiency is very small, while for the remaining 
53% of agricultural soil the risk of copper deficiency is medium to high. In 
these areas laboratory analysis of soil samples would be needed to more in 
detail determine the risk. 
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Figure A1: Scatter plot of validation results for the five fields on Bjertorp Farm. 
‘Predicted Cu’ is the copper (Cu) concentration map produced in Paper III. 

Appendix 



82 

 
Figure A2: Covariate importance score and ranking using mean decrease in impurity 
(MDI) and permutation importance (PI) for the digital soil mapping (DSM) model for 
copper (Paper III). Each covariate type is colour-coded. 

 
Figure A3: Covariate importance score and ranking using mean decrease in impurity and 
permutation importance for the digital soil mapping (DSM) model for cadmium (Paper 
II). 
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Abstract: Portable X-ray fluorescence (PXRF) measurements on 1520 soil samples were used to
create national prediction models for copper (Cu), zinc (Zn), and cadmium (Cd) concentrations
in agricultural soil. The models were validated at both national and farm scales. Multiple linear
regression (MLR), random forest (RF), and multivariate adaptive regression spline (MARS) models
were created and compared. National scale cross-validation of the models gave the following R2

values for predictions of Cu (R2 = 0.63), Zn (R2 = 0.92), and Cd (R2 = 0.70) concentrations. Independent
validation at the farm scale revealed that Zn predictions were relatively successful regardless of the
model used (R2 > 0.90), showing that a simple MLR model can be sufficient for certain predictions.
However, predictions at the farm scale revealed that the non-linear models, especially MARS, were
more accurate than MLR for Cu (R2 = 0.94) and Cd (R2 = 0.80). These results show that multivariate
modelling can compensate for some of the shortcomings of the PXRF device (e.g., high limits of
detection for certain elements and some elements not being directly measurable), making PXRF
sensors capable of predicting elemental concentrations in soil at comparable levels of accuracy to
conventional laboratory analyses.

Keywords: PXRF; soil; copper; zinc; cadmium; machine learning; precision agriculture

1. Introduction

Mapping concentrations of micronutrients or toxic elements in agricultural soil is important
but is not commonly done. This kind of information could be useful in precision agriculture, where
the goal is optimal management in space and time [1]. For instance, zinc (Zn) and copper (Cu) are
important elements in crop production due to their roles in photosynthesis, respiration, and other plant
functions [2,3]. However, excessively high concentrations can be toxic for crops (e.g., an excessive
concentration of Cu can lead to malformation of root systems) [3]. Hence, there is a need to detect both
low and high concentrations. Cadmium (Cd) is also toxic to consumers of crop products above certain
threshold concentrations [2]. Thus, it can be useful to map Zn, Cu, and Cd at the field scale in order to
rectify deficiencies and toxicities, and to safeguard crop quality and food safety. At present, there are
no public field-scale maps of these elements in Sweden.

In Sweden, deficiency of Cu in crops is known to occur in sandy and organic soils [4], whereas
availability of Zn is regarded as less of a problem. However, Zn deficiency in agricultural soil is
a common problem in many other parts of the world [5]. Very high concentrations of Cd are typically
related to the soil’s parent material, which can vary substantially within an agricultural field [6].
In Sweden, a soil is deemed to be at risk of Cu deficiency at concentrations below 6–8 mg kg−1 [7].
There are no regulations governing Cd concentration in agricultural soil, but there are national laws
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that prohibit application of sewage sludge when soil concentrations are above the stated limits for Cu
(40 mg kg−1), Zn (100–150 mg kg−1), and Cd (0.4 mg kg−1) [7,8].

To derive accurate maps of elemental concentrations in soil, many soil samples need to be
analyzed. The conventional method involves element extraction with acids followed by analysis using
the inductively coupled plasma (ICP) technique [9,10]. However, wet chemistry laboratory analyses can
be expensive, time-consuming, and destructive to the sample [9,10]. The portable X-ray fluorescence
(PXRF) technology is becoming an interesting option as it is a cheap, fast, and non-destructive method
for analyzing element concentrations in soil samples [11]. This makes it very suitable for tasks where
high sampling density is needed (e.g., mapping and geostatistics) [12]. The method works by exciting
atoms with an energy source from the PXRF device, often an X-ray tube [13]. The atoms then emit X-ray
fluorescence at specific wavelengths depending on the element in question, which is then measured by
a sensor in the PXRF device [13]. The method can be accurate when combined with a simple preparation
of the soil sample, and can provide high-quality data comparable to those obtained with conventional
methods for quantification of certain elements in soil samples [14]. The PXRF technology is recognized
as an official method for analyzing trace elements in soil by the United States Environmental Protection
Agency (U.S. EPA) [15].

The aims of the present study were to:

• Use PXRF measurements to create national models for prediction of soil Cu, Zn, and Cd
concentrations in agricultural soils;

• Validate these models at the national scale using cross-validation, and at the farm scale using an
independent dataset;

• Compare the performance of three model types: multiple linear regression (MLR), multivariate
adaptive regression splines (MARS), and random forest regression (RF);

• Test whether the best model for Cu can accurately predict whether a sample has concentrations
above or below recommended levels;

• Test whether the best model for each element can accurately predict whether a soil sample has Cu,
Zn, and Cd concentrations above or below the permissible level for sewage sludge application to
agricultural soil.

2. Materials and Methods

2.1. Soil Sampling

The study area included all agricultural land in Sweden. Swedish crop production (mostly
small-grain crops, oilseeds, pastures, and meadows covering about 2.5 Mha) is mainly concentrated in
young, marine, and lacustrine post-glacial sediments from the time after the Weichselian glaciation [16].
More than 90% of the agricultural area is located in the southern area of the country (the sample
distribution in Figure 1 accurately depicts the occurrence of arable land). Eutric and dystric cambisols
are the dominant cropland soil types [16]. Cropland soil texture ranges from heavy clays in the eastern
parts, to loam and sandy loam generally dominating in the south and southwestern agricultural
areas [16–18]. For a general soil and texture map of Sweden, see Figures 2 and 4 by Eriksson et al. [19].
For an overview of topsoil properties of arable land in Sweden, see maps by Eriksson et al. (pp. 75–90) [7].
Descriptive statistics of the soil properties in the calibration samples are presented in Table 1.
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Figure 1. Map of Sweden showing soil sampling locations used in the present study. Farm dataset
refers to the nine farms that were used for independent validation of the models. National dataset
refers to the calibration samples. Base map courtesy of Environmental Systems Research Institute
(ESRI) (Redlands, CA, USA).

Table 1. The minimum, maximum, mean, median, and standard deviation (SD) of cation exchange
capacity (CEC) at pH 7 (cmolc kg−1) for base saturation (%), soil organic matter (SOM) (%), clay content
(%), and pH in the topsoil samples of arable land in Sweden used in the analyses (n = 1520).

Minimum Maximum Mean Median SD

CEC 3 70 17 15 8
Base saturation 8 100 69 72 21
SOM 0.8 16.6 4.5 4.2 1.8
Clay content 2 80 23 19 15
pH 4.5 8.4 6.2 6.2 0.6

The total number of topsoil samples available from the national monitoring program for arable
soils in Sweden was 1833 [7]. Sampling locations in the monitoring program were selected using
a random stratified sampling design covering all arable land [7]. Soil samples from nine farms (n = 179,
~ 20 from several fields per farm) were used for validation at the farm scale (Figure 1). The nine farms
were originally selected for a previous study in order to represent a wide range of Cd concentrations
and different geologies, based on maps presented in Eriksson et al. [7]. Each soil sample consisted of
nine subsamples collected with an auger at a depth of 0–20 cm within a 3–5 m radius of the sample
coordinates. The soil samples were air-dried, homogenized, and sieved (< 2 mm) prior to analysis.

2.2. PXRF Measurements

The soil samples were analyzed ex situ using a Niton XL3t GOLDD+PXRF device with
a geometrically optimized large area drift detector and an Ag anode that operates at 50 kV and
200 µA (Thermo Scientific, Billerica, MA, USA), which were connected to a computer and mounted
on a static frame specially designed for the PXRF device (Thermo Scientific, Billerica, MA, USA).
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The PXRF device was set in “soil mode”, an instrument-specific measurement configuration optimized
for soil materials, and measurement time was set to 180 s per sample. Each soil sample was dried,
homogenized, and sieved (< 2 mm) according to recommendations for ex situ PXRF analysis [13,15].
Each soil sample was placed in a 32-mm double-ended XRF sample cup (filled to three-quarters volume)
with a 4-µm thick transparent polypropylene XRF film in line with U.S. EPA standards [15] and placed
on the PXRF aperture. The reference standard 2709a from the National Institute of Standards and
Technology (NIST) was measured four times during the project to check the measurement stability
of the PXRF device (see Supplementary Materials). Measurements were found to be stable over the
course of the project.

The limit of detection (LOD) was set at three times the standard deviation of the measurement.
The PXRF device measured each second for the duration of measurement (180 s). Hence, a final
concentration and standard deviation were provided for the element in question when the measurement
was completed. As each measurement has its own individual standard deviation for an element,
there is no common LOD for an element. Measured values below this limit were denoted “not a
number” (NaN). Only elements with < 10% NaN values in the national dataset were included in the
modelling to ensure that the measured concentrations of elements used as explanatory variables were
generally above the LOD of the PXRF device. Hence, future measurements with a similar PXRF device
can be used with high probability. All samples that exhibited NaN values for any of the included
elements were excluded from the modelling. The total number of samples used for calibration was
1520 (Soil properties of these samples can be seen in Table 1).

2.3. Laboratory Analyses

Pseudototal concentrations of Cu, Zn, and Cd in the soil samples were determined by extraction
with 7M HNO3 in an autoclave at 120 ◦C for 30 min, as stated by Swedish standard SS 28 31
11 [20]. Measurement was performed using inductively coupled plasma atomic emission spectroscopy
(ICP-AES) for Zn and Cu, and inductively coupled plasma mass spectrometry (ICP-MS) for Cd.
Hereafter, “lab-analyzed” refers to results obtained with this extraction and analysis method.

2.4. Modelling

2.4.1. Model Selection

Three different machine learning algorithms were chosen for modelling Zn, Cu, and Cd
concentrations, namely MLR, RF, and MARS. The intention was to have a simple linear model
(MLR) and two distinct non-linear models (RF and MARS). The RF and MARS algorithms produce
non-linear models with discrete and continuous predictions respectively. RF consists of an ensemble of
decision trees with bagging, where each decision tree is made from a partitioning algorithm based
on conditional statements. The term bagging means creating several decision trees from different
subsets of the data, making the final predicted value the mean value of several tree models [21].
MARS is based on building several piecewise linear regression models (basis functions) that are valid
within certain intervals of the explanatory variables and defined by hinge functions [21]. The MARS
algorithm first creates basis functions in a forward pass, later to be pruned in a backwards pass to
reduce model complexity and risk of overfitting [21]. For a more detailed description of MLR, RF,
and MARS, see Hastie et al. [21].

2.4.2. Model Implementation

The MLR and RF algorithms were implemented using the Scikit-learn machine learning package
(version 0.19.1) for Python [22]. MARS was implemented using the Py-earth package (version 0.1.0)
for Python, originally made for the R programming language [23]. Both RF and MARS were used in
their default setting. For example, MARS was set as default to be additive. This was done to reduce
overfitting and make the models more robust. The only hyperparameter set was with the RF models,
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as the number of bagged trees needed to be specified (number of trees was set to 100). For a complete
description of the default settings, see the respective model descriptions in the Py-earth and Scikit-learn
packages. Predictions of negative concentrations were set to 0 mg kg−1.

2.4.3. Validation

The performance metrics used were the mean absolute error (MAE) and the coefficient of
determination (R2), often named the Nash–Sutcliffe model efficiency coefficient [24], which is defined
as in Equation (1):

R2 = 1−
∑
(yi − ŷi)

2∑
(yi − y)2 (1)

where yi is the actual value, ŷi is the predicted value, and y is the mean of the actual values of the
response variable.

Cross-validation was performed on the national dataset using the leave-one-out method for each
MLR, RF, and MARS model. Validation metrics are also presented based on how well the Cu and Cd
models performed at lower concentrations (arbitrarily chosen range of interest (ROI)) of 0–20 mg kg−1

and 0–0.5 mg kg−1, respectively. This was done to generate validation statistics that give a better
understanding of how well the predictions perform around concentrations of practical interest.

In addition, confusion matrices were created to assess whether the models could be used to
determine if a soil element concentration is above or below a given threshold in the cross-validation for
Cu deficiency and sewage sludge application with regard to Cu, Zn, and Cd concentrations. The upper
boundary of the Cu deficiency threshold was used (8 mg kg−1). The models chosen for this task were
those that performed best in terms of R2 in the cross-validation for each element. Agreement of the
predictions was calculated according to Equation (2):

Agreement =
(Tp + Tn)

(Tp + Tn + Fp + Fn)
(2)

where Tp is the total number of positive predictions, Tn is the total number of negative predictions,
Fp is the number of false positive predictions, and Fn is the number of false negative predictions.
Positive predictions refer to values below the threshold and negative predictions refer to values above
the threshold.

3. Results

3.1. Descriptive Statistics of PXRF Measurements of the National Set of Soil Samples

Thirteen elements proved to be useful as explanatory variables of element concentrations in
the 1833 samples (Table 2). The element closest to the threshold of < 10% NaN readings was Cs
(9.8% NaN), followed by barium (Ba) (3.9%), lead (Pb) (2.2%), vanadium (V) (1.4%), manganese (Mn)
(0.4%), and Zn (0.2%). The remaining elements shown in Table 2 had no NaN readings. Descriptive
statistics of the elements used to calibrate the MLR, RF, and MARS models are also presented in
Table 2. The descriptive statistics minimum, maximum, mean, median, and standard deviation (SD)
were calculated after removal of samples with NaN values in any of the included variables, which
resulted in exclusion of 313 samples out of the original 1833 samples (i.e., 1520 samples were used for
modelling). The majority of the samples excluded had readings below the LOD for Cs.
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Table 2. Descriptive statistics of the elements used for modelling after removal of samples with “not a
number” (NaN) classification in any of the elements included (n = 1520). Minimum, maximum, mean,
median, and standard deviation (SD) are presented as mg kg−1, where values < 1000 were rounded
to the closest integer and values > 1000 to three significant digits. Rec = mean recovery rates from
four measurements based on reference standard 2709a from the National Institute of Standards and
Technology (NIST) (%); Rec-SD = standard deviation of the four recovery rates (%).

Element Minimum Maximum Mean Median SD Rec Rec-SD

Pb 8 146 19 18 7 63 10.8
Cs 10 56 33 34 9 970 33.1
Zn 16 518 72 67 32 92 2.1
V 33 411 93 90 30 123 18.6
Rb 32 181 104 100 26 83 0.8
Sr 71 378 142 132 49 92 0.8
Zr 71 955 251 240 77 65 0.9
Ba 197 1140 491 487 98 87 2.4
Mn 124 6000 542 481 345 97 2.7
Ti 1630 6890 3860 3880 765 114 1.8
Ca 2980 196,000 11,100 9710 9390 105 1.5
Fe 4370 93,000 21,500 19,300 9760 84 0.6
K 11,400 36,200 24,100 24,300 4180 96 1.3

A total of 99% of Cd measurements and 55% of Cu measurements were NaN, indicating that this
PXRF device cannot be used for direct measurement of Cd and Cu at the concentration range found in
Swedish agricultural soil. The lowest concentration of Cu measured was approximately 20 mg kg−1,
indicating that this is perhaps the lowest possible Cu concentration that can be measured with this
PXRF device.

The PXRF device measured values similar to known concentrations of the included elements in
NIST 2709a (Table 2). Concentrations of some elements, such as Cs and Pb, were overestimated and
underestimated, respectively. However, the stability of the measurements, as shown by the standard
deviation of the recovery rates, shows that the PXRF measurements can be used for modelling, as the
coefficients in the calibrated models will be valid over time. Measurements of Cs had the least stability
according to the standard deviation of the recovery rates, but still only fluctuated by 1–3 mg kg−1

(see Supplementary Materials).

3.2. Descriptive Statistics of the National and Farm Datasets

Descriptive statistics of lab-analyzed Cu, Zn, and Cd concentrations for the national dataset
(calibration and cross-validation data) and the farm dataset (validation data) are shown in Table 3.

Table 3. Descriptive statistics of lab-analyzed copper (Cu), zinc (Zn), and cadmium (Cd) for the
calibration data (national dataset, n = 1520) and validation data (farm dataset, n = 179). Minimum,
maximum, mean, median, and standard deviation (SD) are presented as mg kg−1 rounded to the closest
integer, apart from those for Cd.

Lab-Analyzed Element Minimum Maximum Mean Median SD

National dataset
Cu 2 130 14 11 10
Zn 6 557 61 56 33
Cd 0.04 4.07 0.20 0.17 0.17
Farm dataset
Cu 3 77 22 17 19
Zn 22 135 72 67 30
Cd 0.06 1.60 0.37 0.21 0.38
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The national and farm datasets differed in their frequency distributions of concentrations of Cu,
Zn, and Cd. The mean and median showed that the farm dataset generally had higher concentrations
of Cu, Zn, and Cd than the national dataset. For example, the national dataset contained five samples
with Cu concentrations above 60 mg kg−1, while the farm dataset contained 19. Similarly, eight samples
in the national dataset had Cd concentrations above 1 mg kg−1, while there were 25 such samples in
the farm dataset. There were, therefore, more samples with higher concentrations of Cu and Cd in
the farm dataset than in the national dataset, even though the farm dataset was much smaller. In the
national dataset, high concentrations were, therefore, less common in the case of Cu and Cd. For Zn
there were 139 samples with concentrations above 100 mg kg−1 in the national dataset, while there
were 41 in the farm dataset. This implies that the Zn concentrations measured on the selected farms
were more similar to those in the national dataset than the measured concentrations of Cu and Cd

3.3. Cross-Validation

In Figure 2, cross-validated leave-one-out predictions of concentrations from the MLR, RF, and
MARS models for each element are plotted against lab-analyzed concentrations for the national dataset.
The cross-validation results showed that it was possible to predict concentrations beneath the LOD for
Cu, which was approximately 20 mg kg−1. However, the RF models could not predict concentrations
as low as those predicted by the continuous MLR and MARS models, as is apparent for Cu and Cd
predictions with the RF models (Figure 2). For instance, the RF model for Cu could only predict
concentrations down to approximately 5 mg kg−1, while the MLR and MARS models could predict
lower concentrations. There was no major visual difference between the performance of the MLR and
MARS models for Cu (Figure 2). All three models for Zn imposed a fit close to the 1:1 line. The MLR
model for Cd produced errors in the higher range of concentrations, while the RF and MARS models
predictions at higher concentrations exhibited negative bias. However, the MARS model for Cd gave
smaller errors at lower concentrations than the MLR model for Cd (Table 4).

For ease of comparison, the same range of values is shown in the farm-scale validation (Figure 3)
and in the national-scale validation (Figure 2). This means that some values outside the range are not
shown in Figure 2 (1, 20, and 5 values for Cu, Zn, and Cd, respectively).

Table 4. Validation statistics from the cross-validation of the multiple linear regression (MLR), random
forest regression (RF), and multivariate adaptive regression spline (MARS) models for copper (Cu),
zinc (Zn), and cadmium (Cd). R2 = coefficient of determination; MAE = mean absolute error (mg kg−1);
ROI = range of interest (0–20 mg kg−1 for Cu and 0–0.5 mg kg−1 for Cd).

Model R2 MAE R2-ROI MAE-ROI

Cu-MLR 0.58 3.87 0.06 3.00
Cu-RF 0.63 3.48 0.20 2.69

Cu-MARS 0.59 3.72 0.04 2.94
Zn-MLR 0.92 5.60 - -

Zn-RF 0.86 5.93 - -
Zn-MARS 0.92 5.63 - -
Cd-MLR 0.49 0.065 −0.17 0.057

Cd-RF 0.48 0.053 0.40 0.043
Cd-MARS 0.70 0.054 0.20 0.047

Validation statistics revealed that the MARS models generally performed best except for with Cu,
for which the RF model performed best, based on R2 and MAE (Table 4). Cross-validation revealed
two problems with the continuous models MLR and MARS, especially in the ROI for Cu and Cd.
The first was the impact on strange predictions of concentrations for certain samples (e.g., in terms of
R2, the MLR model for Cu exhibited little accuracy). However, removal of a single poorly predicted
sample resulted in an increase in R2 from 0.06 to 0.13. For the MLR model for Cd, R2 increased from
−0.17 to 0.01 with removal of the same sample. The second problem involved predictions below
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0 mg kg−1. The numbers of samples with predicted concentrations below 0 mg kg−1 were 10 and 8 for
the MLR and MARS models for Cu, respectively. The numbers of samples with Cd predictions below
0 mg kg−1 were 12 and 1, respectively, for the MLR and MARS models. Hence, predictions below
0 mg kg−1 were uncommon. In the ROI, there were 1196 and 1487 samples for Cu and Cd, respectively.

These problems of predictions of outlier samples and predicted negative concentrations were
not observed with the discrete predictions of the RF model, as it cannot extrapolate beyond the
calibration data.

Figure 2. Concentrations of copper (Cu), zinc (Zn), and cadmium (Cd) predicted from portable
X-ray fluorescence (PXRF) measurements using multiple linear regression (MLR), random forest
regression (RF), and multivariate adaptive regression splines (MARS) for national-scale data using
leave-one-out cross-validation compared with 7M HNO3 extraction and inductively coupled (ICP)
analysis. The symbols are semi-transparent to show point density.
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Figure 3. Concentrations of copper (Cu), zinc (Zn), and cadmium (Cd) predicted from portable X-ray
fluorescence (PXRF) measurements using multiple linear regression (MLR), random forest regression
(RF), and multivariate adaptive regression splines (MARS) on the farm dataset compared with 7M
HNO3 extraction and inductively coupled (ICP) analysis. The models were calibrated at the national
scale and applied on the farm dataset. Each color represents a specific farm.

3.4. Validation at the Farm Scale

The MLR, RF, and MARS models of concentrations for each element in the farm-scale validation
are compared with the lab-analyzed concentrations in Figure 3, where each farm is represented by
a specific color (see full equations for the MLR models in the Supplementary Materials). Validation
statistics are shown in Table 5. All models were able to predict below the LOD of the PXRF device for
Cu, as also seen in the cross-validation. At lower concentrations, the MLR model for Cu had a general
positive bias, while at higher concentrations it had a general negative bias. The RF and MARS models
for Cu also exhibited negative bias for predictions at higher concentrations, with MARS having the
least negative bias. However, at lower concentrations the RF and MARS models exhibited less positive
bias in predictions than the MLR model. Farms with lower concentrations showed a smaller spread in
predicted values with the RF model for Cu (i.e., the farms represented by green symbols) compared
with the MLR and MARS models (Figure 3). However, as in the cross-validation, the RF model could
not predict concentrations as low as those predicted by the MLR and MARS models for Cu, which
resulted in a positive bias in predictions for farms with low concentrations of Cu. All models, though



Sensors 2020, 20, 474 10 of 15

especially the MARS model, were able to predict variations in Cu concentrations on certain farms with
ranges of Cu concentrations.

Table 5. Validation statistics from the farm dataset of the multiple linear regression (MLR), random
forest regression (RF), and multivariate adaptive regression spline (MARS) models for copper (Cu),
zinc (Zn), and cadmium (Cd). R2 = coefficient of determination; MAE = mean absolute error (mg kg−1);
ROI = range of interest (0–20 mg kg−1 for Cu and 0–0.5 mg kg−1 for Cd).

Model R2 MAE R2-ROI MAE-ROI

Cu-MLR 0.90 4.40 0.12 3.56
Cu-RF 0.84 4.51 0.54 2.43
Cu-MARS 0.94 3.21 0.47 2.72
Zn-MLR 0.96 4.40 - -
Zn-RF 0.94 5.40 - -
Zn-MARS 0.97 4.00 - -
Cd-MLR 0.74 0.121 0.34 0.052
Cd-RF 0.74 0.109 0.44 0.050
Cd-MARS 0.80 0.087 0.50 0.043

The MLR model for Zn was able to predict throughout the range with relatively high accuracy
and perhaps a slight positive model bias. The MLR model for Cd showed similar problems to the MLR
model for Cu, as high concentrations could not be predicted and there were errors in prediction at
lower concentrations. In general, all models showed equally good performance, with more or less bias
in the predictions in some cases.

The MLR and RF models for Cd exhibited positive bias in the predictions at lower concentrations,
while the MARS model exhibited the least positive bias. However, as can be seen from Figure 3, three
specific farms were difficult to predict. One farm, colored red, had Cd concentrations ranging from
about 0.5 to 1.4 mg kg−1. The Cd concentrations on this farm could not be accurately predicted by any
model tested in this study. However, sites on the farm exhibiting the highest concentrations of soil Cd,
colored pink, were those most accurately predicted by the MARS model.

Validation metrics of the prediction at the farm scale are presented in Table 5. These include
validation metrics on how well the Cu and Cd models performed in the ROI, for which there were 102
and 140 samples for Cu and Cd, respectively.

Based on the metrics, the nationally calibrated MARS models performed best of the models
tested in the farm-scale validation for Cu, Zn, and Cd (Table 5). However, within the ROI the RF
model for Cu performed better than the MARS model for Cu. This can also be inferred from Figure 3,
where predictions for each farm with lower concentrations showed less spread. The MARS model
performed better for the whole range than the RF model for Cu. All the models for Zn at the farm scale
performed very similarly, but with the MARS model the performance was the best, as also observed
in the cross-validation. Using the Zn values measured on the farms with the PXRF device compared
with lab-analyzed values resulted in R2 = 0.81, which was lower than that of the MLR, RF, and MARS
models for Zn (Table 5). The best model for predicting Cd, for the whole range and within the ROI,
was the MARS model, as also found in the cross-validation.

3.5. Testing Performance for Fertilization and Sewage Sludge Fertilization

Confusion matrices of predictions in relation to actual concentrations above or below threshold
concentrations for Cu, Zn, and Cd in the cross-validation are presented in Table 6. The thresholds
are based on the recommendations for Cu fertilization and permissible levels of soil Cu, Zn, and Cd
concentrations, above which sewage sludge application is prohibited [4,7]. The models used were
those identified as the best based on the coefficient of determination, presented in Table 4. Thus, the RF
model was used for Cu, MLR was used for Zn, and MARS was used for Cd.
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Table 6. Confusion matrices for classifications above and below thresholds for copper (Cu) fertilization
and sewage sludge application for Cu, zinc (Zn), and cadmium (Cd) using the best models for each
element in the cross-validation. Swedish recommendations suggest that there is risk of Cu deficiency if
the Cu concentration in the soil is below 8 mg kg−1, while sewage sludge application is prohibited if
the concentrations of Cu, Zn, and Cd exceed 40, 100, and 0.4 mg kg−1, respectively.

Cu Fertilization
Lab-Analyzed

Total
Below Threshold Above Threshold

Predicted
Below Threshold 224 70 294

Above Threshold 200 1026 1226

Total 424 1096

Cu Sewage Sludge
Lab-Analyzed

Total
Below Threshold Above Threshold

Predicted
Below Threshold 1490 27 1517

Above Threshold 2 1 3

Total 1492 28

Zn Sewage Sludge
Lab-Analyzed

Total
Below threshold Above Threshold

Predicted
Below Threshold 1337 21 1358

Above Threshold 44 118 162

Total 1381 139

Cd Sewage Sludge
Lab-Analyzed

Total
Below Threshold Above Threshold

Predicted
Below Threshold 1437 49 1486

Above Threshold 18 16 34

Total 1455 65

The level of agreement between predicted and lab-analyzed values was 82% when predicting
whether a soil was Cu-deficient or not (Table 6). However, there was higher accuracy in predicting
soils that were not Cu-deficient in the national dataset (94% correctly classified) compared with those
that were Cu deficient (53% correctly classified) (see Figure 2).

Assessment of samples regarding suitability for sewage sludge application revealed high agreement
between predicted and lab-analyzed values for Cu, Zn, and Cd (98%, 95%, and 95%, respectively).
This was especially true for predictions below the respective threshold. Most of the samples had
concentrations below the permissible level for sewage sludge application (shown in Figure 2).

4. Discussion

The results in this study demonstrated that an approach based on PXRF measurements coupled
with machine learning algorithms is capable of predicting concentrations of Cu, Zn, and Cd in
non-organic (SOM < 20%; Table 1) Swedish agricultural soils that can be used for risk assessments.
An interesting finding was that concentrations of elements that are difficult or impossible to measure
directly with the PXRF device, such as Cu and Cd, can be indirectly predicted with predictor elements
present in measurable concentrations in Swedish agricultural soil (shown in Table 2). For example,
it was found that MLR modelling of Zn was better than only using direct measurements of Zn made
with the PXRF device. However, the relatively accurate results obtained with the MLR model for Zn
were attributable to some degree to PXRF-measured Zn being included as an explanatory variable.
Cd concentrations were most difficult to predict accurately, as was evident for certain farms in the
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farm-scale validation, for which medium and high concentrations could not be predicted without
substantial errors. Hence, predictions of lower concentrations can be deemed more accurate.

The method presented for creating predictive models from PXRF measurements is a valid option
(especially for Cu and Zn) when a dense sampling scheme is needed to create high-resolution maps of
Cu, Zn, and Cd showing within-field variation. This can be a powerful tool in precision agriculture
and for regional or national soil monitoring and mapping projects.

4.1. Cu Deficiency

There are certain ranges of Cu concentrations that are especially interesting for Swedish agriculture.
According to Swedish recommendations [4], a soil is deemed to be at risk of Cu deficiency when
the concentration is below 6–8 mg kg−1. Indications of soil Cu status could be obtained using the
MARS and RF models for Cu, where the predictions could be used to assess whether a soil is at risk
of being Cu-deficient or not, considering the high model agreement and MAE in the ROI (Tables 5
and 6). Using PXRF, Hu et al. [14] obtained accurate measurements of Cu comparable to those in
laboratory analysis (R2 = 0.67). In this study, we achieved substantially higher R2 relative to laboratory
analysis when predicting Cu (up to R2 = 0.94). Hence, using PXRF measurements for prediction
appears promising. However, the MAE in the ROI was 2–3 mg kg−1 depending on the model used,
so predictions around the threshold of 6–8 mg kg−1 should be viewed with caution and complementary
conventional laboratory analysis should be conducted. For example, it should be noted that the results
presented in Table 6 are binary, while the input data for this classification were not. This means that
if a sample is predicted to have a concentration of 8.1 mg kg−1 (i.e., slightly above the threshold),
the prediction will be classified as incorrect. For example, if a predicted sample was deemed to be
correctly predicted up to 9 mg kg−1, the number of correctly predicted samples increased from 224 to
294 with the RF model for Cu.

4.2. Sewage Sludge Application

The prediction models could be used to determine whether sewage sludge may be applied
in an agricultural field. For example, the best model for predicting soil Cd concentrations had an
MAE of 0.04 mg kg−1 in the ROI in the farm-scale validation with the MARS model, which makes it
possible to determine whether an agricultural soil is at risk of excessive Cd concentrations. The results
showed that Zn predictions were of high accuracy and good model agreement (Table 6). López-Núnez
et al. [25] showed a similar high accuracy of predicted Zn in organic amendments with a linear model.
Hence, predictions of Zn concentrations with PXRF appear highly suitable. This study showed that
the MLR model is sufficiently accurate to predict whether sewage sludge application is permissible
in relation to soil Zn concentrations. A similar level of agreement was found in the Cu and Cd
predictions. However, most samples in the national dataset had Cu, Zn, and Cd concentrations below
the threshold where sewage sludge application is legal. Hence, concentrations above the legal limits
can be deemed as outliers in the distribution and the predictions at these concentrations should be
viewed with caution. Similar to the results in Table 6 mentioned earlier, there might be a need to
perform a conventional laboratory analysis when predicted concentrations are close to the thresholds
for sewage sludge application.

4.3. Data, Model Selection, PXRF Methodology, and Variable Selection

The MAE in the national cross-validation was generally lower than in the farm-scale validation
and the descriptive statistics showed that the farm dataset was somewhat unrepresentative of the
national dataset. Thus, the farm-scale dataset can be regarded as rather difficult to predict accurately,
since the farms included are quite unique in terms of their high Cd and Cu values (see Table 3). Hence,
as shown by the results, predictions of mid- and high-range concentrations of Cd should be viewed
with caution. The results indicated that other predictors from other sensors may be needed when
there is little variation in concentrations measured by PXRF. However, some farms with varying
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concentrations of Cu and Cd were predicted with accuracy, which indicates that the farm dataset is
difficult to validate against in some cases.

The results showed that when using the models presented, some caution is needed. For instance,
the RF models cannot predict concentrations as low as those predicted by the continuous MLR and
MARS models. However, in rare instances MARS and MLR can predict non-sensical concentrations.
The RF algorithm benefits greatly from a uniform distribution of concentrations in the calibration
dataset in order to create classes throughout the range. In the present study, an insufficient number of
classes was constructed by the RF model in the higher ranges for Cd. This implies that the accuracy
of the RF model could be improved with more samples, so that more variations in soil Cd could be
accounted for. Overall, the continuous models tested in this study appear more interesting as they
allow more extrapolation in predictions.

A simple linear model such as MLR can be very effective, as seen with the predictions of Zn, and
in some instances Cu. Non-linear models such as RF and especially MARS can be better overall options,
as there is lower associated error in the predictions. Hence, depending on the range of concentrations
to be predicted, either RF or MARS might be more or less suitable. For example, the RF model for Cu
performed the best out of the Cu models at lower concentrations, but was unable to makes predictions
as accurately as the MARS model at higher concentrations.

It should be noted that the PXRF measurements and the models were made on processed samples.
This means that these models might not be appropriate when using PXRF in the field due to the
sensitivities of the method to soil matrix factors, such as moisture and particle size distribution [26].
The parameterized models are, thus, calibrated for a specific soil matrix type, which in the present case
was dry, homogeneous, and fine-grained soil. The PXRF device was used as a small, nimble laboratory
device that is easy to use and provides ample amounts of data in terms of measured elements, in a
shorter time, and at a lower cost than conventional laboratory analysis, even when used in an ex situ
setting [14,27]. Based on the results in this study, the method will be tested in the future on a larger
dataset of soil samples to create maps of the modelled elements. Hence, this study provides excellent
groundwork for a future where these models are the foundation in mapping of soil Cu, Zn, and Cd
concentrations in Sweden.

In the present study, no feature selection of predictor elements was performed. This was because
with national models, the relationship between predictor elements and the target element in question
can vary in space. For instance, when the present analysis was performed with half the dataset,
particular relationships between elements were more prevalent, while these relationships were not
present when the whole dataset was used. However, if regional models are to be created in future
studies, feature selection might be necessary, as certain relationships depend on the soil type and
underlying geology.

5. Conclusions

• Predictive models using PXRF measurements were created and found to be applicable at farm
and national scales;

• The models were able to predict concentrations of Cu, Zn, and Cd in non-organic Swedish
agricultural soils at both national and farm levels, but with varying amounts of error;

• Non-linear models proved most suitable for predicting concentrations of Cu and Cd, while the
linear model for Zn yielded predictions with the same level of accuracy as the non-linear models;

• The accuracy of predictions means that the models created can be used to assess the risk of Cu
deficiency. However, complementary laboratory analysis is advisable if predicted concentrations
are close to the threshold value;

• The same applies for models created to assess whether an agricultural soil is eligible for sewage
sludge application based on its Cu, Cd, and Zn concentrations.
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